Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Luận văn phương trình lọc tổng quát và ước lượng tuyến tính của quá trình ngẫu n...

Tài liệu Luận văn phương trình lọc tổng quát và ước lượng tuyến tính của quá trình ngẫu nhiên

.PDF
75
839
105

Mô tả:

TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN - TIN ————————–o0o————————– CAO PHƯƠNG NGỌC PHƯƠNG TRÌNH LỌC TỔNG QUÁT VÀ ƯỚC LƯỢNG TUYẾN TÍNH CỦA QUÁ TRÌNH NGẪU NHIÊN Chuyên ngành Mã số Học viên Giảng viên hướng dẫn : : : : Lý thuyết Xác suất và Thống kê Toán học 60.46.01.06 Cao Phương Ngọc PGS.TS. Phạm Văn Kiều HÀ NỘI - 2017 Mục lục LỜI CẢM ƠN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 MỞ ĐẦU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 MỘT SỐ KIẾN THỨC CHUẨN BỊ 8 1.1 Quá trình ngẫu nhiên . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Quá trình Ito, tích phân Ito . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Công thức Ito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Điều kiện tồn tại duy nhất nghiệm của phương trình vi phân ngẫu nhiên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 LỌC 13 2.1 Khái niệm lọc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Phương trình lọc tổng quát . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Lọc của quá trình Markov khuếch tán . . . . . . . . . . . . . . . . . 20 2.4 Lọc tuyến tính tối ưu của dãy dừng với phổ hữu tỉ . . . . . . . . . . 22 3 ƯỚC LƯỢNG TUYẾN TÍNH CỦA QUÁ TRÌNH NGẪU NHIÊN 31 3.1 Quá trình Wiener theo nghĩa rộng . . . . . . . . . . . . . . . . . . . 3.2 Ước lượng tuyến tính tối ưu đối với một số lớp của quá trình không dừng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 3.4 31 42 Ước lượng tuyến tính của quá trình dừng yếu theo nghĩa rộng với phổ hữu tỉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 So sánh ước lượng tuyến tính tối ưu và ước lượng phi tuyến . . . . 56 2 PHỤ LỤC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 KẾT LUẬN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 TÀI LIỆU THAM KHẢO . . . . . . . . . . . . . . . . . . . . . . . . . 75 3 LỜI CẢM ƠN Bài toán lọc có vai trò quan trọng trong lý thuyết điều khiển và dự báo. Bản chất của nó là: cho một quá trình ngẫu nhiên hai chiều một phần quan sát được, tại mỗi thời điểm bất kì phải ước lượng được thành phần không quan sát được trên cơ sở thành phần quan sát được. Khóa luận này trình bày về phương trình lọc tổng quát và ước lượng tuyến tính của quá trình ngẫu nhiên. Nội dung của khóa luận được chia làm 3 chương gồm các vấn đề sau đây: Chương 1: Trình bày một số kiến thức chuẩn bị để thực hiện nội dung của chương sau: Quá trình ngẫu nhiên, tích phân Ito, quá trình Ito, phương trình Ito, công thức Ito, điều kiện tồn tại duy nhất nghiệm của phương trình vi phân ngẫu nhiên. Chương 2: Trình bày khái niệm lọc, phương trình lọc tổng quát, lọc của quá trình Markov khuếch tán và lọc tuyến tính tối ưu của dãy dừng với phổ hữu tỉ. Chương 3: Trình bày quá trình Wiener theo nghĩa rộng, lọc tuyến tính tối ưu đối với một số lớp của quá trình không dừng, ước lượng tuyến tính của những quá trình ngẫu nhiên dừng theo nghĩa rộng với phổ hữu tỉ. Qua bản khóa luận này, em xin gửi lời cảm ơn đến các thầy cô giáo Khoa Toán - Tin, Trường Đại học Sư phạm Hà Nội nói chung và các thầy cô giáo ở bộ môn Toán ứng dụng nói riêng đã dạy bảo và dìu dắt em trong những năm học vừa qua. Đặc biệt, em xin bày tỏ lòng biết ơn sâu sắc đến PGS. TS. Phạm Văn Kiều, người đã tận tình chỉ bảo, hướng dẫn và giúp đỡ em trong suốt quá trình làm khóa luận. Em xin cảm ơn gia đình, bạn bè, những người luôn động viên, cổ vũ, giúp đỡ em trong suốt quá trình học tập để em có thể hoàn thành bản khóa luận này. Do thời gian thực hiện khóa luận không nhiều, kiến thức còn hạn chế nên khi làm khóa luận không tránh khỏi những thiếu sót. Em rất mong nhận được sự góp ý, chỉ bảo tận tình từ thầy cô và bạn bè. 4 Em xin chân thành cảm ơn! Hà Nội, ngày 29 tháng 05 năm 2017 Tác giả luận văn Cao Phương Ngọc 5 MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI Lý thuyết ước lượng tham số trong thống kê toán học có nhiều phương pháp: phương pháp hợp lý cực trị, phương pháp mômen, phương pháp bình phương tối thiểu hoặc dùng lý thuyết lọc tối ưu. Thực chất của lọc tối ưu là dùng kỳ vọng điều kiện, tức là tìm hàm ước lượng yb sao cho E(y − yb)2 → 0. Ta suy ra yb = E(y/x). Ước lượng này chính là lọc tối ưu. Dựa trên cơ sở đó, tác giả tìm ước lượng tham số của quá trình ngẫu nhiên bằng phương pháp sử dụng khái niệm lọc. Vì những lý do trên, đề tài nghiên cứu của luận văn được lựa chọn là: “Phương trình lọc tổng quát và ước lượng tuyến tính của quá trình ngẫu nhiên”. II. MỤC TIÊU NGHIÊN CỨU Vận dụng lý thuyết về lọc vào phương trình vi phân ngẫu nhiên và ước lượng tham số của các quá trình ngẫu nhiên. III. ĐỐI TƯỢNG NGHIÊN CỨU • Phương trình lọc tổng quát. • Ước lượng tuyến tính của quá trình ngẫu nhiên. IV. PHƯƠNG PHÁP NGHIÊN CỨU Phương pháp giải tích, lọc tuyến tính tối ưu V. CẤU TRÚC LUẬN VĂN Nội dung luận văn gồm 75 trang trong đó có phần mở đầu, ba chương nội dung, phần kết luận và danh mục tài liệu tham khảo. Chương 1: Trình bày một số kiến thức chuẩn bị để thực hiện nội dung của chương sau: Quá trình ngẫu nhiên, tích phân Ito, quá trình Ito, phương trình Ito, công thức Ito, điều kiện tồn tại duy nhất nghiệm của phương trình vi phân ngẫu nhiên. 6 Chương 2: Trình bày khái niệm lọc, phương trình lọc tổng quát, lọc của quá trình Markov khuếch tán và lọc tuyến tính tối ưu của dãy dừng với phổ hữu tỉ. Chương 3: Trình bày quá trình Wiener theo nghĩa rộng, lọc tuyến tính tối ưu đối với một số lớp của quá trình không dừng, ước lượng tuyến tính của những quá trình ngẫu nhiên dừng theo nghĩa rộng với phổ hữu tỉ. Cuối cùng là phần kết luận trình bày tóm tắt kết quả đạt được. Luận văn được hoàn thành tại Trường Đại học Sư phạm Hà Nội dưới sự hướng dẫn tận tình của PGS. TS. Phạm Văn Kiều. Nhân dịp này em xin cám ơn Thầy về sự hướng dẫn nhiệt tình và sự truyền thụ những kinh nghiệm trong quá trình học tập, nghiên cứu và hoàn thành luận văn. Tác giả xin chân thành cảm ơn Phòng Sau Đại học, Ban chủ nhiệm Khoa Toán, các thầy cô giáo Trường Đại học Sư phạm Hà Nội đã giảng dạy và tạo điều kiện thuận lợi cho em trong quá trình học tập và nghiên cứu khoa học. Xin chân thành cảm ơn các đồng nghiệp đã tạo điều kiện giúp đỡ tôi về mọi mặt trong quá trình học tập và hoàn thành bản luận văn này. Bản luận văn chắc chắn không tránh khỏi những khiếm khuyết, vì vậy rất mong được sự đóng góp ý kiến của các thầy cô giáo và các bạn học viên để luận văn này được hoàn chỉnh hơn. Hà Nội, ngày 10 tháng 06 năm 2017 Tác giả luận văn Cao Phương Ngọc 7 Chương 1 MỘT SỐ KIẾN THỨC CHUẨN BỊ 1.1 Quá trình ngẫu nhiên Định nghĩa 1.1.1. (Quá trình ngẫu nhiên) Quá trình ngẫu nhiên X là một họ các biến ngẫu nhiên X = (Xt , t ∈ T ⊂ R) trong đó T là một tập các chỉ số thực, có thể hữu hạn đếm được hoặc vô hạn không đếm được. Nếu T = Z thì X = (Xt ) là một dãy biến ngẫu nhiên. Định nghĩa 1.1.2. (Quá trình Wiener) Cho không gian xác suất (Ω, F, P) và họ không gian các σ - đại số con {Ft , t ≥ 0} của σ - đại số F . Quá trình ngẫu nhiên W = (Wt , t > 0, Ft ) được gọi là quá trình Wiener tương ứng với họ (Ft , t > 0) nếu: i) Quỹ đạo của Wt , t > 0 là liên tục với mọi t (hcc). ii) W = (Wt , Ft )t>0 là martingale bình phương khả tích với W0 = 0 và: E[(Wt − Ws )2 /Fs ] = t − s, t>s Định nghĩa 1.1.3. (Quá trình Markov) Ta nói X = (Xt , t 6 0) là một quá trình Markov nếu với mọi t1 < t2 < ... < tk < t và với mọi i1 , ..., in ∈ T ta có: P{Xt = i|Xt1 = i1 , Xt2 = i2 , ..., Xtk = ik } = P{Xt = i|Xtk = ik } 8 Định nghĩa 1.1.4. (Quá trình dừng theo nghĩa hẹp (dừng mạnh)) Quá trình ngẫu nhiên X = (Xt , t ∈ T ⊂ R1 ) là quá trình dừng (theo nghĩa hẹp) nếu đối với bất kì sô thực h, phân phối hữu hạn chiều của nó không thay đổi khi tịnh tiến một đoạn h, nghĩa là: φt1 ,...,tn = φt1 +h,...,tn +h với mọi t1 , ..., tn , t1 + h, ..., tn + h ∈ T . Định nghĩa 1.1.5. (Quá trình dừng theo nghĩa rộng (dừng yếu)) Quá trình ngẫu nhiên X = (Xt , t ∈ T ⊂ R1 ) là quá trình dừng (theo nghĩa rộng) nếu tồn tại mômen cấp 1, cấp 2 và nó không thay đổi khi thực hiện phép tịnh tiến, nghĩa là: Eξt+h = Eξt K(t + h, s + h) = K(t, s) Định nghĩa 1.1.6. (Quá trình Gauss) Quá trình ngẫu nhiên X = (Xt , t > 0) là một quá trình Gauss nếu mỗi tổ hợp tuyến tính có dạng: Z= N P αi Xti i=1 là một biến ngẫu nhiên chuẩn (biến ngẫu nhiên Gauss), với mọi (αi , ..., αi ) ∈ RN . Nói cách khác, X là Gauss nếu mỗi phân phối hữu hạn chiều là chuẩn. 1.2 Quá trình Ito, tích phân Ito Định nghĩa 1.2.1. (Quá trình Ito) Quá trình ngẫu nhiên liên tục ξ = (ξt , 0 6 t 6 T ) được gọi là quá trình Ito (liên hệ với quá trình Wiener W = (Wt , Ft ), t ∈ [0, T ]) nếu tồn tại 2 quá trình không đoán định trước được a = (at , Ft ) và b = (bt , Ft ), t ∈ [0, T ] sao cho: T  R P |at |dt < ∞ = 1 0 9 P T R b2t dt < ∞  =1 0 và với xác suất 1 đối với 0 6 t 6 T thì: ξt = ξ0 + Rt a(s, ω)ds + 0 Rt b(s, ω)dWs 0 Định nghĩa 1.2.2. (Quá trình khuếch tán) Quá trình Ito ξ = (ξt , t ∈ [0, T ]) được gọi là quá trình khuếch tán (liên quan đến quá trình Wiener) nếu hàm a(s, ω) và b(s, ω) trong định nghĩa Ito là Ftξ - đo được với hầu tất cả s, 0 6 s 6 t Định nghĩa 1.2.3. (Tích phân Ito)   Giả sử f (t, ω) là quá trình ngẫu nhiên thỏa mãn: E f 2 (t, ω) < ∞ và Wt là chuyển động Brown có quỹ đạo xác định trên [a, b]. Xét phân hoạch của [a, b]: a = t0 < t1 < t2 < ... < tn = b và tổng tích phân: Sn (ω) = n−1 P f (ti , ω) [Wti+1 − Wti ] i=0 Ta là mịn phân hoạch [a, b] sao cho: max |ti+1 − ti | → 0 06t6n−1 Nếu tồn tại biến ngẫu nhiên S∗ (ω) sao cho: E|Sn (ω) − S∗ (ω)|2 → 0, n→∞ thì S∗ (ω) được gọi là tích phân Ito, kí hiệu: I= Rb f (t, ω)dWt a S∗ (ω) là giới hạn theo nghĩa bình phương trung bình của Sn (ω), kí hiệu: S∗ (ω) = lim Sn (ω) n→∞ Khi đó, Sn → S∗ trong L2 (ω, F, P) khi n → ∞. Vì vậy, ta có thể định nghĩa tích phân Ito của quá trình ngẫu nhiên f (t, ω) là giới hạn theo nghĩa bình phương trung bình sau (nếu giới hạn đó tồn tại): 10 I= Rb f (t, ω)dWt = max|ti+1 −ti |→0 i=0 a 1.3 n−1 P lim f (ti , ω) [Wti+1 − Wti ] Công thức Ito Định lí 1.3.1. Cho ξ = (ξt , Ft ), 0 6 t 6 T là quá trình ngẫu nhiên với vi phân: dξt = a(t, ω)dt + b(t, ω)dWt trong đó W = (Wt , Ft ) là quá trình Wiener, và hàm không đoán định trước a(t, ω), b(t, ω) thỏa mãn: P T R  |at |dt < ∞ =1 0 P T R b2t dt  <∞ =1 0 Cho hàm f = f (t, x) là hàm đo được xác định trên [0; T ] × R1 , liên tục và có các 0 0 00 đạo hàm riêng liên tục ft (t, xt ), fx (t, xt ), fxx (t, xt ). Khi đó, quá trình f (t, ξt ) cũng có vi phân ngẫu nhiên và:  0 0 00  0 df (t, ξt ) = ft (t, ξt )a(t, ω) + ft (t, ξt ) + fxx (t, ξt )b2 (t, ω) dt+ft (t, ξt )b(t, ω)dWt (1.1) Công thức (1.1) còn được gọi là công thức Ito. 1.4 Điều kiện tồn tại duy nhất nghiệm của phương trình vi phân ngẫu nhiên Định lí 1.4.1.  Cho phương trình vi phân ngẫu nhiên:  dx(t) = f (x(t), t)dt + g(x(t), t)dWt  x(t ) = ξ (0 6 t 6 t 6 T ) 0 0 Giả sử tồn tại 2 hằng số dương K và K sao cho: i) (Điều kiện Lipschitz) Với mọi x, y ∈ Rd và t ∈ [t0 , T ]: |f (x, t) − f (y, t)|2 ∨ |g(x, t) − g(y, t)|2 6 K|x − y|2 ii) (Điều kiện tăng tuyến tính) Với mọi x, y ∈ Rd × [t0 , T ] : |f (x, t)|2 ∨ |g(x, t)|2 6 K(1 + |x|2 ) 11 (1.2) Khi đó phương trình vi phân (1.2) có nghiệm duy nhất thỏa mãn: " # RT E x(s)2 ds 6 ∞ t0 trong đó tính duy nhất hiểu theo nghĩa: Nếu x(t) cũng là nghiệm của phương trình (1.1) thì: P[x(t) = x(t); ∀t ∈ [t0 , T ]] = 1 12 Chương 2 LỌC 2.1 Khái niệm lọc Bài toán lọc Cho (Ω, F, P )là không gian xác suất đầy đủ và (Ft , t ∈ [0, T ]) là họ không giảm các σ - đại số con liên tục phải của F . Giả sử (θ, ξ) là quá trình ngẫu nhiên hai chiều, quan sát được bộ phận, trong đó θ = (θt , Ft ) là thành phần không quan sát được, còn ξ = (ξt , Ft ) là thành phần quan sát được. Bài toán lọc tối ưu đối với quá trình quan sát được bộ phận (θ, ξ) được hiểu là xây dựng đối với mỗi thời điểm t, (0 6 t 6 T ) ước lượng bình phương trung bình tốt nhất đối với hàm Ft - đo được h của (θ, ξ) trên cơ sở kết quả quan sát được ξs , s 6 t. Nếu Eh2t < ∞ thì ước lượng tối ưu dĩ nhiên là πt (h) = E(ht /Ftξ ). Không có giả thiết gì đặc biệt về cấu trúc của quá trình (h, ξ), πt (h) xác định rất khó. Song dưới một số giả thiết nhất định, thành phần của quá trình (h, ξ) là quá trình loại (2.1) và (2.2). Ta có thể đặc trưng πt (h) với phương trình vi phân ngẫu nhiên cho ở (2.11) và được gọi là phương trình lọc phi tuyến tối ưu. Giả sử h = (ht , Ft ) được cho bởi phương trình: Rt ht = h0 + Hs ds + xt (2.1) 0 trong đó X = (xt , Ft )(t 6 T ) là martingale và H = (Ht , Ft )(t 6 T ) là quá trình ngẫu Rt nhiên với |Hs |ds < ∞ (hcc). 0 13 Do Ft liên tục phải và theo định lý 4 (phần phụ lục), X = (xt , Ft ) có bản sao liên tục phải. Quá trình ξ = (ξt , Ft ) được giả thiết là: Rt Rt ξt = ξ0 + As (ω)ds + 0 Bs (ξ)dWs (2.2) 0 W = (Wt , Ft ) là quá trình Wiener . Quá trình A = (At , Ft ) và B= (Bt , Ft ) được giả  thiết sao cho: RT P |At (ω)|dt < ∞ = 1 0 T  R 2 P Bt (ξ)dt < ∞ = 1 (2.3) (2.4) 0 Phiếm hàm Bt (x)(0 6 t 6 T ), x ∈ G là Bt - đo được với t ∈ T và giả thiết thêm: Rt |Bt (x)−Bt (y)|2 6 L1 |xs −ys |2 dK(s)+L2 |x1 −y1 |2 (2.5) 0 Rt Bt2 (x) 6 L1 (1 + x2s )dK(s) + L2 (1 + x2t ) (2.6) 0 2.2 Phương trình lọc tổng quát Định lí 2.2.1. Giả sử quá trình ngẫu nhiên hai chiều (h, ξ) quan sát được bộ phận được cho bởi (2.1), (2.2) và giả sử (2.3) - (2.6) thỏa mãn. Giả sử: sup Eh2t < ∞ (2.7) EHt2 dt < ∞ (2.8) EA2t dt < ∞ (2.9) 06t6T RT 0 RT 0 Bt2 (x) > C > 0 (2.10) Khi đó đối với mỗi t, (0 6 t 6 T ) (hcc): Rt Rt πs (H)ds + {πs (D) + [πs (hA) − πs (h).πs (A)].Bs−1 (ξ)}dW s πt (h) = π0 (h) + 0 (2.11) 0 trong đó: Wt = Rt dξs − πs (A)ds 0 là quá trình Wiener (tương ứng với họ Bs (ξ) ξ (Ft ), 0 6 t với: 14 6 T ) và D = (Dt , Ft ) là quá trình Dt = dhx, W it dt (2.12) Phương trình (2.11) được gọi là phương trình lọc tổng quát. Chứng minh. Từ (2.9) và (2.10) suy ra: RT √ E|At |dt < ∞, |Bt (x)| > C > 0 (2.13) 0 Do đó, E|At | < ∞ với hầu hết t, 0 6 t 6 T . Không mất tính tổng quát, ta có thể giả sử rằng E|At | < ∞ với mọi t, 0 6 t 6 T . Khi đó, theo định lý 17 (phần phụ lục), W = (W t , Ftξ ) là một quá trình Wiener và quá trình ξ = (ξt , Ftξ ) xác định bởi (2.2) cho phép vi phân: dξt = πt (A)dt + Bt (ξ)dW t (2.14) với: πt (A) = E[At (ω)/Ftξ ] Theo bất đẳng thức Jensen và (2.9): RT RT 2 Eπt (A)dt 6 EA2t dt < ∞ (2.15) 0 0 Cùng với (2.5), (2.6) và (2.10), ta có thể áp dụng định lý 19 (phần phụ lục). Theo định lý 19 và bổ đề 7 (phần phụ lục), bất kì martingale Y = (yt , Ftξ ), 0 6 t 6 T có một biến thể liên tục cho phép biểu diễn: Rt fs (ξ)dW s yt = y0 + (2.16) 0 với P T R fs2 (ξ)ds  <∞ = 1 và trong trường hợp martingale bình phương khả tích, 0 RT Efs2 (ξ)ds < ∞. 0 Từ (2.1), (2.7) và (2.8) suy ra martingale X = (xt , Ft ) là bình phương khả tích. Lấy kì vọng có điều kiện E(./Ftξ ) 2 vế  của (2.1), tathu được: Rt πt (h) = E(h0 /Ftξ )+E Hs ds/Ftξ +E(xt /Ftξ ) (2.17) 0 Ta trình bày các bổ đề mang tính bổ trợ sau cho phép biến đổi vế phải của (2.17) thành (2.11). Bổ đề 2.2.2. Quá trình (E(h0 /Ftξ ), Ftξ ), 0 6 t 6 T là martingale bình phương khả tích có biểu diễn: 15 E(h0 /Ftξ ) = π0 (h) + Rt gsh (ξ)dW s (2.18) 0 với: RT E [gsh (ξ)]2 ds < ∞ 0 Chứng minh. Điều này được suy ra trực tiếp từ định lý 19 và định lý 2 (phần phụ lục), cũng theo đó, martingale E(h0 /Ftξ ) có giới hạn phải với mỗi t, 0 6 t 6 T (hcc). Bổ đề 2.2.3. Quá trình (E(xt /Ftξ ), Ftξ ), 0 6 t 6 T là martingale bình phương khả tích có biểu diễn: E(xt /Ftξ ) = Rt gsx (ξ)dW s (2.19) 0 với: RT E [gsx (ξ)]2 ds < ∞ 0 Chứng minh. Ta kiểm tra quá trình này là martingale theo cách giống bổ đề 13 (phần phụ lục). Tính bình phương khả tích được suy ra từ tính bình phương khả tích của martingale X = (xt , Ft ). Sự tồn tại lim E(xs /Ftξ ) được suy ra từ định lý s↓t 4 (phần phụ lục). Do đó kết luận của bổ đề được suy ra trực tiếp từ định lý 19 (phần phụ lục). Bổ đề 2.2.4. Cho α = (αt , Ft ), 0 6 t 6 T là quá trình ngẫu nhiên với RT E|αt |dt < ∞ 0 và cho G là một σ− đạisố con của  F .t Khi đó: Rt R E αs ds/G = E(αs /G)ds, 0 6 t 6 T 0 (hcc) (2.20) 0 Chứng minh. Cho λ = λ(ω) là biến ngẫu nhiên G− đo được liên kết. Khi đó, áp dụng địnhlý Fubini ta có:  t  Rt Rt Rt R E λ αs ds = E[λαs ]ds = E[λE(αs /G)]ds = E λ E(αs /G)ds 0 0 0 0 Mặt khác:  Rt   E λ αs ds = E λE 0  Rt  αs ds/G 0 Từ đó, theo tính bất kì của λ = λ(ω), ta thu được (2.20). 16 Bổ đề 2.2.5. Quátrình  t ngẫu nhiên:  t  R R ξ ξ E Hs ds/Ft − πs (H)ds, Ft , 0 6 t 6 T 0 (2.21) 0 là martingale bình phương khả tích t  cót biểu diễn: t R R R E Hs ds/Ftξ − πs (H)ds = gsH (ξ)dW s 0 0 (2.22) 0 với: E RT  gsH (ξ) 2 ds < ∞ 0 Chứng minh. Tồn tại (hcc):   s  Rs R ξ lim E Hu du/Fs − πu (H)du s↓t 0 (2.23) 0 được cho từ định lý 2 (phần phụ lục). Do đó, bổ đề được suy ra từ định lý 19 (phần phụ lục) nếu nó được biểu diễn bởi quá trình cho bởi (2.21) là martingale (tính bình phương khả tích được suy ra từ giả thiết (2.8)). Cho bổ đề 2.2.4:  t h t  s6t t. Khi đó, theo i t R R R R ξ ξ ξ Hu du/Fs − E πu (H)du/Fsξ du Hu du/Fs − πu (H)du/Fs = E E E 0  s0  0 t  s h 0 i i R R R Rt h ξ ξ ξ ξ =E Hu du/Fs + E Hu du/Fs − E πu (H)du/Fs du− E πu (H)du/Fs du s 0 s 0 (2.24) Do đó: Rs h E πu (H)/Fsξ i du = 0 Rs πu (H)du (hcc) (2.25) 0 và với u > s: o o n n E[πu (H)/Fsξ ] = E E(Hu /Fuξ )/Fsξ = E Hu /Fsξ Theo bổ đề 2.2.4:  E Rt Hu du/Fsξ s  = Rt h i E πu (H)du/Fsξ du (2.26) s Từ (2.24) - (2.26) ta suy ra quá trình cho bởi (2.21) là martingale. Ta trở lại chứng minh định lý từ (2.17), bổ đề 2.2.2, 2.2.3, 2.2.5, ta nhận thấy: Rt Rt πt (h) = π0 (h)+ πs (H)ds+ gs (ξ)dW s 0 (2.27) 0 và: gs (ξ) = gsh (ξ)+gsx (ξ)+gsH (ξ) với: 17 (2.28) RT Egs2 (ξ)ds < ∞ (2.29) 0 Ta chỉ ra rằng với hầu hết t, 0 6 t 6 T ta có: gs (ξ) = πs (D)+[πs (hA)−πs (h).πs (A)].Bs−1 (ξ) Cho yt = Rt gs (ξ)dW s và zt = 0 Rt (hcc) (2.30) λs (ξ)dW s với λ = (λs (ξ), Fsξ ) là quá trình ngẫu 0 nhiên liên kết được với |λs (ξ)| 6 C < ∞. Theo tính chất của tích phân ngẫu nhiên: Rt Eyt zt = E λs (ξ)gs (ξ)ds (2.31) 0 Ước lượng Eyt zt theo cách khác, từ (2.27) ta có: Rt yt = πt (h) − π0 (h) − πs (H)ds (2.32) 0 Ta chú ý rằng: Ezt π0 (h) = E h i π0 (h)E(zt /F0ξ ) =0 (2.33) và:  E zt Rt  πs (H)ds = 0 Rt E [zt πs (H)] ds = 0 Rt h E i E(zt /Fsξ )πs (H) ds = 0 Rt E[zs πs (H)]ds 0 (2.34) Do đó, nhận thấy các giá trị ngẫu nhiên zt là Ftξ − đo được, ta có: Rt Eyt zt = Ezt πt (h) − Ezs πs (H)ds 0 h i = E zt E(ht /Ftξ ) −  = E zt ht − Rt Rt h i E zs E(hs /Fsξ ) ds 0 zs Hs ds 0 (2.35) Ta sử dụng: Wt = Rt dξs − πs (A)ds 0 Bs (ξ) = Wt + Rt As (ω) − πs (A) 0 Bs (ξ) ds (2.36) Ta thu được: zt = zbt + Rt λs (ξ) 0 As (ω) − πs (A) ds Bs (ξ) với: zbt = Rt λs (ξ)dWs 0 Từ (2.35) và (2.37) ta có:  Rt Eyt zt = E zt ht − zs Hs ds 0 18 (2.37)  = E zbt ht −  +E ht Rt 0 Rt 0  zbs Hs ds Rt As (ω) − πs (A) λs (ξ) ds − Bs (ξ) 0 s R 0 Au (ω) − πu (A) λu (ξ) Bu (ξ)   Hs ds (2.39) Quá trình zb = (zbt , Ft ) là martingale bình phương khả tích. Do đó: Eb zt h0 = E (h0 E(zbt /F0 )) = Eh0 zb0 = 0 (2.40) Rt Rt Rt E zbs Hs ds = E [E(zbt /Fs )Hs ]ds = Eb zt Hs ds (2.41) và: 0 0 0 Vì vậy, theo (2.1) và định  lý12 (phần phụt lục):  t R R E zbt ht − zbs Hs ds = E zbt (ht − h0 − Hs ds) = Eb zt xt = Ehzb, xit 0 (2.42) 0 Theo định lý 11 (phần phụ lục): hzb, xit = Rt λs (ξ)Ds ds (hcc) (2.43) 0 và do đó:   Rt Rt Rt E zbt ht − zbs Hs ds = Ehzb, xit = E λs (ξ)Ds ds = E λs (ξ)πs (D)ds 0 0 (2.44) 0 Tínhtoán mục thứ hai của vế phải (2.39) ta thu được: Rt A (ω) − πs (A) ds E ht λs (ξ) s Bs (ξ) Rt As − πs (A) hs As − hs πs (A) = E λs (ξ) ds + E λs (ξ)[ht − hs ] ds Bs (ξ) Bs (ξ) 0 0 Rt Rt πs (hA) − πs (h)πs (A) As − πs (A) = E λs (ξ) ds+E λs (ξ)[ht −hs ] ds Bs (ξ) Bs (ξ) 0 0 0 Rt (2.45) Lưu ý rằng: ht −hs = Rt Hu du+(xt −xs ) (2.46) s và: E(xt −xs /Fs ) = 0 Do đó: Rt As − πs (A) ds Bs (ξ) 0   Rt Rt As − πs (A) As − πs (A) Rt = E λs (ξ)[xt − xs ] ds + E λs (ξ) Hu du ds Bs (ξ) Bs (ξ) s 0 0 E λs (ξ)[ht − hs ] 19 (2.47) =E  Rt Rs 0 0  Au − πu (A) du Hs ds λu (ξ) Bu (ξ) (2.48) Từ điều này và (2.45) ta suy ra: Rt A (ω) − πs (A) Eht λs (ξ) s ds Bs (ξ) 0   Rt Rt Rs πs (hA) − πs (h)πs (A) Au (ω) − πu (A) =E du Hs ds + E λs (ξ) ds λu (ξ) 0 0 Bu (ξ) Bs (ξ) 0 Từ (2.39), (2.44) và (2.49) ta có:  Rt πs (hA) − πs (h)πs (A) Eyt zt = E λs (ξ) πs (D) + ds Bs (ξ) 0 (2.49) (2.50) So sánh biểu thức này với (2.31) ta nhận thấy được tính đúng đắn của (2.30) Rt (hcc) với hầu hết t, (0 6 t 6 T ). Từ giá trị của tích phân gs (ξ)dW s ở (2.25) không 0 đổi khi hàm gt (ξ) thay đổi trong họ các độ đo Lebesgue không, và phương trình (2.30) có thể được đánh giá thỏa mãn (hcc) với hầu hết t, (0 6 t 6 T ). Vì thế, định lý 2.2.1 được chứng minh. 2.3 Lọc của quá trình Markov khuếch tán Xét bài toán ước lượng thành phần không quan sát được θt của quá trình Markov khuếch tán 2 chiều (θt , ξt ), 0 6 t 6 T trên cơ sở các quan sát ξs , s 6 t. Trên không gian xác suất (Ω, F, P) cho quá trình Wiener độc lập, xác định Wi = (Wi (t)); i = 1, 2; 0 6 t 6 T , và vector ngẫu nhiên (θb0 , ξb0 ) độc lập với W1 , W2 . Kí hiệu: n o Ft = σ ω : θb0 , ξb0 , W1 (s), W2 (s), s 6 t Theo định lý 5 (phần phụ lục), σ− đại số FtW là liên tục. Tương tự, ta cũng có σ− đại số Ft là liên tục. Cho (θ, ξ) = (θt , ξt ), 0 6 t 6 T là quá trình ngẫu nhiên với: dθt = a(t, θt , ξt )dt+b1 (t, θt , ξt )dW1 (t)+b2 (t, θt , ξt )dW2 (t) dξt = A(t, θt , ξt )dt+B(t, ξt )dW2 (t) θ0 = θb0 , ξ0 = ξb0 , P (|θb0 | < ∞) = P(|ξb0 | < ∞) = 1 (2.51) (2.52) (2.53) Nếu g(t, θ, x) biểu thị cho bất kì hàm nào trong các hàm: a(t, θ, x), A(t, θ, x), b1 (t, θ, x), b2 (t, θ, x), B(t, x) thì nó được giả sử rằng: 20
- Xem thêm -

Tài liệu liên quan