Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu phương pháp hướng đối tượng trong phân tích và thiết kế điều khiển ch...

Tài liệu Nghiên cứu phương pháp hướng đối tượng trong phân tích và thiết kế điều khiển chuyển động cho thiết bị tự hành auvasv với chuẩn sysml modelica và automate lai

.PDF
125
463
91

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN HOÀI NAM NGHIÊN CỨU PHƯƠNG PHÁP HƯỚNG ĐỐI TƯỢNG TRONG PHÂN TÍCH VÀ THIẾT KẾ ĐIỀU KHIỂN CHUYỂN ĐỘNG CHO THIẾT BỊ TỰ HÀNH AUV/ASV VỚI CHUẨN SYSML-MODELICA VÀ AUTOMATE LAI LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ ĐỘNG LỰC Hà Nội – 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN HOÀI NAM NGHIÊN CỨU PHƯƠNG PHÁP HƯỚNG ĐỐI TƯỢNG TRONG PHÂN TÍCH VÀ THIẾT KẾ ĐIỀU KHIỂN CHUYỂN ĐỘNG CHO THIẾT BỊ TỰ HÀNH AUV/ASV VỚI CHUẨN SYSML-MODELICA VÀ AUTOMATE LAI Chuyên ngành: KỸ THUẬT CƠ KHÍ ĐỘNG LỰC Mã số: 62520116 LUẬN ÁN TIẾN SĨ KỸ THUẬT CƠ KHÍ ĐỘNG LỰC NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS. TS NGÔ VĂN HIỀN 2. GS. TSKH VŨ DUY QUANG Hà Nội – 2017 LỜI CAM ĐOAN Tôi, Nguyễn Hoài Nam, cam kết báo cáo luận án là công trình nghiên cứu của bản thân tôi dưới sự hướng dẫn của NGND.GS.TSKH Vũ Duy Quang và PGS.TS Ngô Văn Hiền. Các kết quả nêu trong báo cáo luận án là trung thực và chưa từng được công bố trong bất kỳ công trình nào khác. Nghiên cứu sinh Nguyễn Hoài Nam TẬP THỂ HƯỚNG DẪN Người hướng dẫn khoa học 1 PGS.TS Ngô Văn Hiền Người hướng dẫn khoa học 2 NGND.GS.TSKH Vũ Duy Quang LỜI CẢM ƠN Trước hết, tôi xin bày tỏ lòng kính trọng và biết ơn sâu sắc tới: NGND.GS.TSKH NGND Vũ Duy Quang và PGS.TS Ngô Văn Hiền và là những người Thầy đã trực tiếp hướng dẫn và chỉ bảo tận tình, giúp đỡ tôi trong suốt quá trình học tập và thực hiện luận án. Tôi xin chân thành cảm ơn các thầy và các cô, tại Bộ môn Kỹ thuật Thủy khí và Tàu thủy, Viện Cơ khí Động lực, Trường Đại học Bách khoa Hà Nội, những người đã tạo mọi điều kiện giúp đỡ tôi trong thời gian kể từ lúc chính thức bắt đầu tiến hành nghiên cứu đến khi hoàn thành luận án này. Cuối cùng, tôi vô cùng cảm ơn bố, mẹ, vợ, người thân và bạn bè, những người đã luôn bên tôi chia sẻ, động viên và giúp đỡ tôi trong cuộc sống và học tập. Hà Nội, ngày…. tháng…. năm 2017 Nghiên cứu sinh Nguyễn Hoài Nam MỤC LỤC DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT .................................. iv  DANH MỤC CÁC BẢNG ............................................................................ vii  DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ ............................................... viii  MỞ ĐẦU .......................................................................................................... 1  i. Tính cấp thiết của đề tài ............................................................................ 1  ii. Mục đích, đối tượng và phạm vi nghiên cứu của đề tài ........................ 2  iii. Phương pháp nghiên cứu ........................................................................ 3  iv. Ý nghĩa khoa học và thực tiễn ................................................................ 3  v. Các điểm mới của luận án đạt được........................................................ 4  vi. Cấu trúc của luận án ............................................................................... 4  CHƯƠNG 1: NGHIÊN CỨU TỔNG QUAN ............................................... 5  1.1. Tổng quan về thiết bị tự hành trên biển AUV/ASV ........................... 5  1.1.1. Sơ lược về AUV/ASV ..................................................................... 5  1.1.2. Một số ứng dụng của AUV/ASV ..................................................... 6  1.2. Hệ thống điều khiển AUV/ASV ............................................................ 9  1.2.1. Cấu trúc hệ thống điều khiển AUV/ASV ........................................ 9  1.2.2. Hệ thống động lực lai công nghiệp ................................................ 11  1.2.3. Một số bộ điều khiển được ứng dụng trên AUV/ASV .................. 12  1.2.4. Bộ điều khiển tích phân cuốn chiếu ............................................... 13  1.3. Công nghệ hệ thống hướng mô hình dựa trên nền tảng công nghệ hướng đối tượng ............................................................................................ 15  1.3.1. Công nghệ hướng đối tượng hướng theo mô hình......................... 15  1.3.2. Công nghệ hệ thống hướng theo mô hình...................................... 16  1.4. Cấu hình vật lý bài toán áp dụng ....................................................... 22  Kết luận chương ............................................................................................ 23  CHƯƠNG 2: PHƯƠNG PHÁP MÔ HÌNH HÓA, MÔ PHỎNG VÀ THI HÀNH HỆ THỐNG ĐIỀU KHIỂN THIẾT BỊ TỰ HÀNH AUV/ASV ... 24  2.1. Mô hình động lực học điều khiển tổng quát AUV/ASV ................... 24  i 2.1.1. Các hệ tọa độ .................................................................................. 24  2.1.2. Phương trình động lực học tổng quát AUV/ASV.......................... 25  2.1.3. Tác động của môi trường tới AUV/ASV ....................................... 26  2.2. Luật dẫn đường và mô hình hệ thống điều khiển thiết bị AUV/ASV trên mặt phẳng ngang ................................................................................... 29  2.2.1. Luật dẫn đường thiết bị AUV/ASV ............................................... 29  2.2.2. Mô hình hệ thống điều khiển AUV/ASV trên mặt phẳng ngang .. 31  2.2.3. Bộ lọc EKF và mô hình thực thi HA cho AUV/ASV ................... 36  2.2.4. Ứng dụng mô phỏng hệ thống điều khiển AUV/ASV................... 39  2.3. Phương pháp luận OOSEM trong phân tích thiết kế và thực thi bộ điều khiển AUV/ASV .................................................................................... 41  2.3.1. Quy trình thiết kế ........................................................................... 41  2.3.2. Sử dụng ngôn ngữ mô hình hóa hệ thống SysML kết hợp ngôn ngữ mô phỏng Modelica trong phân tích, thiết kế và thực thi ........................... 43  Kết luận chương ............................................................................................ 48  CHƯƠNG 3: QUY TRÌNH PHÂN TÍCH THIẾT KẾ, MÔ PHỎNG VÀ THI HÀNH HỆ THỐNG ĐIỀU KHIỂN CHO THIẾT BỊ AUV/ASV VỚI SYSML/MODELICA VÀ AUTOMATE LAI ............................................... 49  3.1. Mô hình quản trị yêu cầu .................................................................... 49  3.1.1. Xác định cấu hình hệ thống ........................................................... 49  3.1.2. Mô hình hóa trực quan yêu cầu hệ thống ...................................... 52  3.2. Mô hình phân tích và thiết kế ............................................................. 53  3.2.1. Xây dựng mô hình phân tích cho hệ thống điều khiển AUV/ASV53  3.2.2. Mô hình thiết kế hệ thống điều khiển AUV/ASV ......................... 56  3.3. Mô hình mô phỏng và thực thi hệ thống điều khiển AUV/ASV...... 66  3.3.1. Mô hình chuyển đổi SysML-Modelica ........................................... 66  3.3.2. Mô hình mô phỏng và thực thi....................................................... 69  3.3.3. Mô hình cài đặt và triển khai ......................................................... 72  Kết luận chương ............................................................................................ 74  ii CHƯƠNG 4: THỬ NGHIỆM VÀ ĐÁNH GIÁ KẾT QUẢ ...................... 76  4.1. Điều kiện và kịch bản thử nghiệm trên thiết bị AUV/ASV ............. 76  4.1.1. Mô hình thử nghiệm AUV/ASV.................................................... 76  4.1.2. Môi trường thử nghiệm .................................................................. 77  4.1.3. Các tình huống thử nghiệm ............................................................ 78  4.2. Tích hợp hệ thống và qui trình thử nghiệm ...................................... 78  4.2.1. Tích hợp các thiết bị phần cứng ..................................................... 78  4.2.2. Quy trình vận hành trong thử nghiệm điều khiển tàu lặn mô hình 82  4.3. Tiến hành thử nghiệm và đánh giá hệ thống điều khiển tàu trên thiết bị AUV/ASV .......................................................................................... 83  4.3.1. Mô tả thử nghiệm ........................................................................... 83  4.3.2. Thử nghiệm kịch bản bám quỹ đạo của thiết bị AUV/ASV .......... 85  4.3.3.Thử nghiệm tính ổn định hướng của thiết bị .................................. 87  Kết luận chương ............................................................................................ 88  KẾT LUẬN VÀ KIẾN NGHỊ ...................................................................... 89  Kết luận .......................................................................................................... 89  Kiến nghị ........................................................................................................ 90  TÀI LIỆU THAM KHẢO ............................................................................ 91  DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ...... 97  PHỤ LỤC ....................................................................................................... 99  Phụ lục 1. Các thông số thủy động lực học ............................................... 99  Phụ lục 2. Cấu trúc hệ thống tham khảo ................................................ 101  Phụ lục 3. Mã chương trình chính hệ thống điều khiển........................ 102  Phụ lục 4. Dữ liệu thử nghiệm bám quỹ đạo AUV/ASV ....................... 106  Phụ lục 5. Một số hình ảnh cấu hình và thử nghiệm thiết bị................ 109  iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu Viết đầy đủ (tiếng Anh) Ý nghĩa viết tắt AF Architechture Framework Autonomous Under Water AUV/ASV Vehicle/Autonomous Khung kiến trúc Thiết bị tự hành dưới nước/trên mặt nước Surface Vehicle Khối mô tả chức năng, sử dụng BBD Block Definition Diagram CLF Control Lyapunov Functions Hàm điều khiển Lyapunov CG Center of Gravity Trọng tâm EKF Extended Kalman Filter Bộ lọc Kalman mở rộng FFBDs GPS GAS Functional Flow Block Sơ đồ khối hàm truyền Diagrams Global Positioning Systems Global Asymptotically Hybrid Automata IB Integral Backstepping Hệ thống định vị toàn cầu Ổn định tiệm cận toàn cục Stable HA trong SysML Automate lai Luật điều khiển cuốn chiếu tích phân Industrial Hybrid Dynamic Hệ thống động lực lai công System nghiệp. IMU Inertial Measurement Unit Thiết bị đo quán tính INS Inertial Navigation Systems Hệ thống dẫn đường quán tính IHDS iv INCOSE IEEE ISO International Council on Hội đồng quốc tế về công nghệ Systems Engineering hệ thống Institute of Electrical and Electronics Engineers International Organisation for Standardisation Viện kỹ nghệ Điện và Điện tử Tổ chức tiêu chuẩn hóa quốc tế International IEC Uỷ ban Kỹ thuật Điện Quốc tế Electrotechnical Commission LQG linear-quadratic-Gaussian LOS Light of Sight Real-time Embedded MDS MES MIMO Model Based System Công nghệ hệ thống hướng mô Engineering hình. Measurement and Display System Hệ thống hiển thị và đo lường Marine Environmental Hệ thống tác nhân tác động bên System ngoài do môi trường hàng hải Multi Input-Multi Output NCS NED Mô hình hóa và phân tích hệ thống nhúng thời gian thực Systems MBSE phương tuyến tính Gauss Thuật toán dẫn đường trực thị Modeling and Analysis of MARTE Thuật toán điều khiển toàn Hệ thống nhiều đầu vào nhiều đầu ra. Nghiên cứu sinh Hệ tọa độ gắn với trái đất North-East-Down v NIST National Institute of Viện tiêu chuẩn và kỹ thuật Hoa Standards and Technology Kỳ Tổ chức quản lý và phát triển OMG Object Management Group OOT Objected Orient Technology Công nghệ hướng đối tượng The Object-Oriented OOSEM Phương pháp hệ thống công Systems Engineering nghệ hướng đối tượng Method OPM PID PLC RUP-SE SISO Object Process Phương pháp qui trình–đối tượng Methodology Proportional – Integral – Bộ điều chỉnh tỷ lệ-tích phân-vi Derivative Regulator phân Programmable Logic Thiết bị điều khiển lập trình Controller được The Rational Unified Quy trình hợp nhất RUP của Process-System Engineering IBM Single Input-Single Output Service oriented SoaML hướng đối tượng Điều khiển một vào một ra Ngôn ngữ mô hình hóa kiến trúc architecture Modeling hướng dịch vụ Language SE System Engineering Công nghệ hệ thống SMC Sliding Mode Control Điều khiển trượt UAV Unmanned Aerial Vehicle Thiết bị bay không người lái WP Way-Point Điểm đường (điểm lộ trình) vi DANH MỤC CÁC BẢNG Bảng 1.1. Một số phương pháp luận MBSE ................................................... 19  Bảng 1.2. Thông số kỹ thuật thiết bị tự hành AUV/ASV ............................... 23  Bảng 2.1. Các ký hiệu SNAME cho AUV/ASV............................................. 24  Bảng 2.2. Khả năng mô hình hóa và mô phỏng hệ thống công nghiệp với Modelica [27] .................................................................................................. 45  Bảng 3.1. Nguyên tắc tùy biến và tái sử dụng của các khối điều khiển chính 64  Bảng 4.1.Thông số tọa độ điểm đặt WP ứng với dạng quỹ đạo cho trước ..... 85  Bảng 4.2. Tổng hợp dữ liệu liên quan đến tính ăn lái của tàu ........................ 87  Bảng A.1. Các thông số thủy động lực học chính của thiết bị AUV/ASV vận tốc di chuyển 0,5m/s [3] .................................................................................. 99  Bảng A.2. Các chỉ tiêu so sánh ..................................................................... 101  Bảng A.3. Trường hợp AUV/ASV bám quỹ đạo chữ nhật, vận tốc 0,5m/s. 106  Bảng A.4. Trường hợp AUV/ASV bám quỹ đạo hình tam giác, vận tốc 0,5m/s ....................................................................................................................... 107  vii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1.Mẫu AUV hoàn chỉnh đầu tiên được quân đội Hoa Kỳ sử dụng, phát triển bởi Đại học Washington năm 1957 [28]. .................................................. 6  Hình 1.2.Tàu AutosubAUV 6000 của Anh, dài 5,5m, nặng 1800 kg, phục vụ mục đích nghiên cứu đáy đại dương, khả năng lặn 6000m với hệ thống tránh va chạm hiện đại [82]. ....................................................................................... 7  Hình 1.3.Một số AUV/ASV tiêu biểu phục vụ trong lĩnh vực hải quân. ......... 8  Hình 1.4.Một số tàu ngầm có người lái tự chế tạo ở Việt Nam. ....................... 9  Hình 1.5.Sơ đồ hệ thống dẫn đường, định vị và điều khiển [25]. ................... 10  Hình 1.6. Sơ đồ khối mô tả hệ thống động lực lai công nghiệp điển hình. .... 11  Hình 1.7. Một ví dụ về tiếp cận MBSE trong thiết kế hệ thống [65].............. 17  Hình 1.8. Các thành phần chính của công nghệ hệ thống theo mô hình......... 17  Hình 2.1. Các hệ tọa độ thiết bị dưới nước. .................................................... 25  Hình 2.2. Phổ sóng với 2 đỉnh. ........................................................................ 27  Hình 2.3. Phổ sóng. ......................................................................................... 28  Hình 2.4. Thuật toán LOS [46]. ...................................................................... 30  Hình 2.5. Mô hình giải thuật IB cho bộ điều khiển AUV/ASV...................... 34  Hình 2.6. Sơ đồ khối hệ thống điều khiển AUV/ASV. ................................... 35  Hình 2.7. Thuật toán dự đoán/hiệu chỉnh EKF. .............................................. 38  Hình 2.8. Kết quả mô phỏng với OpenModelica trường hợp sử dụng luật điều khiển PID tuyến tính. ...................................................................................... 40  Hình 2.9. Kết quả mô phỏng với OpenModelica trường hợp sử dụng bộ điều khiển IB kết hợp EKF. .................................................................................... 40  Hình 2.10. Kiến trúc qui trình phát triển tàu tự hành AUV/ASV. .................. 43  Hình 2.11. Tổng quan các sơ đồ trong SysML liên quan với UML. .............. 44  Hình 2.12. Ví dụ mô hình phân tích với SysML4Modelica ........................... 47  Hình 2.13. Mã chương trình mô phỏng được tự động sinh ra với công cụ OpenModelica. ................................................................................................ 47  Hình 3.1. Sơ đồ khối chức năng thực thi của hệ thống điều khiển AUV/ASV. ......................................................................................................................... 50  Hình 3.2. Các khối chính trong cấu trúc điều khiển tổng quát AUV/ASV. ... 51  viii Hình 3.3. Mô hình hóa các yêu cầu tổng quát của hệ thống. .......................... 53  Hình 3.4. Mô hình hóa các trường hợp sử dụng của hệ thống. ....................... 54  Hình 3.5. Kịch bản điều khiển bám theo quỹ đạo mong muốn. ..................... 55  Hình 3.6. Máy trạng thái cục bộ của trường hợp sử dụng “Lái”. ................... 55  Hình 3.7. Máy trạng thái toàn cục của AUV/ASV. ........................................ 56  Hình 3.8. Ví dụ sơ đồ chức năng thực thi mở rộng......................................... 57  Hình 3.9. Mẫu kết nối truyền đạt giữa các khối điều khiển chính của AUV/ASV. ...................................................................................................... 61  Hình 3.10. Sơ đồ tiến trình trong thời gian thực của 5 khối điều khiển chính nhằm thực thi HAUV/ASV cho AUV/ASV .......................................................... 63  Hình 3.11. Mô hình chuyển đổi tổng quát ...................................................... 67  Hình 3.12. Chuyển đổi mô hình thiết kế và mô hình mô phỏng thực thi cho hệ thống điều khiển AUV/ASV. .......................................................................... 68  Hình 3.13. Mô hình chuyển đổi SysML-Modelica khối điều khiển Mô tơ-PI. ......................................................................................................................... 70  Hình 3.14. Kêt quả mô phỏng khả năng ổn định hướng AUV/ASV với thông số đầu vào v=1,0m/s, hướng đi đặt 0100, bán kính rẽ 2,5m. ........................... 70  Hình 3.15. Kêt quả mô phỏng khả năng ổn định hướng AUV/ASV với thông số đầu vào v=0,5m/s, hướng đi đặt 0200, bán kính rẽ 2,5m. ........................... 71  Hình 3.16. Kêt quả mô phỏng khả năng ổn định hướng AUV/ASV với thông số đầu vào v=1,0 m/s, hướng đi đặt 0200, bán kính rẽ 3,0m ........................... 71  Hình 3.17. Kêt quả mô phỏng khả năng ổn định hướng AUV/ASV với thông số đầu vào v=0,5m/s, hướng đi đặt 0300, bán kính rẽ 3,0m. ........................... 71  Hình 3.18. Kêt quả mô phỏng khả năng ổn định hướng AUV/ASV với thông số đầu vào v=1,0 m/s, hướng đi đặt 0300, bán kính rẽ 3,5m ........................... 72  Các kết quả mô phỏng cho thấy khả năng ổn định hướng của AUV/ASV là đạt yêu cầu trong phạm vi cho phép, và các kết quả này cũng sẽ được so sánh với các kết quả thử nghiệm sẽ được đề cập trong chương tiếp theo. .............. 72  Hình 3.19. Sơ đồ thực thi hướng đối tượng của HAUV/ASV cho thiết bị AUV/ASV. ...................................................................................................... 73  ix Hình 3.20. Tích hợp và chạy thử nghiệm mô hình triển khai hệ thống điều khiển thiết bị AUV/ASV bám theo quỹ đạo mong muốn. .............................. 74  Hình 4.1. Chế tạo thân vỏ và hệ động lực mô hình tàu tự hành tại Phòng thử nghiệm bộ môn Kỹ thuật Tàu thủy - ĐHBK Hà Nội [3]. ............................... 76  Hình 4.2. Bể bơi Đại học Bách khoa Hà nội được sủ dụng trong tiến hành thực nghiệm. .................................................................................................... 77  Hình 4.3. Sơ đồ tổng quan kết nối phần cứng và các thiết bị ngoại vi [6]. .... 79  Hình 4.4. Thiết bị GPS và IMU được tích hợp trong thử nghiệm (a) và bảng vi mạch MCU-STM32-Cortex M4 lập trình được (b). ....................................... 80  Hình 4.5. Tích hợp vi mạch trên AUV/ASV mô hình. ................................... 81  Hình 4.6. Bộ thu nhận tín hiệu trạng thái của AUV/ASV mô hình. ............... 81  Hình 4.7. Pin và mạch sạc điện Cellpro. ......................................................... 81  Hình 4.8. Thiết lập quỹ đạo cho thiết bị AUV/ASV gồm 04 điểm. ............... 84  Hình 4.9. Thiết lập quỹ đạo cho thiết bị AUV/ASV gồm 6 điểm .................. 84  Hình 4.10. Kết quả thử nghiệm đối với trường hợp bám quỹ đạo tam giác. .. 86  Hình 4.11. Kết quả thử nghiệm đối với trường hợp bám quỹ đạo hình chữ nhật. ................................................................................................................. 86  Hình A.1. Tích hợp phần cứng cho AUV/ASV tại phòng thử nghiệm......... 109  Hình A.2. Phần cứng sẵn sàng lắp đặt lên mô hình. ..................................... 109  Hình A.3. Một số thử nghiệm đảm bảo kín nước trước khi đưa vào bể thử. 110  Hình A.4. Hiệu chỉnh phần mềm, thiết lập quỹ đạo thử nghiệm cho mô hình. ....................................................................................................................... 110  Hình A.5. Thiết bị AUV/ASV đang quay vòng trong trường chạy thử nghiệm bám quỹ đạo chữ nhật (a-f). .......................................................................... 111  x MỞ ĐẦU i. Tính cấp thiết của đề tài Trong kỷ nguyên công nghệ và nền kinh tế đa chiều, việc phát triển các hệ thống động lực công nghiệp có một vai trò quan trọng trong quá trình công nghiệp hóa, hiện đại hóa và bảo vệ đất nước. Hệ thống điều khiển công nghiệp là một phần của lĩnh vực sản xuất công nghiệp, nó ngày càng được nhiều doanh nghiệp sử dụng và phát triển để góp phần tạo ra giá trị cạnh tranh. Một trong những ngành công nghiệp mũi nhọn, công nghệ tàu thủy và kỹ thuật dưới nước đang được phát triển rất nhanh tại nước ta. Nhiều nhà máy và xí nghiệp chế tạo tàu thủy đã phải nhập khẩu từ nước ngoài nhiều thiết bị để chế tạo những tàu lớn và hiện đại; đặc biệt là phải nhập khẩu những thiết bị điều khiển, ví dụ: hệ thống lái tàu thủy tự động có điều khiển theo chương trình, hệ thống điều khiển từ xa cho buồng máy… Như thế, chi phí để hoàn thành một thiết bị dưới nước sẽ rất cao. Hơn thế nữa, do đặc thù địa lý, việc nghiên cứu tác động của môi trường biển tới đời sống kinh tế xã hội của dân sinh rất cần thiết đối với nước ta, ví dụ như cảnh báo thiên tai và sóng thần, khảo sát hệ sinh thái dưới biển, vận tải biển bằng tàu thủy cũng như việc phát triển các trang thiết bị cho hải quân trong quân sự. Các hoạt động trên đòi hỏi phải có các phương tiện tự hành dưới nước AUV/ASV thì mới đáp ứng được mục tiêu bảo đảm an ninh và khai thác tài nguyên biển một cách bền vững. Điều này có được là do các đặc tính cơ bản về an toàn và hiệu quả chi phí khi so sánh với thiết bị có người lái. Thiết bị AUV/ASV không yêu cầu điều hành của con người, nó phải chịu các điều kiện và các mối nguy hiểm vốn có trong môi trường dưới nước. Chi phí hiệu quả về cả thời gian và các khía cạnh tài chính được xuất phát từ một thiết bị 1 nhỏ hơn nhiều, không chứa các hệ thống con khác nhau cần thiết để duy trì cuộc sống trong khi dưới nước cũng như các cơ cấu truyền động nhỏ hơn so với một thiết bị có người lái, vì vậy yêu cầu thực hiện bảo trì thường xuyên cần thiết sẽ nhỏ hơn. Với các đặc trưng nổi bật trên đây, các loại AUV/ASV đã được sử dụng thành công và hiệu quả trong ngành công nghệ hàng hải tại rất nhiều nước trên thế giới cho cả mục đích dân sự và quân sự [2]. Do đó, việc nghiên cứu sản xuất các thiết bị này trong nước, đặc biệt là hệ thống điều khiển, sẽ tăng được tính chủ động trong sản xuất hàng loạt, giảm chi phí nhập khẩu từ nước ngoài và hạn chế được việc lệ thuộc vào bí mật công nghệ đặc biệt là trong lĩnh vực quân sự. Xuất phát từ tính cấp thiết đã trình bày trên đây, cùng với sự hướng dẫn của tập thể các thầy hướng dẫn, NCS đã thực hiện luận án với tiêu đề: “Nghiên cứu phương pháp hướng đối tượng trong phân tích và thiết kế điều khiển chuyển động cho thiết bị tự hành AUV/ASV với chuẩn SysML-Modelica và Automate lai”. ii. Mục đích, đối tượng và phạm vi nghiên cứu của đề tài Mục đích nghiên cứu Mục đích nghiên cứu của luận án là nhằm đưa ra mô hình quản trị yêu cầu, phân tích, thiết kế, mô phỏng và thực thi một cách hiệu quả hệ thống điều khiển các thiết bị tự hành dưới nước AUV/ASV (ví dụ: tàu ngầm, ngư lôi, rôbốt hoạt động dưới nước, các thiết bị phục vụ hải quân với mục đích quân sự, tàu thủy tự vận hành...) dựa trên phương pháp cụ thể hóa cách tiếp cận kiến trúc hướng đối tượng hướng theo mô hình (MBSE) [56] bằng ngôn ngữ mô hình hóa hệ thống SysML [58] kết hợp ngôn ngữ mô phỏng hướng đối tượng Modelica [60] với Automate lai. Kết quả nghiên cứu cần đạt được là làm chủ công nghệ tích hợp hướng đối tượng có thể tùy biến và tái sử dụng một cách nhanh chóng cho các ứng dụng điều khiển các thiết bị tự hành dưới nước khác nhau với hiệu năng điều 2 khiển và an ninh cao. Nhờ đó, việc chuyển giao công nghệ ứng dụng có thể sẽ được thực hiện một cách dễ dàng cho việc sản xuất ở trong nước. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu của luận án là thiết bị tự hành dưới nước không người lái AUV/ASV với các thông số kỹ thuật mô tả trên bảng 1.2. Các nội dung nghiên cứu của đề tài được thực hiện tại Bộ môn Kỹ thuật Thủy khí và Tàu thủy, viện Cơ khí Động Lực, Trường đại học Bách khoa Hà nội. Do điều kiện hạn chế về thời gian cũng như chi phí về thiết bị (đặc biệt là các trang thiết bị, các cảm biến thích hợp phục vụ cho việc truyền thông dưới nước tích hợp trên AUV/ASV), phạm vi nghiên cứu của luận án được giới hạn như sau: - Thiết bị AUV/ASV được chế tạo và thử nghiệm trong bể thử giới hạn trong phạm vi 3 bậc tự do trên mặt phẳng ngang để đánh giá về tính tự hành là khả năng bám quỹ đạo định trước và ổn định hướng đi. - Nhiễu do ảnh hưởng của môi trường là nhiễu gây ra do sóng tuyến tính phổ bậc hai, không xét đến ảnh hưởng của dòng chảy và ảnh hưởng của gió; Tín hiệu nhiễu được đưa vào hệ thống qua giả lập mô phỏng vật lý. iii. Phương pháp nghiên cứu Trong luận án, phương pháp nghiên cứu lý thuyết kế t hơ ̣p với thực nghiê ̣m sẽ đươ ̣c tiế n hành song song, sau đó các kết quả mô phỏng từ các mô hình thiết kế lý thuyết sẽ được so sánh với kết quả thực nghiệm nhằm đánh giá và đưa ra giải pháp tối ưu. iv. Ý nghĩa khoa học và thực tiễn Đề tài có ý nghĩa khoa học và thực tiễn cao thông qua cụ thể hóa và áp dụng kết hợp các phương thức điều khiển và công nghệ thực thi mới gần đây nhất; có thể ứng dụng trong các lĩnh vực khác nhau, như: dân sự, cứu hộ, cứu nạn, an ninh và quốc phòng trên biển. Dựa trên cơ sở bản thiết kế chi tiết hệ thống được phát triển trong luận án, các nhà sản xuất và khai thác có thể dễ 3 dàng tùy biến và tái sử dụng cho các ứng dụng điều khiển các thiết bị tự hành dưới nước khác nhau, đặc biệt trong bối cảnh tại Việt Nam. v. Các điểm mới của luận án đạt được + Xây dựng phương thức điều khiển tích phân cuốn chiếu (IB) kết hợp với bộ lọc Kalman mở rộng (EKF) lấy Automate lai (HA) làm nền tảng cho hệ thống điều khiển của AUV/ASV. + Đưa ra quy trình phân tích, thiết kế và thực thi hướng đối tượng bằng phương pháp công nghệ hệ thống hướng mô hình (MBSE/OOSEM) với ngôn ngữ mô hình hóa hệ thống (SysML) và ngôn ngữ mô phỏng Modelica. Thiết kế chi tiết của hệ thống điều khiển có thể dễ dàng tùy biến và tái sử dụng cho các ứng dụng điều khiển các thiết bị tự hành dưới nước khác nhau. + Thiết kế và chế tạo thử nghiệm hệ thống điều khiển mô hình nhằm thực nghiệm tính ổn định hướng đi và bám quỹ đạo cho AUV/ASV với cấu hình vật lý có sẵn. vi. Cấu trúc của luận án Luận án được trình bày theo các nội dung chính sau:  Mở đầu  Chương 1. Nghiên cứu tổng quan.  Chương 2. Phương pháp mô hình hóa, mô phỏng và thi hành hệ thống điều khiển thiết bị tự hành AUV/ASV.  Chương 3. Quy trình phân tích thiết kế, mô phỏng và thi hành hệ thống điều khiển cho thiết bị tự hành AUV/ASV với SysML/Modelica và Automate lai.  Chương 4. Thử nghiệm và đánh giá kết quả.  Kết luận và kiến nghị. 4 CHƯƠNG 1: NGHIÊN CỨU TỔNG QUAN 1.1. Tổng quan về thiết bị tự hành trên biển AUV/ASV 1.1.1. Sơ lược về AUV/ASV Ngày nay, cùng với việc phát triển vượt bậc của khoa học kỹ thuật cũng như ứng dụng các tiến bộ của khoa học đối với các ngành khác nhau, lĩnh vực nghiên cứu về đại dương rất cần các thiết bị tự hành dưới nước AUV/ASV nhằm mục đích nâng cao hiệu quả trong nghiên cứu như: cảnh báo thiên tai sóng thần, dự báo thời tiết, nghiên cứu đáy đại dương [5], [82], thăm dò các nguồn tài nguyên thiên nhiên dưới biển, do nguồn tài nguyên trên đất liền ngày càng cạn kiệt dần và nhu cầu thiết yếu cho cuộc sống của con người ngày càng tăng cao [2], [18]. Đối với nền an ninh quốc phòng của các nước, có thể nói AUV/ASV là một trong những thành phần phục vụ tác chiến quan trọng của lực lượng hải quân [41]. Với tình hình diễn biến phức tạp trong tương lai gần diễn ra chủ yếu ở các vùng biển có tranh chấp, những vùng biển được coi là đặc quyền kinh tế của các quốc gia, thì việc duy trì các đội tàu có người lái nhằm mục đích bảo vệ và giám sát lãnh hải không còn là một lựa chọn khả thi do các yêu cầu về con người vận hành, thiết bị và kỹ thuật tác chiến. Khi đó, AUV/ASV sẽ là lựa chọn tối ưu với khả năng tác vụ, truyền thông, đặc biệt là khả năng thực hiện những nhiệm vụ liên quan đến nguy hiểm ở các vùng biển có các mối đe dọa như các khu vực bị ô nhiễm hạt nhân, sinh học và hóa học. AUV/ASV bắt đầu được nghiên cứu và sử dụng sau chiến tranh thế giới thứ II bởi quân đội Hoa Kỳ với mục đích nâng cao khả năng tác chiến (hình 1.1). Ngày nay, với sự tích hợp những công nghệ tối tân khác nhau, các AUV/ASV có thể hoạt động hoàn toàn độc lập theo các chương trình đã cài đặt trước [84]. Hơn nữa, các “đội” AUV/ASV khi hoạt động cùng nhau có thể được trang bị cảm biến để có thể tự nhận biết, tương tác với môi trường xung quanh, thậm chí phối hợp đồng bộ để tìm ra con đường tốt nhất nếu gặp rào 5 cản như điều kiện vể thời tiết, gặp và tránh đá ngầm… Nhờ đó, khả năng tự động của chúng khi hoạt động tại các vùng biển được đánh giá là ưu việt hơn cả các máy bay không người lái UAV [4] nổi tiếng như Predator hay Reaper. Với tàu tự hành AUV/ASV, một người điều khiển có thể giám sát cùng lúc một đội gồm 4 đến 20 tàu và không phải hoạt động riêng lẻ, chỉ cần theo dõi và phản ứng khi có sự cố bất ngờ [83]. Hình 1.1.Mẫu AUV hoàn chỉnh đầu tiên được quân đội Hoa Kỳ sử dụng, phát triển bởi Đại học Washington năm 1957 [28]. Các AUV/ASV hiện đại cũng đã được thiết kế những tình huống ứng phó sự cố để tránh sự cố bất ngờ [13]. Nếu vì bất kỳ lý do gì hệ thống kết nối truyền thông bị gián đoạn, tàu sẽ tự ngắt mọi hoạt động và giữ vị trí, hoặc quay trở lại vị trí ban đầu đã được thiết lập sẵn. 1.1.2. Một số ứng dụng của AUV/ASV Những ứng dụng quan trọng nhất của AUV/ASV là khả năng nghiên cứu đáy đại dương [82] với các hoạt động thu thập dữ liệu, thăm dò xây dựng bản đồ bề mặt đáy biển, từ đó xây dựng các cơ sở dữ liệu phục vụ cho các công 6
- Xem thêm -

Tài liệu liên quan