Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu định lượng tetrodotoxin trong phủ tạng cá nóc bằng sắc ký lỏng khối p...

Tài liệu Nghiên cứu định lượng tetrodotoxin trong phủ tạng cá nóc bằng sắc ký lỏng khối phổ (lc ms)

.PDF
60
567
127

Mô tả:

BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘI --------- HOÀNG THANH HÀ NGHIÊN CỨU ĐỊNH LƯỢNG TETRODOTOXIN TRONG PHỦ TẠNG CÁ NÓC BẰNG SẮC KÝ LỎNG KHỐI PHỔ (LC-MS) KHÓA LUẬN TỐT NGHIỆP DƯỢC SỸ HÀ NỘI-2014 BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘI HOÀNG THANH HÀ NGHIÊN CỨU ĐỊNH LƯỢNG TETRODOTOXIN TRONG PHỦ TẠNG CÁ NÓC BẰNG SẮC KÝ LỎNG KHỐI PHỔ (LC-MS) KHÓA LUẬN TỐT NGHIỆP DƯỢC SỸ Người hướng dẫn: 1. ThS. Phùng Minh Dũng 2. CN. Vũ Tùng Lâm Nơi thực hiện: 1. Bộ môn Hóa Phân Tích 2. Viện kiểm nghiệm thuốc Trung Ương 3. Công ty CP Dược Phẩm Mediplantex HÀ NỘI-2014 HÀ NỘI-2014 LỜI CẢM ƠN Với lòng kính trọng và biết ơn sâu sắc tôi xin được bày tỏ lời cảm ơn chân thành tới: ThS. Phùng Minh Dũng, CN.Vũ Tùng Lâm và các thầy cô giáo trong bộ môn Hóa Phân Tích, những người đã nhiệt tình giảng dạy tôi về cả lý thuyết và thực hành, trực tiếp cung cấp, góp ý cho tôi những thông tin, kiến thức rất hữu ích để tôi có thể hoàn thành được khóa luận này. TS. Trần Việt Hùng, Phó viện trưởng Viện kiểm nghiệm thuốc Trung Ương đã tạo điều kiện giúp đỡ cho tôi trong suốt quá trình nghiên cứu và thí nghiệm thực tế trên cá Nóc. TS. Bùi Hồng Cường, Giảng viên Bộ môn Dược Cổ Truyền, một người thầy đáng kính trong công việc cũng như trong cuộc sống. Thầy đã định hướng và cho tôi những lời khuyên bổ ích để tôi hoàn thành khóa luận này. Dược sĩ Dương Minh Tân đã trực tiếp hướng dẫn, chỉ bảo và tạo mọi điều kiện thuận lợi cho tôi trong quá trình làm việc, nghiên cứu và thu thập số liệu thực tế trên cá Nóc để tôi có thể hoàn thành được khóa luận. Xin chân thành cảm ơn các thầy cô trong Ban giám hiệu, Phòng đào tạo Trường Đại học Dược Hà Nội đã tạo mọi điều kiện thuận lợi cho tôi trong quá trình học tập và hoàn thành khóa luận. Xin chân thành cảm ơn gia đình, người thân và bạn bè đã luôn ở bên cạnh động viên và giúp đỡ tôi học tập, làm việc và hoàn thành khóa luận tốt nghiệp. Hà Nội, ngày 07 tháng 5 năm 2014 SINH VIÊN Hoàng Thanh Hà MỤC LỤC TRANG PHỤ BÌA LỜI CẢM ƠN MỤC LỤC DANH MỤC CÁC CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH Trang ĐẶT VẤN ĐỀ.................................................................................................................. 1 Chương 1: TỔNG QUAN ................................................................................................ 2 1.1 Tổng quan về cá Nóc và Tetrodotoxin ................................................................... 2 1.1.1 Cá Nóc ............................................................................................................ 2 1.1.2. Tetrodotoxin ................................................................................................... 3 1.1.3. Phương pháp xử lý mẫu trong các bộ phận khác nhau của cá Nóc để định lượng Tetrodotoxin: Kỹ thuật chiết và làm giàu mẫu bằng chiết pha rắn (SPE) ....... 7 1.1.4. Các phương pháp định lượng Tetrodotoxin ................................................... 9 1.2. Tổng quan về sắc khí lỏng khối phổ ................................................................... 10 1.2.1. Một số nét sơ lược về sắc ký lỏng khối phổ ................................................. 10 1.2.2. Thiết bị sắc ký lỏng khối phổ ....................................................................... 12 1.2.3. Một số kỹ thuật LC-MS ................................................................................ 17 Chương 2. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU ................................ 19 2.1. Nguyên vật liệu, thiết bị ..................................................................................... 19 2.1.1 Nguyên vật liệu ............................................................................................. 19 2.1.2 Thiết bị, dụng cụ, hóa chất ........................................................................... 19 2.2. Nội dung nghiên cứu .......................................................................................... 21 2.3. Phương pháp nghiên cứu ..................................................................................... 21 2.3.1. Chuẩn bị mẫu ................................................................................................ 21 2.3.2. Tối ưu hóa điều kiện khối phổ đối với TTX ................................................. 23 2.3.3. Xây dựng chương trình sắc ký lỏng khối phổ (LC-MS) để định lượng TTX ................................................................................................................................ 23 2.3.4. Đánh giá phương pháp. ................................................................................. 24 Chương 3. THỰC NGHIỆM, KẾT QUẢ VÀ BÀN LUẬN .......................................... 26 3.1. Chuẩn bị mẫu ....................................................................................................... 27 3.1.1. Mẫu chuẩn .................................................................................................... 27 3.1.2. Mẫu thử ......................................................................................................... 27 3.2. Tối ưu hoá điều kiện khối phổ đối với TTX ....................................................... 28 3.3. Xây dựng chương trình sắc ký lỏng khối phổ (LC-MS) để định lượng .............. 29 3.3.1 Khảo sát điều kiện sắc ký ............................................................................. 29 3.4. Đánh giá sự phù hợp của hệ thống LC-MS....................................................................35 3.5. Áp dụng phương pháp để định lượng một số mẫu cá Nóc bằng sắc ký lỏng khối phổ LC-MS 41 3.6. Bàn luận ............................................................................................................... 41 3.6.1. Về quy trình chiết tách và xử lý mẫu............................................................ 41 3.6.2. Về phương pháp phân tích LC/MS ............................................................... 41 3.6.3. Về kết quả định lượng một số mẫu cá Nóc .................................................. 43 KẾT LUẬN VÀ KIẾN NGHỊ ....................................................................................... 44 KẾT LUẬN ................................................................................................................ 44 KIẾN NGHỊ ............................................................................................................... 45 TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC CÁC CHỮ VIẾT TẮT APCI APPI ELISA Atmospheric Pressure Chemical Ionization (Kỹ thuật ion hóa hóa học ở áp suất khí quyển) Atmospheric Pressure Photoionization (Kỹ thuật ion hóa ánh sáng ở áp suất khí quyển) Enzyme Linked Immunosorbent Assay (Xét nghiệm hấp thụ miễn dịch liên kết với enzyme) ESI Electro Spray ionization (Kỹ thuật ion hóa bằng phun điện tử) FLD Fluorescence Detector (Đầu dò huỳnh quang) GC-MS HPLC LC-MS Gas Chromatography-Mass Spectrometry (Sắc ký khí ghép khối phổ) High Performance Liquid Chromatography (Sắc ký lỏng hiệu năng cao) Liquid Chromatography- Mass Spectrometry (Sắc ký lỏng ghép khối phổ) LOD Limit of detection (Giới hạn phát hiện) LOQ Limit of quantitation (Giới hạn định lượng) MLD Mean Lethal Dose (Liều gây chết trung bình) SIM Selected Ion Monitoring (Kỹ thuật phân tích chọn lọc ion) SPE Solid Phase Extraction (Chiết pha rắn) SRM Selected Reaction Monitoring (Chọn lọc ion con sau phản ứng) TIC Total Ion Chromatogram (Sắc đồ toàn ion) TTX, UV AG, SG RSD Tetrodotoxin, Ultra Violet (Tia cực tím) Auxiliary Gas (khí bổ trợ), Sheath Gas (khí thổi) Relative Standard Deviation (Độ lệch chuẩn tương đối) DANH MỤC CÁC BẢNG Bảng 3.1 Kết quả khảo sát tính thích hợp của hệ thống Tr.35 Bảng 3.2 Kết quả khảo sát độ tuyến tính của phương pháp Tr.35 Bảng 3.3 Kết quả khảo sát độ lặp lại của phương pháp Tr 39 Bảng 3.4 Kết quả khảo sát độ đúng của phương pháp Tr.40 Bảng 3.5 Kết quả khảo sát LOD và LOQ của phương pháp Tr.40 Bảng 3.6 Kết quả định lượng một số mẫu cá Nóc Tr.41 DANH MỤC CÁC HÌNH Hình 1.1 Ảnh hai trong số các loài Nóc độc Tr.3 Hình 1.2 Cấu trúc phân tử Tetrodotoxin Tr.4 Hình 1.3 Cơ chế epimer hóa nhóm OH C-4 của Tetrodotoxin Tr.5 Hình 1.4 Cấu tạo hệ thống sắc ký lỏng hiệu năng cao Tr.10 Hình 1.5 Thí nghiệm xác định đồng vị Neon của F.W Aston năm 1913 Tr.11 Hình 1.6 Sơ đồ khối cấu tạo thiết bị LC/MS-MS (nguồn ion hoá kiểu ESI – kết nối phun sương) Tr.14 Hình 1.7 Kỹ thuật Electrospray Ionization Tr.16 Hình 2.1 Nội tạng cá Nóc được mổ lấy ra để đem đi xử lí Tr.19 Hình 2.2 Sơ đồ quy trình xử lí mẫu, chiết và làm giàu Tr.22 Hình 3.1 Kết quả tối ưu hóa điều kiện khối phổ đối với TTX Tr.29 Hình 3.2 Sắc ký đồ với điều kiện sắc ký A Tr.30 Hình 3.3 Sắc ký đồ với điều kiện sắc ký B Tr.31 Hình 3.4 Sắc ký đồ với điều kiện sắc ký C Tr.32 Hình 3.5 Sắc ký đồ với điều kiện sắc ký D Tr.33 Hình 3.6 Sắc ký đồ với điều kiện sắc ký E Tr.34 Hình 3.7 Đồ thị biểu diễn mối tương quan nồng độ TTX và diện tích peak Tr.36 Hình 3.8 Sắc ký đồ dung dịch mẫu trắng Tr.37 Hình 3.9 Sắc ký đồ dung dịch chuẩn TTX nồng độ 10µg/mL Tr.37 Hình 3.10 Sắc ký đồ dung dịch thử Tr.38 Hình 3.11 Hai loài Lagocephalus lunaris và Arothran hispidus Tr.43 1 ĐẶT VẤN ĐỀ Mặc dù các phương tiện thông tin đại chúng đã nói rất nhiều về mối nguy hiểm của cá Nóc tới tính mạng con người nhưng số nạn nhân tử vong do ăn cá Nóc ở nước ta vẫn không hề giảm, đặc biệt là ở các tỉnh duyên hải miền Trung. Độc tố trong cá Nóc có thành phần chủ yếu là Tetrodotoxin (TTX), thuộc nhóm độc tố thần kinh cực kỳ nguy hiểm, khả năng gây tử vong cao [15]. Tuy nhiên không phải loài cá Nóc nào cũng độc, hàm lượng độc tố khác nhau ở các loài cá Nóc khác nhau và ở các bộ phận khác nhau của cá. Hàm lượng độc tố trong cơ thể còn thay đổi theo mùa, vùng địa lý và giai đoạn phát triển của cá thể [6]. Độc tố trong cá Nóc hiện được nhiều nước trên thế giới nghiên cứu, đặc biệt là Nhận Bản, Hàn Quốc và Trung Quốc. Chúng được dùng trong y dược, nghiên cứu khoa học và lĩnh vực khác. Do vậy, chúng tôi đề xuất hướng nghiên cứu phát hiện và xây dựng quy trình định lượng độc tố của một số loài cá Nóc biển Việt Nam có khả năng ứng dụng trong y học (làm thuốc), trong đó đặc biệt quan tâm đến tetrodotoxin. Sắc ký lỏng khối phổ hiện đang là phương pháp phổ biến, với nhiều ưu điểm như độ nhạy cao, chính xác,... vì vậy, ứng dụng phương pháp này để định lượng độc tố TTX với một hàm lượng nhỏ là hết sức phù hợp và cần thiết. Từ thực tế trên chúng tôi thực hiện đề tài “Nghiên cứu định lượng Tetrodotoxin trong phủ tạng cá Nóc bằng sắc ký lỏng khối phổ (LC/MS)” với các mục tiêu: - Xây dựng phương pháp định lượng Tetrodotoxin bằng sắc ký lỏng khối phổ. - Áp dụng phương pháp xây dựng được để định lượng Tetrodotoxin trong phủ tạng cá Nóc. 2 Chương 1: TỔNG QUAN 1.1 TỔNG QUAN VỀ CÁ NÓC VÀ TETRODOTOXIN 1.1.1 Cá nóc [3], [7], [8], [9], [17], [28], [29], [30]. Bộ Cá nóc (tên khoa học là Tetraodontiformes) chứa 10 họ còn sinh tồn với khoảng 360 loài và khoảng 9 họ đã tuyệt chủng [17]. Phần lớn các loài là cá nước mặn và sinh sống trong hay xung quanh các bãi đá san hô ngầm vùng nhiệt đới, nhưng có vài loài là các nước ngọt, sinh sống trong sông suối hay cửa sông. Các hình dạng kỳ dị được thấy trong bộ cá này: có thể gần như là hình vuông hay tam giác (các loài cá nóc hòm), hình cầu (các loài cá nóc) cho tới dẹp bên (các loài cá đầu) [3]. Cá nóc phòng thủ bằng cách hy sinh tốc độ: ở loài này lớp vảy đã biến đổi thành các tấm hay các gai cứng. Các gai này đôi khi có thể thụt vào và có thể khóa tại chỗ (như ở các loài cá nóc gai), hay với lớp da dai như da thú (các loài cá đầu và cá bò giấy). Một đặc điểm phòng ngự đáng chú ý khác được thấy ở các loài cá nóc và cá nóc nhím là khả năng phình to cơ thể, để tăng các kích thước so với hình dáng thông thường. Nhiều loài của các họ Tetraodontidae (cá nóc bốn răng), Triodontidae (cá nóc ba răng) và Diodontidae (cá nóc nhím) còn có khả năng tự bảo vệ (thêm) chống các kẻ ăn thịt nhờ tetraodotoxin (TTX), một chất độc thần kinh cực mạnh hiện chưa có thuốc giải, tập trung chủ yếu trong các cơ quan nội tạng [9]. Tại Việt Nam, cá Nóc phân bố dọc bờ biển từ Bắc vào Nam, tập trung nhiều ở ven biển miền Trung. Theo kết quả điều tra sơ bộ của Viện Nghiên cứu Hải sản, có khoảng 46 loài trong 4 họ (Diodontidae, Ostraciidae, Tetraodontidae, Triodontidae) sống ở biển, trong đó họ Cá nóc (Tetraodontidae) là chủ yếu, chiếm khoảng 85%. 3 Độc tố chủ yếu, nguy hiểm nhất đối với người trong cá nóc là TTX. Tại Việt Nam, người ta đã tiến hành phân tích độc tố của 35 loài [7], [8], trong đó: - 10 loài có độc tính rất mạnh. - 7 loài có độc tính mạnh. - 4 loài có độc tính nhẹ. - 14 loài chưa phát hiện thấy độc tố. Hình 1.1. Ảnh hai trong số các loài Nóc độc 1.1.2. Tetrodotoxin [5], [10], [13], [20], [22], [24]. Tetrodotoxin (TTX) là một độc tố thần kinh cực mạnh, được đặt tên theo loài cá nóc đầu tiên phát hiện thấy có chứa độc tố này [20]. TTX được tổng hợp từ một số loài vi khuẩn: Vibrio species, Pseudomonas species, Photobacterium phosphoreum. Ngoài cá Nóc có thể tìm thấy chất độc này ở nội tạng con Sa giông (Newt), kỳ nhông (Salamander), tuyến nước bọt ở bạch tuộc vòng xanh, ếch Harlequin, cua Chân ngựa, cua Philippine... cho tới nay không có chất giải độc.Tuy nhiên, cá Nóc vẫn là nguyên liệu chính để tách, chiết và nghiên cứu về TTX [5]. TTX là (4R,4aR,5R,6S,7S,8S,8aR,10S,12S)-2-azaniumyliden-4,6,8,12-tetra 4 hydroxy-6-(hydroxymethyl)-2,3,4,4a,5,6,7,8-octahydro-1H-8a,10-methano-5,7(epoxymethanooxy)quinazolin-10-olat, có cấu trúc hóa học, công thức phân tử và phân tử lượng như sau: ( hình ảnh xác định cấu trúc TTX bằng chạy cộng hưởng từ hạt nhân tại phụ lục) Hình 1.2. Cấu trúc phân tử TTX Công thức phân tử: C12H17N3O8 Phân tử lượng: 319,3 TTX tinh khiết là bột tinh thể không màu; TTX sẫm màu ở khoảng 220oC không kèm phân hủy [13] Trong phân tử TTX có một vài nhóm hydroxyl thân nước, khiến nó không tan trong các dung môi hữu cơ. Khung phân tử của TTX tương tự như cấu trúc lồng của đá, khiến rất khó hydrat hóa, do vậy nó ít tan trong nước. Do trong phân tử có nhóm guanidin perhydroquinazolin (guanidin có tính kiềm mạnh), nên TTX tan trong các dung dịch acid trong nước. TTX cũng có cấu trúc nội este, nên dễ bị các dung dịch acid mạnh phân hủy, do đó cách duy nhất giữ TTX bền vững trong dung dịch là hòa tan trong acid hữu cơ yếu [24]. Đặc tính C-4 có thể dễ dàng nhìn thấy từ cấu trúc phân tử của TTX. C-4 là vị trí ortho của nguyên tử nitơ với nhóm OH ở vị trí xích đạo và nguyên tử H ở vị trí trục. Bởi vậy, các hoạt tính hóa học và sinh học của nhóm hydroxyl ở C-4 là rất đáng kể. Nếu H+ có mặt trong dung dịch, nguyên tử ôxy từ nhóm 5 hydroxyl của C-4 sẽ kết hợp với nó, tạo ra cấu trúc B hóa trị dương từ cấu trúc A. Cấu trúc B mất phân tử H2O tạo thành cấu trúc C với C-4 hóa trị dương [22]. Cấu trúc C có thể tương tác với H2O trong dung dịch. H2O có thể tấn công vị trí nơi phân tử H2O gốc bị loại bỏ và tạo thành cấu trúc E, hoặc tấn công vị trí đối diện nơi phân tử H2O gốc bị loại bỏ và tạo thành cấu trúc D. Nếu phân tử H2O bị loại khỏi cấu trúc E, cấu trúc A gốc của TTX được tạo thành. Cấu trúc D chuyển thành cấu trúc F sau khi H2O bị loại bỏ. Sự khác nhau giữa cấu trúc F và cấu trúc A là vị trí của H và OH hoán đổi cho nhau. H trong C-4 của cấu trúc A là trục và OH là xích đạo, trong khi đó ở cấu trúc F nguyên tử H trong C-4 là xích đạo và OH là trục. Hình 1.3. Cơ chế epimer hóa nhóm OH C-4 của Tetrodotoxin [22]. Tetrodotoxin cấu trúc A được gọi “tetrodotoxin”, là nồng độ chủ yếu của TTX thu được từ cá nóc tự nhiên. Tetrodotoxin cấu trúc F thường được gọi “4-epi tetrodotoxin”. Do nhóm hydroxyl ở C-4 gần với nhóm hydroxyl ở C-9 trong 4-epi tetrodotoxin, phân tử H2O dễ dàng bị loại bởi tương tác với H+, tạo ra một analog của TTX chứa liên kết ether, được gọi là “4-epi anhydrotetrodotoxin”. Các đặc tính hóa học của ba phân tử “tetrodotoxin” này khác nhau không đáng kể. Nhưng chúng khác nhau đáng kể về hoạt tính sinh học. Ví dụ, độc tố của TTX là 4500 đơn vị chuột/mg; 6 của 4-epi TTX là 710 đơn vị chuột/mg và của 4-epi anhydrotetrodoxin chỉ là 92 đơn vị chuột/mg [22]. Sự quan trọng của nhóm hydroxyl C-4 còn thể hiện ở chỗ: độc tính của nó giảm đáng kể khi nó được thay thể bằng những nhóm khác, như H, CH3 hay CH3CO-. Do đó, về lý thuyết, cần giữ nhóm hydroxyl trong C-4 ở vị trí xích đạo trong quá trình chiết TTX. Bởi vậy, điều quan trọng là lựa chọn đúng các vật liệu và thiết bị chiết, pH và nhiệt độ của dung dịch, thời gian chiết. Độc chất chiết từ cá nóc là hỗn hợp của hơn 10 analog, chủ yếu là TTX, (chiếm tới 70% - 80% khối lượng chiết). Ba analog chính khác là acid tetrodonic, 4-epi TTX và 4-epi anhydrotetrodotoxin. So với TTX, ba chất này không khác nhiều về đặc tính hóa học, nhưng khác nhau đáng kể về đặc tính sinh học (độc tố tính) [22]. TTX tác dụng cả lên hệ thần kinh trung ương lẫn thần kinh ngoại vi, với các biểu hiện sau : - Tim mạch: Mạch nhanh, huyết áp hạ, rối loạn nhịp tim. [5], [20]. - Hô hấp: Khó thở, do liệt cơ hô hấp và liệt trung khu hô hấp, da và niêm mạc xanh tím [10], [20]. - Thần kinh: + Thần kinh trung ương: Choáng váng, đau đầu, co giật. Không có rối loạn ý thức. + Thần kinh ngoại vi: Liệt đa dây thần kinh, rối loạn cảm giác (dị cảm) ở lưỡi, môi, mặt, ngón tay, ngón chân, rối loạn lời nói, khó nuốt [20]. + Thần kinh cơ vân và cơ trơn: Liệt, rung giật các cơ, cử động hỗn độn, yếu cơ và liệt chi dưới, liệt vận động nhãn cầu, đặc biệt nguy hiểm là liệt cơ liên sườn, cơ ngực và cơ hoành. 7 + Mất phản xạ tủy và phản xạ gân xương ...[20] 1.1.3. Phương pháp xử lý mẫu trong các bộ phận khác nhau của cá Nóc để định lượng Tetrodotoxin: Kỹ thuật chiết và làm giàu mẫu bằng chiết pha rắn (SPE) [11], [16], [22]. Nhờ vào những đặc tính ưu việt của phương pháp, chiết pha rắn (SPE) hiện đang được sử dụng rất rộng rãi, nhất là trong các trường hợp chiết hoạt chất từ các dịch có nguồn gốc sinh học, được chúng tôi lựa chọn thực hiện trong khóa luận này Chiết pha rắn (SPE) là phương pháp chuẩn bị mẫu, trong đó chiết và làm giàu chất cần phân tích từ dung dịch bằng cách hấp phụ chúng vào pha rắn, rồi rửa giải bằng dung môi thích hợp. Thông thường, thể tích của dung môi dung để rửa giải nhỏ hơn thể tích của dung dịch mẫu ban đầu rất nhiều, vì thế mẫu được làm giàu. Cơ bản, cơ chế của SPE giống như cơ chế phân tách của HPLC, với ba cơ chế chính là: hấp phụ pha thuận, hấp phụ pha đảo và trao đổi ion. - Cơ chế hấp phụ pha thuận: Là sự hấp phụ chất cần phân tích từ dung môi không phân cực lên bề mặt phân cực của pha rắn. Cơ chế của quá trình phân tách dựa trên lực tương tác phân cực. Trong SPE pha thuận, pha tĩnh thường được sử dụng là: silica, alumina, magnesi silica, nhưng thông dụng nhất vẫn là silica. - Cơ chế hấp phụ pha đảo: Ngược với cơ chế hấp phụ pha thuận, pha tĩnh ở đây là các chất không phân cực (như C18), còn pha động là phân cực. Cơ chế hấp phụ pha đảo là tương tác không phân cực. Các chất hấp phụ trong pha đảo thường là C8, C18 và một số loại khác. - Cơ chế trao đổi ion: Dựa vào sự trao đổi ion của chất tan (mang điện tích) trong các dung môi phân cực hay không phân cực với chất hấp thụ trao đổi ion Quá trình này phụ thuộc vào độ chọn lọc của ion hay số lượng ion cạnh tranh ở các vị trí. Nếu là các chất trao đổi ion mạnh thì 8 dùng silica với nhóm sulfonic acid, còn với các chất trao đổi ion yếu thường liên kết với nhóm –COOH. Rửa giải các chất cần phân tích trên pha tĩnh có thể tiến hành theo nhiều cách: nếu trao đổi cation có thể dùng H+ của các acid mạnh, hoặc dung cation mạnh hơn (ví dụ, rửa giải Na+ thì dung dung dịch K+), còn rửa giải anion thì dùng OH- hoặc các nhóm anion mạnh hơn. *Qui trình của SPE [11], [16]. SPE có bốn bước: - Bước 1: Điều kiện hóa pha rắn. Đơn giản là cho dung môi chạy qua cột để thấm ướt pha rắn và kích hoạt các nhóm chức năng của chất hấp phụ. Đồng thời loại bỏ không khí (nếu có) trong cột và các khoảng trống tồn tại giữa các hạt của pha rắn. Thông thường, đầu tiên người ta cho methanol chay qua cột, tiếp theo là nước hay đệm pha trong nước. Sử dụng nước hay đệm pha trong nước tiếp theo methanol là để cơ chế hấp phụ hoạt động tốt đối với mẫu là dung dịch trong nước. Cần tránh, không để pha rắn bị khô: chỉ cần chất hấp phụ khô trong vài phút ở điệu kiện chân không, cơ chế hấp phụ sẽ hoạt động kém hiệu quả, tỷ lệ chiết sẽ rất thấp. Nếu cần, có thể bổ sung một bước làm sạch chất hấp phụ nữa trong quá trình điều kiện hóa: sau khi làm ẩm với methanol, cho dung môi rửa giải chạy qua cột để loại bỏ các tạp chất có thể có trong pha rắn. Sao đó, rửa lại với methanol, rồi với đệm pha trong nước. - Bước 2: Cho mẫu chạy qua cột. Phụ thuộc vào thể tích của mẫu, từ 1 ml đến 1 lít, mà áp dụng hút chân không, bơm hút hay các hệ thống thích hợp khác. Trong bước này, chất cần phân tích được lưu giữ và cô đặc trong pha rắn. - Bước 3: Rửa loại chất nền của mẫu và lưu giữ chất cần phân tích. Nếu như chất nền của mẫu là nước, sử dụng đệm pha trong nước hay hỗn hợp nước và dung môi hữu cơ để rửa. Nếu mẫu được pha trong dung môi hữu cơ, thì dung chính dung môi đó. 9 - Bước 4: Rửa giải chất cần phân tích ra khỏi pha rắn bằng dung môi thích hợp. Dung môi rửa giải được chọn lựa đặc biệt để phá vỡ sự tương tác giữa chất cần phân tích và chất hấp phụ trong quá trình rửa giải. Dung môi được chọn chỉ rửa giải ít nhất có thể các chất khác cũng được hấp phụ trong pha rắn. 1.1.4. Các phương pháp định lượng TTX [20], [21], [27].  Mouse bioassay: phương pháp sinh hóa trên chuột.  Phương pháp ELISA (Enzyme Linked Immunosorbent Assay- xét nghiệm hấp thụ miễn dịch liên kết với enzyme).  Phương pháp sắc ký khí khối phổ (Gas-Chromatography-Mass Spectrometry)  Phương pháp sắc ký lỏng với các detector UV, FLD, MS [20],[27]. Sắc kí lỏng hiệu năng cao là phương pháp dùng để tách và định lượng các thành phần trong hỗn hợp dựa vào ái lực khác nhau của các chất khác nhau giữa hai pha luôn tiếp xúc và không đồng tan với nhau. Pha động là chất lỏng chảy qua cột với một tốc độ nhất định dưới áp suất cao, còn pha tĩnh là chất lỏng được bao trên bề mặt của các hạt chất mang hoặc được gắn hóa học với chất mang. Pha động cùng với mẫu phân tích được bơm qua cột với tốc độ phù hợp tùy theo ái lực của chúng với hai pha và dẫn tới sự tách các chất. Các chất sau khi ra khỏi cột sẽ được phát hiện bởi bộ phận phát hiện gọi là Detector và được truyền qua bộ xử lý kết quả. Kết quả cuối cùng được hiển thị trên màn hình hoặc đưa ra máy in Quá trình sắc kí lỏng dựa trên cơ chế hấp phụ, phân bố, trao đổi ion ... o Pha tĩnh Có rất nhiều loại pha tĩnh có thể được sử dụng trong sắc kí lỏng, loại phổ biến nhất được chế tạo từ silic dioxyd (silica). Các nhóm chức hữu cơ liên kết với bề mặt của các tiểu phân silica qua các nhóm silanol. Tính phân cực của pha tĩnh phụ thuộc vào tính phân cực của các nhóm chức liên kết. 10 Hệ bao gồm pha tĩnh phân cực và pha động không phân cực được gọi là sắc kí pha thuận. Ngược lại, pha động phân cực, pha tĩnh không phân cực được gọi là sức kí pha đảo. o Pha động Pha động có thể là dung môi đơn hay hỗn hợp của 2, 3, 4 thành phần. Độ phân cực của dung môi được xác định bằng hệ số P’, P’ càng cao thì dung môi càng phân cực. Người ta có thể thay đổi độ phân cực của pha động bằng cách thay đổi thành phần pha động, tỷ lệ của các thành phần dung môi trong hỗn hợp. Kỹ thuật này được gọi là rửa giải gradient hay chương trình hóa dung môi. Hình 1.4. Cấu tạo hệ thống sắc ký lỏng hiệu năng cao  Phương pháp sắc ký lỏng khối phổ (Liquid chromatography mass spectrometry) 1.2. TỔNG QUAN VỀ SẮC KÝ LỎNG KHỐI PHỔ 1.2.1. Một số nét sơ lược về sắc ký lỏng khối phổ [4], [15], [20], [23], 25], [26]. *Phương pháp phổ khối lượng (Mass Spectrometry - MS) là một phương pháp phân tích dụng cụ quan trọng trong phân tích thành phần và cấu trúc các chất. Bắt đầu từ cuối thế kỷ XIX, Goldstein (1886) và Wein (1898) thấy rằng một chùm tia ion dương có thể tách ra khỏi nhau dưới tác dụng của một điện trường và từ trường. Năm 1913, F.W Aston (nhà bác học đạt giải Nobel năm 1922 cho các nghiên cứu đồng vị) 11 đã nghiên cứu thấy khí neon tự nhiên gồm 2 loại có khối lượng nguyên tử khác nhau (isotope) là 20 và 22 (g/mol). Hàng loạt các nghiên cứu về phương pháp phổ khối lượng như cơ chế và kỹ thuật ion hoá, thiết bị phân tích phổ khối và các ứng dụng của phương pháp phổ khối lượng trong các lĩnh vực hoá học, vật lý, sinh học, …đã được thực hiện như máy GC/MS ra đời những năm 1950, máy HPLC/MS được phát minh những năm 1970… Hình 1.5. Thí nghiệm xác định đồng vị Neon của F.W Aston năm 1913 Ngày nay, phương pháp phân tích phổ khối lượng có ứng dụng rộng rãi trong nhiều ngành với các ứng dụng chính như: Xác định khối lượng, cấu trúc phân tử; Nhận dạng, định danh và cấu trúc chuỗi peptip, protein; Nghiên cứu đồng vị; Định tính, định lượng các chất nồng độ vết và vi lượng trong các mẫu sinh học, thực phẩm, dược phẩm, nông thuỷ sản, môi trường... * Sắc ký lỏng khối phổ (LC-MS) là sự kết nối giữa sắc ký lỏng hiệu năng cao (HPLC) và detector khối phổ (MS). Trong kỹ thuật LC-MS , hỗn hợp các chất trong pha động sau khi được tách qua cột sắc ký sẽ được phát hiện bằng detector khối phổ. Trong phân tích dược phẩm, người ta thường sử dụng phương pháp LC-MS cho: - Các hợp chất tương đối phân cực đến phân cực nhiều, khó bay hơi - Phân tích thuốc trong dịch sinh học - Phân tích các hợp chất tự nhiên trong cây thuốc 12 -Trường hợp không sử dụng được các detector khác: Không phát hiện được bằng detector khác hoặc trong phân tích khẳng định - Nét nổi bật của phân tích khối phổ là tính chọn lọc và độ nhạy, độ đặc hiệu cao. Giới hạn phát hiện có thể đến 10-14 gam. Do vậy thường dùng kỹ thuật này để phân tích hàm lượng siêu vết trong mẫu thành phần phức tạp. 1.2.2. Thiết bị sắc ký lỏng khối phổ [1], [2], [4], [6], [12], [19], [26]. a. Pha động Pha động trong sắc ký lỏng là một trong những yếu tố ảnh hưởng đến sự tách. Pha động thường là hai dung môi (hữu cơ hoặc dung dịch nước) hoà tan vào nhau để có khả năng tách với độ phân giải phù hợp. Có hai cách dùng pha động để rửa giải:  Đẳng dòng: Thành phần pha động không thay đổi trong suốt quá trình sắc ký.  Gradient: Pha động là hỗn hợp của nhiều dung môi, thường là 2 đến 4 loại được đựng trong các bình khác nhau. Tỷ lệ các thành phần thay đổi trong quá trình sắc ký theo chương trình đã định (chương trình dung môi). b. Hệ thống bơm Bơm HPLC có chức năng tạo áp suất cao để đẩy pha động từ bình dung môi qua hệ thống sắc ký. Hệ thống bơm trong sắc ký lỏng cần đáp ứng các yêu cầu sau:  Phải đẩy được dung môi rửa giải thành dòng qua cột tách, dòng không liên tục sẽ gây nhiễu đường nền.  Không có xung ở áp suất cao  Có thể chịu được tác động của nhiều loại dung môi (không bị ăn mòn). c. Cột tách và pha tĩnh Cột HPLC thường được chế tạo bằng thép không gỉ, thuỷ tinh hoặc chất dẻo có chiều dài 10-30 cm, đường kính trong 4-10 mm. Kích thước của hạt nhồi trong cột
- Xem thêm -

Tài liệu liên quan