Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Tốc độ hội tụ của một số phép lặp trong không gian banach ...

Tài liệu Tốc độ hội tụ của một số phép lặp trong không gian banach

.PDF
67
486
95

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 PHẠM THỊ SEN TỐC ĐỘ HỘI TỤ CỦA MỘT SỐ PHÉP LẶP TRONG KHÔNG GIAN BANACH LUẬN VĂN THẠC SĨ TOÁN HỌC HÀ NỘI, 2016 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 PHẠM THỊ SEN TỐC ĐỘ HỘI TỤ CỦA MỘT SỐ PHÉP LẶP TRONG KHÔNG GIAN BANACH Chuyên ngành: Toán Giải tích Mã số: 60 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: TS. Nguyễn Văn Khải HÀ NỘI, 2016 LỜI CẢM ƠN Luận văn được hoàn thành tại trường Đại học Sư phạm Hà Nội 2 dưới sự hướng dẫn của TS. Nguyễn Văn Khải. Tác giả xin bày tỏ lòng biết ơn sâu sắc nhất tới TS. Nguyễn Văn Khải, người đã định hướng chọn đề tài và tận tình hướng dẫn để tác giả hoàn thành luận văn này. Tác giả xin bày tỏ lòng biết ơn chân thành tới Phòng Sau đại học, các thầy cô giáo dạy cao học chuyên ngành Toán Giải tích, trường Đại học Sư phạm Hà Nội 2 đã giúp đỡ tác giả trong suốt quá trình học tập và hoàn thành luận văn tốt nghiệp. Tác giả xin được gửi lời cảm ơn chân thành tới gia đình, bạn bè, người thân đã luôn động viên, cổ vũ, tạo mọi điều kiện thuận lợi cho tác giả trong quá trình học tập và hoàn thành luận văn. Hà Nội, 10 tháng 6 năm 2016 Tác giả Phạm Thị Sen LỜI CAM ĐOAN Dưới sự hướng dẫn của TS. Nguyễn Văn Khải luận văn Thạc sĩ chuyên ngành Toán giải tích với đề tài “Tốc độ hội tụ của một số phép lặp trong không gian Banach” được hoàn thành bởi sự nhận thức của bản thân, không trùng với bất cứ luận văn nào khác. Trong khi nghiên cứu luận văn, tôi đã kế thừa những thành tựu của các nhà khoa học với sự trân trọng và biết ơn. Hà Nội, 10 tháng 6 năm 2016 Tác giả Phạm Thị Sen Mục lục Mở đầu 3 1 Kiến thức chuẩn bị 6 1.1 1.2 Không gian metric . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Sự hội tụ . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Tập mở, tập đóng và ánh xạ liên tục . . . . . . . . . 8 1.1.3 Không gian metric đầy đủ Không gian định chuẩn . . . . . . . . . . . . . . . . . . . . 11 1.2.1 Định nghĩa . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 Sự hội tụ trong không gian định chuẩn . . . . . . . . 11 1.2.3 Không gian Banach . . . . . . . . . . . . . . . . . . 13 1.2.4 Chuỗi trong không gian định chuẩn . . . . . . . . . 14 2 Sự hội tụ của một số dãy lặp 2.1 2.2 . . . . . . . . . . . . . . 10 17 Ánh xạ co . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Điểm bất động . . . . . . . . . . . . . . . . . . . . 17 2.1.2 Ánh xạ co . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.3 Nguyên lý ánh xạ co Banach . . . . . . . . . . . . . 18 Dãy lặp Picard, Mann, Ishikawa, hai bước . . . . . . . . . . 19 2.2.1 Dãy lặp Picard . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Dãy lặp Mann . . . . . . . . . . . . . . . . . . . . . 19 1 2.3 2.2.3 Dãy lặp Ishikawa . . . . . . . . . . . . . . . . . . . 19 2.2.4 Dãy lặp hai bước . . . . . . . . . . . . . . . . . . . 20 Ánh xạ Zamfirescu và sự hội tụ của dãy lặp Picard, Mann, Ishikawa, hai bước . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Ánh xạ Zamfirescu . . . . . . . . . . . . . . . . . . 20 2.3.2 Sự hội tụ của dãy lặp Picard . . . . . . . . . . . . . 23 2.3.3 Sự hội tụ của dãy lặp Mann 2.3.4 Sự hội tụ của dãy lặp Ishikawa . . . . . . . . . . . . 26 2.3.5 Sự hội tụ của dãy lặp hai bước . . . . . . . . . . . . 27 2.3.6 Mối liên hệ về điểm bất động của các dãy lặp Picard, . . . . . . . . . . . . . 25 Mann, Ishikawa và dãy lặp hai bước . . . . . . . . . 29 3 So sánh tốc độ hội tụ của một số dãy lặp 34 3.1 So sánh tốc độ hội tụ dãy lặp Picard và dãy lặp hai bước . . 34 3.2 So sánh tốc độ hội tụ dãy lặp hai bước và dãy lặp Mann . . 41 3.3 So sánh tốc độ hội tụ dãy lặp hai bước và dãy lặp Ishikawa 3.4 So sánh tốc độ hội tụ dãy lặp Picard và dãy lặp Mann . . . 54 47 Kết luận 61 Tài liệu tham khảo 62 2 MỞ ĐẦU 1. Lí do chọn đề tài Lý thuyết điểm bất động xuất hiện đã lôi cuốn sự quan tâm nghiên cứu của nhiều nhà toán học trên thế giới không chỉ vì lý thuyết này đóng vai trò quan trọng trong toán học mà còn vì những ứng dụng của nó ở nhiều lĩnh vực khác nhau. Trong lý thuyết điểm bất động, phương pháp lặp xấp xỉ các điểm bất động là một đề tài đang được đặt biệt chú ý. Nhiều năm trở lại đây, có rất nhiều công trình nghiên cứu về phương pháp lặp xấp xỉ các điểm bất động trong không gian metric, một số lớp của không gian Banach, các không gian Hilbert được công bố. Với mong muốn nghiên cứu một số vấn đề về lý thuyết điểm bất động, dưới sự hướng dẫn của TS. Nguyễn Văn Khải tôi đã hoàn thành luận văn với đề tài "Tốc độ hội tụ của một số phép lặp trong không gian Banach". Nội dung luận văn cơ bản dựa trên hai công trình: The comparion of the convergence speed between Picard, Mann, Ishikawa and two-step iterations in Banach spaces. Acta Mathematica Vietnamica, vol 37, Number 2, 2012, pp 243-249 của DuongVietThong; Picard iteration converges faster than Mann iteration for a class of quasi-contraction operators. O. Popescu, (2007), Math. Commun, 12, pp 195-202. 3 2. Mục đích nghiên cứu So sánh tốc độ hội tụ của các phép lặp Picard, Mann, Ishikawa và lặp hai bước trong không gian Banach. 3. Nhiệm vụ nghiên cứu Nghiên cứu về các phép lặp Picard, Mann, Ishikawa, lặp hai bước, toán tử Zamfirescu và so sánh tốc độ hội tụ giữa các phép lặp đó trong không gian Banach. Luận văn được chia làm ba chương: Chương 1 : Kiến thức chuẩn bị. Trình bày một số vấn đề về sự hội tụ của dãy số, chuỗi số trong không gian metric, không gian định chuẩn và không gian Banach. Chương 2 : Sự hội tụ của một số dãy lặp. Trình bày các kết quả liên quan đến sự tồn tại điểm bất động với nguyên lý ánh xạ co Banach, ánh xạ Zamfirescu và sự hội tụ tới điểm bất động của các dãy lặp Picard, Mann, Ishikawa và dãy lặp hai bước. Chương 3 : So sánh tốc độ hội tụ của một số dãy lặp. Trình bày các kết quả so sánh tốc độ hội tụ của các dãy lặp Picard, Mann, Ishikawa và dãy lặp hai bước. 4. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu và phạm vi nghiên cứu là các phép lặp Picard, Mann, Ishikawa, lặp hai bước và toán tử Zamfirescu trong không gian Banach. 4 5. Phương pháp nghiên cứu Phương pháp nghiên cứu của giải tích hàm. 6. Đóng góp của luận văn Luận văn đã hệ thống hóa các vấn đề về tốc độ hội tụ của các phép lặp Picard, phép lặp Mann, phép lặp Ishikawa và phép lặp hai bước trong không gian Banach. 5 Chương 1 Kiến thức chuẩn bị 1.1 1.1.1 Không gian metric Sự hội tụ Định nghĩa 1.1.1. ([1]) Giả sử X là một tập hợp khác rỗng. Hàm số ρ : X × X → R được gọi là một metric hay một khoảng cách trên X nếu các tính chất sau thỏa mãn: (i) ρ(x, y) ≥ 0 với mọi x, y ∈ X , ρ(x, y) = 0 ⇐⇒ x = y ; (ii) ρ(x, y) = ρ(y, x) với mọi x, y ∈ X (tính đối xứng); (iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) ∀x, y, z ∈ X (bất đẳng thức tam giác). Nếu ρ là một metric trên X thì ta nói cặp (X, ρ) được gọi là một không gian metric. Để đơn giản ta có thể viết X là không gian metric. Ví dụ 1.1.1. ([1]) Hàm số ρ(x, y) = |x − y| là một metric trên tập số thực R và được gọi là metric thông thường trên R. Tập số thực R với metric thông thường được gọi là đường thẳng thực. Ví dụ 1.1.2. ([1]) Giả sử C là trường số phức. Với mỗi cặp số phức z = x + iy, z 0 = x0 + iy 0 (x, y, x0 , y 0 ∈ R) đặt ρ(z, z 0 ) = p (x − x0 )2 + (y − y 0 )2 . 6 Khi đó ρ là một metric trên C, được gọi là metric thông thường trên C. Không gian C với metric thông thường được gọi là mặt phẳng phức. Ví dụ 1.1.3. ([1]) Giả sử Rk là không gian vectơ thực k chiều. Với x = (x1 , ..., xk ), y = (y1 , ..., yk ) của Rk , ta định nghĩa ρ1 (x, y) = k X |xi − yi |; i=1 ρ2 (x, y) = k X ! 21 (xi − yi )2 ; i=1 ρ∞ (x, y) = max |xi − yi |. 1≤i≤k Khi đó có thể thấy ρ1 , ρ2 , ρ∞ là những metric trên Rk . Định nghĩa 1.1.2. ([1]) Giả sử {xn }∞ n=1 là một dãy điểm trong không gian metric (X, ρ). Ta nói dãy {xn }∞ n=1 hội tụ đến điểm x ∈ X nếu lim ρ (xn , x) = 0, nghĩa là với mọi số ε > 0 tồn tại số tự nhiên nε sao cho n→∞ ρ (xn , x) < ε với mọi n ≥ nε . Khi đó, điểm x ∈ X được gọi là giới hạn của dãy {xn }∞ n=1 và ta viết lim xn = x hoặc xn → x. n→∞ Một dãy gọi là hội tụ nếu nó có một giới hạn nào đó. Nhận xét 1.1.1. ([1]) Trong một không gian metric, giới hạn của mỗi dãy hội tụ là duy nhất. Chứng minh. Thật vậy, giả sử dãy lim xn trong không gian metric (X, ρ) n→∞ hội tụ đến hai điểm phân biệt x, y ta có: 0 < ρ (x, y) ≤ ρ (x, xn ) + ρ (xn , y) −→ 0 khi n −→ ∞. Suy ra ρ (x, y) = 0 hay x = y . Điều này là vô lí. 7 Nhận xét 1.1.2. ([1]) Nếu lim xn = x, lim yn = y thì ta có lim ρ (xn , yn ) = ρ (x, y). n→∞ n→∞ n→∞ Chứng minh. Thật vậy, với mọi n ∈ N, ta có: ρ (x, y) ≤ ρ (x, xn ) + ρ (xn , yn ) + ρ (yn , y). Suy ra ρ (x, y) − ρ (xn , yn ) ≤ ρ (x, xn ) + ρ (yn , y). Tương tự, ta có: ρ (xn , yn ) − ρ (x, y) ≤ ρ (x, xn ) + ρ (yn , y). Vì vậy |ρ (xn , yn ) − ρ (x, y)| ≤ ρ (x, xn ) + ρ (yn , y). Theo giả thiết lim ρ (x, xn ) = 0 và lim ρ (yn , y) = 0. n→∞ n→∞ Ví dụ 1.1.4. ([1]) Sự hội tụ trên đường thẳng thực R và mặt phẳng phức C là sự hội tụ của dãy số theo nghĩa thông thường. Ví dụ 1.1.5. ([1]) Trong không gian Rk , sự hội tụ của dãy (n) (n) xn = (x1 , ..., xk ) đến điểm x = (x1 , ..., xk ) là sự hội tụ theo từng tọa độ. Định nghĩa 1.1.3. ([8]) Giả sử rằng dãy số thực {xn } hội tụ về số x, dãy số thực {yn } hội tụ về số y thì {xn } gọi là hội tụ nhanh hơn {yn } nếu xn − x = 0. lim n→∞ yn − y 1.1.2 Tập mở, tập đóng và ánh xạ liên tục Định nghĩa 1.1.4. ([1]) Giả sử (X, ρ) là một không gian metric, x0 ∈ X và r > 0. (i) Tập B (x0 , r) = {x ∈ X : ρ (x, x0 ) < r} được gọi là hình cầu mở tâm 8 x0 , bán kính r. (ii) Tập B [x0 , r] = {x ∈ X : ρ (x, x0 ) ≤ r} được gọi là hình cầu đóng tâm x0 , bán kính r. Định nghĩa 1.1.5. ([1]) Giả sử A là tập con của không gian metric (X, ρ). Điểm x ∈ X được gọi là điểm trong của A nếu tồn tại số r > 0 sao cho hình cầu B (x0 , r) ⊂ A. Định nghĩa 1.1.6. ([1]) Tập A được gọi là tập mở nếu mọi điểm của A đều là điểm trong của nó, tập A được gọi là tập đóng nếu phần bù X|A của A là mở. Ví dụ 1.1.6. ([1]) Trên đường thẳng thực R với a, b ∈ R, a < b, tập (a, b) là mở, tập [a, b] là đóng, còn [a, b) hay (a, b] không mở cũng không đóng. Định lý 1.1.1. ([1]) Tập con A của không gian metric (X, ρ) là mở khi và chỉ khi với mọi dãy {xn } trong X nếu xn −→ x ∈ A thì tồn tại số tự nhiên n0 sao cho xn ∈ A với mọi n ≥ n0 . Chứng minh. (⇒) Giả sử A mở, xn là một dãy hội tụ đến điểm x ∈ A . Do A là mở nên tồn tại số r > 0 sao cho B (x0 , r) ⊂ A. Lại do xn −→ x nên tồn tại số tự nhiên n0 sao cho ρ (xn , x) < r hay xn ∈ B (x0 , r) với mọi n ≥ n0 . Từ đó xn ∈ A với mọi n ≥ n0 . (⇐) Giả sử phản chứng minh rằng A không mở. Khi đó tồn tại x ∈ A sao cho x không là điểm trong của A, nghĩa là với mọi r > 0 đều có B (x0 , r)∩(X|A) 6= ∅. Suy ra với mọi số tự nhiên dương n tồn tại xn ∈ X|A 1 sao cho ρ (xn , x) < . Ta nhận được dãy {xn } trong X hội tụ đến x ∈ A n nhưng xn ∈ / A với mọi n. Điều này mâu thuẫn với giả thiết, vậy A là mở. Định nghĩa 1.1.7. ([1]) Cho f : X −→ Y là một ánh xạ từ không gian metric (X, ρ) vào không gian metric (Y, d). Ánh xạ f được gọi là liên tục 9 tai x0 ∈ X nếu với mọi số ε > 0 tồn tại số δ > 0 sao cho với mọi x ∈ X , từ ρ (x, x0 ) < δ kéo theo d (f (x) , f (x0 )) < ε. Ta nói rằng ánh xạ f liên tục trên X nếu nó liên tục tại mọi điểm của x. Mệnh đề 1.1.1. ([1]) Ánh xạ f liên tục tại x0 khi và chỉ khi với mọi dãy {xn } ⊂ X, xn −→ x0 kéo theo f (xn ) −→ f (x0 ). Chứng minh. (⇒) Giả sử ánh xạ f liên tục tại x0 , {xn } ⊂ X và xn −→ x0 . Ta chứng minh f (xn ) hội tụ đến f (x0 ). Lấy ε > 0 bất kì. Vì f liên tục tại x0 nên tồn tại δ > 0 sao cho với mọi x ∈ X , nếu ρ (x, x0 ) < δ thì d (f (x) , f (x0 )) < ε. Mặt khác, do xn −→ x0 nên tồn tại n0 ∈ N sao cho ρ (xn , x0 ) < δ với mọi n ≥ n0 . Từ đó d (f (xn ) , f (x0 )) < ε với mọi n ≥ n0 . Vậy f (xn ) −→ f (x0 ). (⇐) Giả sử phản chứng rằng f không liên tục tại x0 . Khi đó tồn tại ε > 0 để với mọi δ > 0, tồn tại xδ ∈ X sao cho ρ (xδ , x0 ) < δ nhưng 1 ta có xn ∈ X để d (f (xδ ) , f (x0 )) ≥ ε. Với mỗi n ∈ N∗ , chọn δ = n 1 ρ (xn , x0 ) < và d (f (xn ) , f (x0 )) ≥ ε. Suy ra xn −→ x0 nhưng f (xn ) 9 n f (x0 ). Điều này trái với giả thiết, vậy f liên tục tại x0 . 1.1.3 Không gian metric đầy đủ Giả sử (X, ρ) là một không gian metric. Định nghĩa 1.1.8. ([1]) Dãy {xn } ⊂ X được gọi là dãy Cauchy (hoặc dãy cơ bản) nếu lim ρ (xn , xm ) = 0, tức là m,n→∞ ∀ε > 0, ∃n0 : ρ (xn , xm ) < ε với mọi m, n ≥ n0 . Nhận xét 1.1.3. ([1]) Mọi dãy hội tụ trong X đều là dãy Cauchy. ε Chứng minh. Ta có lim xn = x0 ⇒ ∀ε > 0, ∃n0 sao cho ρ (xn , xm ) < . n→∞ 2 Suy ra ε ε ∀n ≥ n0 , m ≥ n0 : ρ (xn , xm ) ≤ ρ (xn , x0 ) + ρ (xm , x0 ) ≤ + = ε. 2 2 10 Nhận xét 1.1.4. ([1]) Dãy Cauchy có thể không hội tụ. Chẳng hạn, Q là không gian metric với metric: ρ (x, y) = |x − y| với mọi x, y ∈ Q. 1 (n = 1, 2, ...) là dãy Cauchy trên khoảng (0, 1) nhưng không n hội tụ trong khoảng này vì lim xn = x0 ∈ / (0, 1). Ta có: xn = n→∞ Định nghĩa 1.1.9. ([1]) Không gian metric X được gọi là đầy đủ nếu mọi dãy Cauchy trong X đều hội tụ. Ví dụ 1.1.7. Không gian R, C là những không gian metric đầy đủ còn Q thì không phải là không gian metric đầy đủ. 1.2 1.2.1 Không gian định chuẩn Định nghĩa Định nghĩa 1.2.1. ([2]) Cho X là không gian vectơ trên trường số thực R. Hàm số k.k : E −→ R+ được gọi là một chuẩn trên X nếu các tính chất sau thỏa mãn: (i) kxk ≥ 0 với mọi x ∈ X, kxk = 0 ⇔ x = 0; (ii) kλxk = |λ|kxk với mọi λ ∈ R và với mọi x ∈ X ; (iii) kx + yk ≤ kxk + kyk với mọi x, y ∈ X . Không gian vectơ X trên đó xác định một chuẩn được gọi là không gian định chuẩn. 1.2.2 Sự hội tụ trong không gian định chuẩn Nhận xét 1.2.1. Từ định nghĩa suy ra nếu X là một không gian định chuẩn thì nó là một không gian metric, với metric được định nghĩa bởi ρ (x, y) = kx − yk với mọi x, y ∈ X . Khi đó ρ là một khoảng cách trong 11 X . Vì vậy, lí thuyết các không gian metric áp dụng được cho các không gian định chuẩn. Định nghĩa 1.2.2. ([2]) Giả sử {xn }∞ n=1 là một dãy trong không gian định chuẩn X . Ta nói dãy {xn }∞ n=1 hội tụ đến điểm x ∈ X nếu lim kxn − xk = 0, n→∞ nghĩa là, với moị số ε > 0 tồn tại số tự nhiên nε sao cho kxn − xk < ε với mọi n ≥ nε . Khi đó, điểm x ∈ X được gọi là giới hạn của dãy {xn }∞ n=1 và ta viết lim xn = x hoặc xn −→ x. n→∞ Một dãy gọi là hội tụ nếu nó có một giới hạn nào đó. Mệnh đề 1.2.1. ([2]) Giả sử trong không gian định chuẩn X , xn −→ x0 , yn −→ y0 và λn −→ λ0 . Khi đó xn + yn −→ x0 + y0 và λn xn −→ λ0 x0 với xn , yn , x0 , y0 ∈ X, λn , λ0 ∈ R. Định nghĩa 1.2.3. ([2]) Dãy {xn } trong không gian định chuẩn X được gọi là dãy Cauchy, nếu lim kxn − xm k = 0. n,m→∞ Ví dụ 1.2.1. ([2]) (Không gian Euclide n - chiều) Rn := {x = (x1 , x2 , ..., xn ) : x1 , x2 , ..., xn ∈ R}. Ta xác định chuẩn k.k2 trên Rn bởi kxk2 = n X ! 21 |xi |2 (x = (x1 , ..., xn ) ∈ Rn ). i=1 Ví dụ 1.2.2. Xét không gian C[a, b] các hàm liên tục trênq đoạn [a, b] với Rb 2 phép cộng, phép nhân thông thường. Xét f ∈ C[a, b], kf k = a [f (x)] dx, khi đó C[a, b] là không gian tuyến tính định chuẩn. Ví dụ 1.2.3. ([2]) (Không gian các dãy bị chặn). Kí hiệu l∞ là tập hợp tất cả các dãy số bị chặn trên bởi S và kxk∞ = sup |xn | < ∞. n→∞ 12 1.2.3 Không gian Banach Định nghĩa 1.2.4. ([2]) Nếu không gian định chuẩn X là một không gian metric đầy đủ với khoảng cách d(x, y) = kx − yk thì X được gọi là không gian Banach. Ví dụ 1.2.4. ([3]) (Không gian các dãy khả tổng bậc p). Với mỗi số thực p ≥ 1 tùy ý, ta kí hiệu lp tập hợp tất cả các dãy số (thực hoặc phức) khả tổng bậc p bởi N∗ lp := {x = (xn ) ⊂ R : ∞ X |xn |p < +∞}. n=1 Khi đó lp là một không gian Banach với chuẩn cho bởi ! p1 ∞ X kxkp = |xn |p . n=1 Định nghĩa 1.2.5. ([2]) Cho X là không gian định chuẩn. Giả sử {xn } ⊂ X , x ∈ X . Dãy {xn } được gọi là hội tụ theo chuẩn tới x nếu {xn } hội tụ tới x theo metric sinh bởi chuẩn trên X . Dãy {xn } hội tụ tới x theo chuẩn tương đương với kxn − xk −→ 0. Định nghĩa 1.2.6. ([2]) Tập con X trong không gian vectơ E gọi là tập lồi nếu [a, b] = {ta + (1 − t)b : 0 ≤ t ≤ 1} ⊂ X với mọi a, b ∈ X . Ví dụ 1.2.5. Hình cầu B(0, 1) = {x ∈ X : kxk < 1} là một tập lồi. Chứng minh. Thật vậy, giả sử x, y ∈ B, 0 ≤ s ≤ 1. Ta có ksx + (1 − s)yk ≤ ksxk + k(1 − s)yk = skxk + (1 − s)kyk < s + (1 − s) = 1. Từ đó sx + (1 − s)y ∈ B(0, 1), vậy B(0, 1) là tập lồi. 13 Ví dụ 1.2.6. C = {x ∈ R2 : |x1 | ≤ 1, |x2 | ≤ 2} là một tập lồi. Chứng minh. Thật vậy ∀x(x1 , x2 ), y(y1 , y2 ) ∈ C . Ta có |x1 | ≤ 1, |y1 | ≤ 1, |x2 | ≤ 2, |y2 | ≤ 2. Với s ∈ [0, 1], z = sx + (1 − s)y có  z = sx + (1 − s)y ; 1 1 1 z = sx + (1 − s)y . 2 2 2 Ta có |z1 | = |sx1 + (1 − s)y1 | ≤ |sx1 | + |(1 − s)y1 | = s |x1 | + (1 − s) |y1 | ≤ s + (1 − s) = 1. Và |z2 | = |sx2 + (1 − s)y2 | ≤ |sx2 | + |(1 − s)y2 | = s |x2 | + (1 − s) |y2 | ≤ 2s + 2(1 − s) = 2. Từ đó suy ra sx + (1 − s)y ∈ C , vậy tập C là tập lồi. 1.2.4 Chuỗi trong không gian định chuẩn Định nghĩa 1.2.7. ([3]) Giả sử E là một không gian định chuẩn. Tổng hình thức x1 + x2 + ... + xn + ... = ∞ X xn (1.1) n=1 với xn ∈ E được gọi là chuỗi trong E và xn được gọi là số hạng tổng quát của dãy chuỗi (1.1). Với mỗi n ta đặt 14 Sn = x1 + x2 + ... + xn ta được dãy {Sn }n∈N ⊂ E , Sn được gọi là tổng riêng thứ n của (1.1). Định nghĩa 1.2.8. ([2]) Nếu dãy các tổng riêng {Sn } ⊂ E hội tụ tới S ∈ E thì chuỗi (1.1) được gọi là hội tụ và S được gọi là tổng của nó. Ta viết S= ∞ X xn . n=1 Mệnh đề 1.2.2. ([2]) (Điều kiện cần cho sự hội tụ). Nếu chuỗi (1.1) hội tụ thì số hạng tổng quát dần tới 0, tức là lim xn = 0 n→∞ Chứng minh. Thật vậy, giả sử S = ∞ P xn . n=1 Khi đó lim xn+1 = lim [Sn+1 − Sn ] = S − S = 0. n→∞ n→∞ Định lý 1.2.1. ([2]) (Tiêu chuẩn Cauchy) ∞ P Chuỗi S = xn trong không gian Banach E hội tụ khi và chỉ khi n=1 ∀ε > 0, ∃n0 , ∀n > n0 , ∀p ≥ 1 : kxn+1 + ... + xn+p k < ε. Chứng minh. Vì E là không gian Banach nên chuỗi hội tụ nếu và chỉ nếu dãy tổng riêng Sn của nó là dãy Cauchy: ∀ε > 0, ∃n0 , ∀n > n0 , ∀p ≥ 1 : kSn+p − Sn k = kxn+1 + ... + xn+p k < ε. Định nghĩa 1.2.9. ([2]) Chuỗi S = ∞ P xn trong không gian định chuẩn n=1 E gọi là hội tụ tuyệt đối nếu chuỗi S = Bởi vì chuỗi S = ∞ P ∞ P kxn k hội tụ. n=1 kxn k là dãy số dương nên S = n=1 đối nếu và chỉ nếu dãy các tổng riêng của S = ∞ P n=1 sup m≥1 m X ! kxn k n=1 15 < +∞. ∞ P xn hội tụ tuyệt n=1 kxn k bị chặn, nghĩa là Mệnh đề 1.2.3. ([2]) Mọi chuỗi hội tụ tuyệt đối là chuỗi hội tụ. Chứng minh. Từ giả thiết chuỗi ∞ P kan k hội tụ và do đó bởi tiêu chuẩn n=1 Cauchy : kan+1 k + kan+2 k + ... + kan+p k ≤ ε. với n ≥ n0 (ε) và với mọi p ≥ 1, ở đó ε > 0 là số cho trước. Từ đó: kan+1 + an+2 + ... + an+p k < ε với n ≥ n0 (ε) và với mọi p ≥ 1 ∞ P an hội tụ. nên chuỗi n=1 16
- Xem thêm -

Tài liệu liên quan