Đăng ký Đăng nhập
Trang chủ Bảng biến thiên trong dạy học hàm số ở trung học phổ thông...

Tài liệu Bảng biến thiên trong dạy học hàm số ở trung học phổ thông

.PDF
114
240
115

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Trường Sinh BẢNG BIẾN THIÊN TRONG DẠY HỌC HÀM SỐ Ở TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC Thành phố Hồ Chí Minh – 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Trường Sinh BẢNG BIẾN THIÊN TRONG DẠY HỌC HÀM SỐ Ở TRUNG HỌC PHỔ THÔNG Chuyên ngành : Lý luận và phương pháp dạy học môn Toán Mã số : 60 14 10 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS LÊ THỊ HOÀI CHÂU Thành phố Hồ Chí Minh – 2012 LỜI CẢM ƠN Trước tiên, tôi xin bày tỏ lòng biết ơn sâu sắc đến PGS.TS. Lê Thị Hoài Châu, người đã nhiệt tình hướng dẫn và giúp đỡ tôi hoàn thành luận văn này. Tôi xin chân thành cảm ơn đến quí thầy cô : PGS. TS. Lê Văn Tiến, PGS. TS. Lê Thị Hoài Châu, TS. Lê Thái Bảo Thiên Trung về những bài giảng didactic Toán sinh động và đầy ý nghĩa. Tôi xin chân thành cảm ơn PGS. TS. Claude Comiti và TS. Alain Birebent về những lời góp ý cho luận văn. Tôi xin chân thành cảm ơn Phòng Khoa Học Công Nghệ và Sau Đại Học, Khoa Toán - Trường Đại Học Sư Phạm Thành Phố Hồ Chí Minh đã tạo những điều kiện học tập tốt nhất cho chúng tôi. Tôi cũng xin chân thành cảm ơn : Ban Giám Hiệu cùng quí thầy cô đồng nghiệp khoa Khoa học Cơ bản trường Đại học Công Nghiệp Thực Phẩm nơi tôi công tác, đã tạo điều kiện thuận lợi, giúp đỡ và động viên tôi hoàn thành tốt khóa học. Ban Giám hiệu cùng các thầy, cô trong tổ toán Trường Cao đẳng Bách Việt, THPT Lê Quí Đôn, THPT Nguyễn Chí Thanh đã tạo điều kiện, giúp đỡ tôi tiến hành thực nghiệm. Tôi cũng xin gửi lời cảm ơn đến các bạn lớp didactic Toán khóa 20 vì những sẻ chia trong thời gian học tập. Cuối cùng, tôi hết lòng cảm ơn gia đình đã quan tâm và động viên suốt quá trình học tập của tôi. Nguyễn Trường Sinh MỤC LỤC Trang phụ bìa Lời cảm ơn Mục lục Bảng danh mục các chữ viết tắt Danh mục các bảng MỞ ĐẦU.............................................................................................................................. 1 Chương 1 PHÂN TÍCH KHÁI NIỆM VÀ VAI TRÒ CỦA BẢNG BIẾN THIÊN...... 5 1.1. Lý do tồn tại của BBT và những chướng ngại liên quan : .............................5 1.1.1. Về khái niệm hàm số.............................................................................6 1.1.2. Về khái niệm đồ thị ...............................................................................8 1.2. Vai trò của BBT trong dạy học hàm số : ......................................................22 * Kết luận ............................................................................................................. 24 Chương 2 MỐI QUAN HỆ THỂ CHẾ VỚI BẢNG BIẾN THIÊN ............................... 27 2.1. Bảng biến thiên trong chương trình toán lớp 10 ..........................................28 2.1.1. Thời điểm xuất hiện và ý nghĩa của BBT : ............................................ 28 * Kết luận ............................................................................................................. 35 2.1.2. Các tổ chức toán học xung quanh khái niệm BBT : ............................. 36 * Kết luận: ............................................................................................................ 44 2.2. Bảng biến thiên trong chương trình toán lớp 12 ..........................................45 2.2.1.Ứng dụng của bảng biến thiên : ............................................................... 45 2.2.2.Các tổ chức toán học liên quan đến bảng biến thiên : ........................... 58 * Kết luận ..................................................................................................................... 70 Chương 3 NGHIÊN CỨU THỰC NGHIỆM ...................................................................... 74 3.1. Mục tiêu của thực nghiệm ............................................................................74 3.2. Đối tượng và hình thức thực nghiệm : .........................................................74 3.3. Phân tích tiên nghiệm (a priori) : .................................................................75 3.3.1. Các bài toán thực nghiệm ......................................................................... 75 3.3.2. Phân tích chi tiết các bài toán .................................................................. 77 3.3.2.1. Các bài toán dành cho học sinh lớp 12 – Ban KHTN ............77 3.3.2.2. Các bài toán dành cho sinh viên đại học (Toán A1) ..............87 3.4. Phân tích hậu nghiệm (a posteriori) : ...........................................................93 3.4.1. Các bài toán dành cho học sinh lớp 12 ...............................................93 3.4.2. Các bài toán dành cho sinh viên năm nhất ..........................................97 KẾT LUẬN ..................................................................................................................... 100 TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC CÁC BẢNG Bảng 2.1. Bảng thống kê các KNV con của KNV T : “Lập BBT của hàm số” ........ 44 Bảng 2.2. Thống kê các bài tập thuộc KNV T1SBT và T2SBT .......................................... 60 Bảng 2.3. Thống kê các bài tập thuộc KNV T CT .......................................................... 62 Bảng 2.4. Thống kê các bài tập thuộc KNV TGT .......................................................... 65 Bảng 2.5. Thống kê các bài tập thuộc KNV TVDT ........................................................ 69 Bảng 2.6. So sánh vai trò của BBT với bảng giá trị và đồ thị của hàm số ................ 71 Bảng 2.7. Tóm tắt sự tiến triển của BBT ở cấp đại học và phổ thông ........................ 72 Bảng 3.1. Thống kê các lời giải bài 1 của học sinh....................................................... 94 Bảng 3.2. Thống kê các lời giải bài 2 của học sinh....................................................... 95 Bảng 3.3. Thống kê các lời giải bài 3 của học sinh....................................................... 96 Bảng 3.4. Thống kê các lời giải bài 1 của học sinh....................................................... 97 Bảng 3.5. Thống kê các lời giải bài 2 của học sinh....................................................... 98 Bảng 3.6. Thống kê các lời giải bài 3 của học sinh....................................................... 98 DANH MỤC VIẾT TẮT GK NC10 : Sách giáo khoa chương trình nâng cao lớp 10 hiện hành GK NC12 : Sách giáo khoa chương trình nâng cao lớp 12 hiện hành BT NC10 : Sách bài tập chương trình nâng cao lớp 10 hiện hành BT NC12 : Sách bài tập chương trình nâng cao lớp 12 hiện hành GV NC10 : Sách giáo viên chương trình nâng cao lớp 10 hiện hành GV NC12 : Sách giáo viên chương trình nâng cao lớp 12 hiện hành BBT : Bảng biến thiên KSHS : Khảo sát hàm số GTLN : Giá trị lớn nhất GTNN : Giá trị nhỏ nhất THPT : Trung học phổ thông KNV : kiểu nhiệm vụ MỞ ĐẦU 1. Những ghi nhận ban đầu và câu hỏi xuất phát KSHS là bài toán khá quen thuộc đối với học sinh phổ thông trung học. Bài toán này xuất hiện ngay từ năm học đầu tiên của chương trình THPT và còn được nghiên cứu liên tục trong những năm tiếp sau đó. Trong các đề thi tốt nghiệp THPT và thi tuyển vào đại học thì nó là câu bắt buộc phải có và luôn xuất hiện ở đầu. Điều đó cho thấy tầm quan trọng của KNV này trong chương trình môn toán ở trường phổ thông. BBT là công cụ hỗ trợ đắc lực cho vấn đề KSHS và các bài toán có liên quan đến hàm số. Chẳng hạn, học sinh có thể sử dụng BBT để khảo sát sự biến thiên, tìm GTLN, GTNN của hàm số, tìm m để phương trình có nghiệm, tìm miền giá trị của hàm số … Thực tế giảng dạy cho thấy học sinh gặp khó khăn khi sử dụng BBT trong giải toán. Chẳng hạn, với bài toán “Sử dụng bảng biến thiên tìm cực trị của hàm số x3 sau : f ( x ) = − m 2 x + 5 ”. Hầu hết học sinh không xét hết các trường hợp của 3 tham số m. Sau đây là bài giải của một học sinh lớp 12 : “Giải. Tập xác định : D =  Ta có : f ' ( x= ) x2 − m2 Từ đó : f '( x ) = 0⇔ x= −m hoặc x = m Bảng biến thiên : x −∞ f '( x ) f ( x) −∞ + −m 0 f ( −m ) − m 0 +∞ + +∞ f ( m) LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT Vậy hàm số đạt cực đại tại x = − m , f ( − m )= 2 3 m + 5 và đạt cực tiểu tại 3 2 − m3 + 5 ” x = m , f ( m) = 3 * Bình luận Đối với học sinh THPT, việc so sánh hai số thực là dễ dàng Tuy nhiên, so sánh hai giá trị có chứa tham số (số kí hiệu bằng chữ) thì học sinh gặp rất nhiều khó khăn. Vì vậy, việc so sánh để sắp thứ tự các điểm tới hạn trong BBT cũng gây ra không ít khó khăn cho học sinh. Hệ quả là học sinh thường cho đáp án sai hoặc không xét đầy đủ các trường hợp của tham số trong một số bài toán có liên quan đến việc sử dụng BBT. Trong bài giải trên, học sinh đã cho rằng m > − m với mọi m . Tuy nhiên điều này chỉ đúng khi m > 0 . Có thể nhận thấy em học sinh này đã không xét đầy đủ các trường hợp của tham số m. Cụ thể là cần xét thêm m < 0 và m = 0 . Tại sao học sinh phạm phải sai lầm này ? Còn những sai lầm nào khác ở học sinh khi sử dụng BBT trong giải toán không ? Những sai lầm đó có nguồn gốc từ đâu ? Từ những ghi nhận ban đầu này, chúng tôi đã quyết định lựa chọn chủ đề : “Bảng biến thiên trong dạy học hàm số ở THPT” làm đề tài luận văn thạc sĩ của mình. Mục tiêu của luận văn là làm rõ những vấn đề sau đây : - Khái niệm BBT được đưa vào như thế nào ở chương trình THPT ? Nhằm mục đích gì ? Có được định nghĩa rõ ràng không ? Những khái niệm toán học nào có mối liên hệ với BBT ? - Những dạng toán nào liên quan đến sử dụng BBT ? Chúng được phát triển ra sao qua các cấp lớp, bậc học ? Những sai lầm nào thường gặp ở học sinh khi giải quyết các bài toán gắn liền với khái niệm này ? Những sai lầm này là do đâu ? LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT - Nội dung và hình thức tổ chức các kiến thức gắn liền với khái niệm BBT trong chương trình và sách giáo khoa hiện hành (kết quả lựa chọn của hệ thống dạy học) ảnh hưởng gì đến việc học của học sinh về khái niệm BBT và việc giải quyết các dạng toán có liên quan đến khái niệm này ? 2. Phạm vi lí thuyết tham chiếu Các khái niệm về Lý thuyết nhân chủng học (như : tổ chức toán học, quan hệ thể chế và quan hệ cá nhân đối với một tri thức để phân tích mối quan hệ thể chế với khái niệm BBT) và khái niệm hợp đồng didactic được chúng tôi sử dụng để phục vụ cho nghiên cứu của mình. Hệ thống câu hỏi của chúng tôi xoay quanh những yếu tố một mặt là cho phép xác định quan hệ giữa thể chế I (thể chế dạy học toán ở THPT) và quan hệ cá nhân của học sinh với khái niệm BBT, mặt khác là những quy tắc của hợp đồng didactic liên quan đến BBT. Trong phạm vi lí thuyết này và từ các câu hỏi khởi đầu nêu trên, chúng tôi trình bày lại hệ thống câu hỏi nghiên cứu của luận văn như sau : Q 1 : BBT là gì ? Nó được đưa vào trong tình huống nào ở bậc đại học? Những kí hiệu trong BBT có liên quan đến những khái niệm toán học nào ? Có những chướng ngại nào liên quan đến việc lĩnh hội và sử dụng BBT ? Q 2 : Mối quan hệ thể chế với khái niệm BBT được xây dựng và tiến triển ra sao trong thể chế dạy học ở phổ thông ? Đặc trưng của những tổ chức toán học nào gắn liền với khái niệm BBT ? Chúng xuất hiện ra sao ? Q 3 : Những ràng buộc của thể chế dạy học có ảnh hưởng như thế nào đến mối quan hệ cá nhân của học sinh với khái niệm BBT ? Những quy tắc hành động, những quan niệm nào tạo ra các sai lầm của học sinh khi sử dụng BBT trong giải toán ? LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT 3. Mục đích và phương pháp nghiên cứu Để trả lời các câu hỏi nghiên cứu Q 1 , Q 2 , Q 3 và Q 4 được nêu ra ở mục 2, chúng tôi đã lựa chọn khung lý thuyết tham chiếu phù hợp và xác định những nhiệm vụ cần thực hiện sau : Trước tiên chúng tôi tham khảo một số giáo trình đại học và các luận văn Didactic Toán, sách giáo khoa toán phổ thông và một số tài liệu tham khảo để tìm hiểu cụ thể khái niệm BBT là gì ? Mục đích đưa vào khái niệm này để làm gì ? Có những chướng ngại gì trong việc lĩnh hội và sử dụng khái niệm này. Việc nghiên cứu này sẽ giúp chúng tôi hiểu được nguồn gốc của những chướng ngại khoa học luận gắn liền với BBT. Từ đó, chúng tôi dự đoán được những sai lầm chủ yếu mà học sinh thường phạm phải liên quan đến việc học khái niệm này. Những kết quả thu được cho phép chúng tôi trả lời câu hỏi Q 1 và được trình bày trong chương 1: “PHÂN TÍCH KHÁI NIỆM VÀ VAI TRÒ CỦA BẢNG BIẾN THIÊN” Để có được câu trả lời cho câu hỏi Q 2 và Q 3 , chúng tôi sẽ nghiên cứu mối quan hệ thể chế I với BBT, vạch rõ cuộc sống của BBT trong thể chế. Nghĩa là, chúng tôi sẽ chỉ ra sự tiến triển của BBT trong toàn bộ chương trình toán THPT, những mong đợi của thể chế, những quy tắc hợp đồng và những sai lầm chủ yếu của học sinh liên quan đến BBT. Tất cả phần này chúng tôi sẽ trình bày trong chương 2 : “MỐI QUAN HỆ THỂ CHẾ VỚI BẢNG BIẾN THIÊN”. Từ đó, chúng tôi sẽ đưa ra những giả thuyết nghiên cứu và hợp đồng didactic liên quan đến khái niệm BBT. Để kiểm chứng cho những giả thuyết nghiên cứu của mình, chúng tôi sẽ tiến hành hai thực nghiệm, một trên lớp 10 và một trên lớp 12. Chúng tôi sẽ trình bày phần này trong chương 3 : “NGHIÊN CỨU THỰC NGHIỆM” Trong phần kết luận, chúng tôi tóm tắt lại các kết quả đã nghiên cứu được và nêu ra một số hướng có thể nghiên cứu tiếp từ luận văn này. LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT Chương 1 PHÂN TÍCH KHÁI NIỆM VÀ VAI TRÒ CỦA BẢNG BIẾN THIÊN Trong chương này, chúng tôi sẽ tìm câu trả lời cho các câu hỏi nghiên cứu sau : Q 1 : BBT là gì ? Nó được đưa vào trong tình huống nào ở bậc đại học? Những kí hiệu trong BBT có liên quan đến những khái niệm toán học nào ? Có những chướng ngại nào liên quan đến việc lĩnh hội và sử dụng BBT ? 1.1. Lý do tồn tại của BBT và những chướng ngại liên quan : Mỗi BBT gắn liền với hai khái niệm quan trọng là hàm số và đồ thị hàm số. Do đó để nghiên cứu về BBT cần thiết phải bắt đầu từ việc tìm hiểu về hai khái niệm đó. Tiếp đến chúng tôi xác định mối quan hệ giữa BBT với hai khái niệm đó và đưa ra lý do tồn tại và ý nghĩa của BBT. Đồng thời xem xét có những chướng ngại nào liên quan việc hiểu và sử dụng BBT. Cụ thể chúng tôi sẽ cố gắng trả lời những câu hỏi sau : 1. Hai khái niệm hàm số và đồ thị có những đặc trưng cơ bản nào về mặt khoa học luận và sư phạm ? 2. BBT là gì ? Nó có vai trò và ý nghĩa thế nào đối với hai khái niệm trên ? Có những chướng ngại gì gây trở ngại cho việc hiểu và sử dụng BBT ? Kiểu sai lầm nào học sinh có thể gặp khi sử dụng BBT ? Để trả lời cho những câu hỏi nêu trên chúng tôi đã tham khảo một số tài liệu sau : 1. Lê Thị Hoài Châu (2002), “Lịch sử hình thành khái niệm hàm số”, Báo Toán học và Tuổi trẻ, (số 8/2002). [3] 2. Trần Anh Dũng (2005), Khái niệm liên tục một nghiên cứu khoa học luận và didatic, Luận văn thạc sĩ khoa học. [5] 3. Nguyễn Viết Đông (1998), Toán cao cấp tập 1, NXB giáo dục. [8] 4. Hoàng Quý, Nguyễn Văn Ban, Hoàng Chúng, Trần Văn Hạo, Lê Thị Thiên Hương (2010), Từ điển bách khoa phổ thông toán học 1, NXBGD. [17] LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT 5. Bùi Anh Tuấn (2007), Biểu diễn đồ thị hàm số và nghiên cứu đường cong qua phương trình của nó, Luận văn Thạc Sĩ. [22] 6. Margaret L.Lial (Fourth Edition, 1992), Finite Mathematics and Calculus with Applications, Harper Collins College Publishers. [25] 7. Finney Thomas (Second Edition, 1994), Calculus, Addison Wesley Publishing Company, New York. [26] 8. BLOCH, I. (2000) Un milieu graphique pour I’apprentissage de la notion de fonction au lycée, Petit x, no 58, 25-46. [27] 9. COMIN, E. (2005). Variables et fonctions, du collège au lycée : méprise dedactique ou quiproquo interinstitutionnel, Petit x, no 67, 33-61. [28] 10. http://homeomath.imingo.net/tabvar.htm. [29] 1.1.1. Về khái niệm hàm số Khái niệm hàm số đóng một vai trò quan trọng trong toán học. Đặc biệt nó là một trong những đối tượng nền tảng trong lĩnh vực nghiên cứu, phân tích toán học. Sự tiến triển lịch sử của khái niệm này thì phức tạp và đã được phân tích trong nhiều nghiên cứu. Vì vậy, chúng tôi sẽ không trở lại vấn đề này, nhưng ở đây chúng tôi sẽ đưa ra dẫn chứng một số tài liệu liên quan đến khái niệm hàm số và quan niệm về nó để xác định rõ hơn mục tiêu nghiên cứu của mình. Khái niệm hàm số được nêu trong Từ điển Bách khoa phổ thông toán học, [17-tr.324], như sau : “Hàm số là một trong các khái niệm cơ bản của toán học, biểu diễn sự phụ thuộc của những đại lượng biến thiên này đối với những đại lượng biến thiên khác. Từ “đại lượng” trong định nghĩa ấy của hàm số được hiểu với ý nghĩa rất rộng. Đó có thể là danh số, là số trừu tượng, là một vài số (tức là điểm trong không gian) và - nói chung - là phần tử của một tập hợp bất kì”. Như vậy, chính sự phụ thuộc giữa các đại lượng biến thiên đã xây dựng nên các khái niệm hàm số và biến số. Các khái niệm này khá trừu tượng, phức tạp và LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT tồn tại khắp nơi quanh ta như : Nhiệt độ của nước là đại lượng phụ thuộc vào điều kiện môi trường và khí hậu, hiệu điện thế giữa hai đầu dây dẫn là đại lượng phụ thuộc vào cường độ dòng điện đi qua dây dẫn, quãng đường đi của một vật rơi tự do là đại lượng phụ thuộc vào thời gian, diện tích hình tròn là đại lượng phụ thuộc vào vào bán kính của đường tròn đó. Trong trường hợp đơn giản, khi đại lượng là số thực, khái niệm “hàm số” được quyển tự điển nói trên, [17-tr.324], định nghĩa như sau : “Giả sử với mỗi số x của tập hợp cho trước E các số thực, có tương ứng một số y, kí hiệu là y = f ( x ) (đọc : y bằng ef của x). Như vậy, ta bảo rằng trong tập hợp E, đã cho hàm số y = f ( x ) ”. Khái niệm về hàm số được hình thức hóa bằng liên kết mỗi phần tử của tập hợp này với một phần tử duy nhất của tập hợp khác. Phương pháp tiến hành này khá mơ hồ, chẳng hạn như : không thể xác định được bản chất của biến số và hình thức liên kết giữa biến số với giá trị của hàm số như thế nào cả. Theo Comin (2005), phần lớn học sinh phổ thông chưa sẵn sàng tiếp nhận một cách dạy hình thức về khái niệm hàm số. Vậy, cách tiếp cận nào sẽ đem lại hiệu quả tốt nhất có thể cho việc dạy học về hàm số ? Ở thời kỳ toán học Babylon, người ta tìm thấy các bảng bình phương, lập phương và nghịch đảo của các số tự nhiên mà theo quan điểm toán học hiện đại thì những bảng này định nghĩa các hàm số từ tập  vào  . Các bảng này cung cấp một số giá trị của các hàm f (= n ) n2 , f = n) ( n ) n3 , f (= 1 , n ∈  . Chúng là những n hàm không liên tục. Trong đó, f ( n ) = n 2 và f ( n ) = n3 là những hàm tăng trên  , f (n) = 1 là hàm giảm trên  . Như vậy, dù chưa có khái niệm về hàm số ở thời kỳ n này nhưng khái niệm này đã tồn tại một cách không chính thức dưới dạng các bảng, và với góc nhìn của toán học hiện đại thì chúng là các bảng giá trị của hàm. Phạm vi của biến số được xác định rõ là tập hợp các số tự nhiên. Trường hợp mở rộng n ∈  , các bảng giá trị trên chỉ cung cấp một số giá trị hữu hạn, rời rạc và chưa thể hiện được sự biến đổi liên tục giữa các đại lượng trong hàm. LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT Lý do nêu ra vấn đề trên là do chúng tôi tìm thấy đoạn trích dẫn liên quan đến bảng giá trị của hàm trong [17-tr.326] như sau : “Trong phương pháp cho hàm bằng bảng số, mỗi trị của đối số được xếp tương ứng với trị của hàm. Phương pháp cho hàm này thường dùng trong các trường hợp mà miền xác định gồm một số hữu hạn trị số (bảng giá các mặt hàng, bảng kết quả xổ số, v.v.)”. Như vậy, đối với một hàm, một bảng giá trị đưa ra một mẫu các cặp giá trị được tạo thành bởi một giá trị của biến số với giá trị hàm tương ứng. Vì vậy, nó biểu hiện một phần (trừ trường hợp rất đặc biệt của một hàm chỉ gồm một tập hợp hữu hạn các cặp giá trị) của tương ứng giữa biến và ảnh của nó. Do đó, nó cung cấp cái nhìn hữu hạn cho cái gì đó (sự biến thiên liên tục) thường là vô hạn. Ngoài ra, một bảng giá trị không có lý do gì để chứa các giá trị đặc biệt như giá trị cực đại, giá trị cực tiểu. Trong nghĩa này, bảng giá trị biểu hiện hàm số theo một cách rất riêng và tùy tiện. Tóm lại, một bảng giá trị không cho phép xác định hàm số của nó. Trong công trình nghiên cứu của mình, Comin (2005) đã nêu lại khái niệm về hàm số của Leibniz (1646-1716), chữ “Hàm số” chỉ một mối quan hệ giữa các đại lượng biến đổi được liên kết với nhau theo một quy luật. Với cách tiếp cận này, hàm số là sự kết hợp của hai tập hợp được mô hình hóa bằng một đồ thị, loại bỏ sự gò bó giữa hai đại lượng. Vậy, liệu có thể xác định được hàm số từ đồ thị của nó ? 1.1.2. Về khái niệm đồ thị Khái niệm về đồ thị được trích từ [17-tr.356] như sau : “Đồ thị của một hàm là tập hợp các điểm của mặt phẳng có tọa độ vuông góc ( x, y ) trong đó y = f ( x ) là hàm của x trong miền xác định E của hàm. Ở đây y = f ( x ) là hàm của một biến x ” Phương pháp cho hàm số bằng đồ thị khá phổ biến và được sử dụng rộng rãi trong thực tiễn. Chẳng hạn, người ta thường nghiên cứu sự biến thiên của một đại lượng này theo một đại lượng khác từ nhữngđường cong ghi nhận được bằng các dụng cụ riêng. LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT Nói về ứng dụng của đồ thị, Tự điển bách khoa phổ thông Toán học (tập 1) trang 361 có viết : “Đồ thị của hàm thường được sử dụng để giải gần đúng các phương trình (thí dụ, f ( x ) = 0 ở các điểm x1 , x2 và x3 , x.h.13), các hệ phương trình và bất phương trình. Thí dụ, khi giải phương trình dạng f ( x ) = g ( x ) , người ta dựng đồ thị các hàm y = f ( x ) và y = g ( x ) . Hoành độ các giao điểm của hai đồ thị là nghiệm của phương trình (x.h.14). Các phần nào của trục Ox, mà đồ thị y = f ( x ) nằm cao hơn đồ thị y = g ( x ) , chính là nghiệm của bất đẳng thức f ( x ) > g ( x ) ; trên h.14, đó là các khoảng ( x1 , x2 ) và ( x3 ; +∞ ) .”. Tuy rằng chúng ta chỉ giải được gần đúng các phương trình và bất phương trình khi sử dụng đồ thị của các hàm số nhưng dẫu sao những kết quả có được cũng khá quan trọng. Hơn nữa đồ thị phản ánh trực quan dáng điệu định tính của hàm, và vì vậy nó được xem là phương tiện quan trọng để nghiên cứu hàm. Để vẽ đồ thị của hàm số, [8-tr.161] đưa ra quy trình sau : “Việc khảo sát hàm số thường theo trình tự sau đây : 1. Tìm tập xác định của f 2. Xét chiều biến thiên : tìm khoảng tăng, giảm của hàm số 3. Tìm cực trị (nếu có) 4. Xét khoảng lồi, lõm (nếu cần thiết), điểm uốn (nếu có) 5. Tìm tiệm cận (nếu có) 6. Lập bảng biến thiên 7. Vẽ đồ thị Trong nhiều trường hợp, để việc khảo sát được đơn giản, người ta còn chú ý phát hiện các đặc điểm của hàm số như tính chẵn lẻ, tuần hoàn.” Như vậy, để vẽ đồ thị của hàm số cần thực hiện các bước theo trình tự trên. Từ quy trình này, chúng tôi đặt ra những câu hỏi sau : BBT là gì ? Có được định nghĩa trước khi đưa ra quy trình khảo sát hàm số không ? Nó có vai trò gì trong quy trình này ? LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT Xem xét toàn bộ nội dung giáo trình [8], chúng tôi không tìm thấy một dấu hiệu nào về việc định nghĩa BBT cả. Đặc biệt hơn, việc lập BBT như thế nào và có ý nghĩa gì trong quy trình trên cũng không được đề cập. Điều này càng khiến chúng tôi băn khoăn hơn về vai trò của BBT trong việc dựng đồ thị của hàm số. Để tìm hiểu rõ hơn về vai trò của BBT, chúng tôi tham khảo thêm [17]. Để dựng đồ thị của hàm số, [17-tr.357] viết : “Để dựng đồ thị của hàm f ( x ) cho bằng giải tích (công thức), thường sử dụng các tính chất sau đây của nó : 1) Tìm miền xác định của hàm. 2) Trong miền xác định, tìm các khoảng trong đó hàm là liên tục, có đạo hàm bậc nhất, bậc hai. 3) Khảo sát dấu các đạo hàm, tìm các khoảng đồng biến và nghịch biến của hàm, các khoảng lồi và lõm, các điểm cực đại và cực tiểu cùng các điểm uốn. 4) Khảo sát dáng điệu của hàm khi đối số dần tới các điểm biên trong miền xác định, đặc biệt là tìm các giới hạn của hàm và các đường tiệm cận, nếu có. 5) Tìm trị của hàm tại các điểm cực đại, cự tiểu, tại các điểm uốn và thêm vài điểm khác nữa, theo mức độ chính xác cần phải đạt khi dựng đồ thị của hàm. Khi dựng đồ thị của hàm cần chú ý các tính chất đã khảo sát được ấy” Ở quy trình trên, không xuất hiện bước lập BBT trong việc dựng đồ thị của hàm số. Phải chăng khi dựng đồ thị không nhất thiết phải lập BBT ? Vậy [8] đưa vào bước lập BBT nhằm mục đích gì ? Liên quan đến khái niệm BBT, chúng tôi tìm được và lược dịch phần định nghĩa về BBT trong [30] như sau : “Định nghĩa : Một bảng biến thiên chỉ (cho biết) chiều biến thiên của một hàm số trên mỗi khoảng, tức là, hàm số hoặc tăng hoặc giảm hoặc không đổi (không tăng, không giảm).”. Rõ ràng, định nghĩa này không LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT cụ thể, dường như chỉ là nêu chức năng của BBT. Như vậy, với một BBT người ta có thể đọc được những thông tin gì chứa trong nó ? Nhằm xác định rõ hơn về chức năng và lý do tồn tại của BBT, chúng tôi xem xét ví dụ minh họa sau trong [8-tr.163] : “Để minh họa cho các bước khảo sát, ta xét hàm số : = f ( x) x3 x−a ( a > 0) … Từ các kết quả trên ta có bảng biến thiên sau đây : ” Qua quan sát, chúng tôi nhận thấy hầu hết những tính chất của hàm số khảo sát ở các bước trước đó được tóm tắt và thể hiện trong BBT. Cụ thể dòng thứ nhất là đặt thứ tự các điểm tới hạn (các điểm mà tại đó đạo hàm bằng không hoặc không xác định) tăng dần từ trái sang phải trên trục số , dòng thứ hai và thứ ba lần lượt thể hiện dấu của đạo hàm cấp một, đạo hàm cấp hai của hàm số trên các khoảng chia bởi các điểm tới hạn. Dòng cuối cùng thể hiện hàm số đồng biến (tương ứng f ' ( x ) > 0 ) trên một khoảng bằng một mũi tên đi lên từ trái sang phải và ngược lại, hàm số nghịch biến (tương ứng f ' ( x ) < 0 ) trên một khoảng bằng một mũi tên đi xuống từ trái sang phải, giới hạn của hàm số ở vô cực hoặc tại các điểm tới hạn, giá trị cực trị của hàm số. Như vậy, BBT là bảng tóm tắt một số tính chất của hàm số. Để hiểu rõ hơn chức năng của BBT, chúng tôi lược dịch luận án của Bloch (2000) về BBT như sau : “Bảng biến thiên chỉ có chức năng là một chuyển tiếp giữa hàm và trình bày đồ thị của nó. Theo truyền thống, đó là một công cụ để tóm tắt LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT (một loại tốc ký) nghiên cứu các dấu hiệu của đạo hàm, trước khi chuyển đến trình bày đồ thị..”. Như vậy, quan sát BBT có thể nhận biết dấu của đạo hàm trên các khoảng và sự biến thiên của hàm số qua các kí hiệu mũi tên. Do đó, bảng này thể hiện trực quan hình dáng đồ thị của nó, nên có nó việc dựng đồ thị sẽ dễ dàng hơn. Với vốn từ vựng thích hợp (các dấu cộng, trừ, các giá trị số, các mũi tên, …) hay một BBT, đối tượng hàm số được xác định bởi một đường cong. Đó là đồ thị tương thích với một BBT. Như vậy, ngoài việc lập lại ý tưởng của một hàm số được xác định bằng một đường cong, chúng tôi nhận thấy ở đây BBT có khả năng trở thành một đối tượng nghiên cứu. Dù sao nó được coi là một cách thể hiện (một phần nào) của hàm số. Trở lại vấn đề vẽ đồ thị của hàm số, [17-tr.357] có đoạn viết :“Để dựng được đồ thị của hàm số cần vẽ “ đường cong ” là tập hợp các điểm có tọa độ ( x, y ) liên hệ với nhau bởi hệ thức y = f ( x ) , x thuộc tập E. Nói một cách chặt chẽ, dựng đồ thị chính xác của một hàm là điều không thể làm được, bởi vì mọi hình ảnh hình học của điểm, đoạn thẳng, đường cong, .v.v. chỉ có thể vẽ gần đúng mà thôi. Vì vậy, hình vẽ thật ra cũng chỉ là phác họa của đồ thị. Nhưng nếu đường cong được vẽ đủ chính xác thì người ta cũng gọi là đồ thị của hàm số” Với phần trích dẫn trên, chúng ta khẳng định vẽ một đường cong đi qua chính xác vô hạn các điểm ( x, f ( x ) ) là điều không thể. Điều đó cũng có nghĩa là đường cong được vẽ dựa vào BBT không cho một đồ thị chính xác của hàm số. Người ta có thể chọn một cách vẽ đồ thị đơn giản như trong [5-tr.357] : “Phương pháp đơn giản nhất là dựng đồ thị của hàm theo từng điểm một. Cụ thể là : cho đối số một vài trị, tìm các trị tương ứng của hàm, đánh dấu các điểm tương ứng, sau đó vạch đường cong đều đi qua các điểm ấy. Bằng cách ấy, người ta đã vẽ, chẳng hạn, đủ loại đường cong thực nghiệm sau khi tiến hành một số thí nghiệm” Việc dựng đồ thị theo cách trên chính là sử dụng bảng giá trị của hàm số để vẽ đồ thị. Nếu đi từ một bảng giá trị, với bản chất là hữu hạn, sẽ có một số lượng vô LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT hạn hàm số có thể đáp ứng nó. Trong bối cảnh đồ thị, điều này cho phép có nhiều chọn lựa khác nhau để nối nhiều điểm được cho từ một bảng giá trị. Về mặt lý thuyết, nếu sự biến đổi là vô hạn, trong thực hành, vẽ đồ thị theo cách này chỉ có thể chính xác ở một số hữu hạn điểm đã cho, nhưng sẽ không thể hiện chính xác đồ thị, thậm chí là sai lệch hoàn toàn về sự biến thiên của hàm số. Bởi hàm số xác định, liên tục trong một khoảng nào đó thì biến thiên liên tục trên khoảng đó. Do đó, ta không thể kiểm soát hàm số tăng hay giảm như thế nào trong một khoảng giữa hai điểm được. Chẳng hạn, xét hàm số : y = 11x + 2 , có bảng giá trị là : 2 x3 − 1 x -3 -2 -1 0 1 2 3 y 0.56 1.18 3 -2 13 1.6 0.66 Nối các điểm được cho trong bảng giá trị trên sẽ cho ta một đồ thị không chính xác. Cụ thể, nếu dựa vào bảng giá trị trên để vẽ đồ thị thì hàm số giảm (đồ thị đi xuống) trong khoảng ( −1;0 ) . Nhưng thực tế đồ thị hàm số lại không hoàn toàn đi xuống trong khoảng ( −1;0 ) . Đồ thị của hàm số y = 11x + 2 2 x3 − 1 So với bảng giá trị, việc dựa vào BBT để xây dựng đường cong biểu diễn cho đồ thị của hàm số sẽ thể hiện chính xác sự đơn điệu của nó trên các khoảng. Tuy nhiên, việc thực hành vẽ một đường cong biểu diễn một số điểm cho trong bảng giá trị là phổ biến trong nhiều lĩnh vực mà chương trình dạy toán rất khó gạt LVThS. Nguyễn Trường Sinh – Bảng biến thiên trong dạy học hàm số ở THPT
- Xem thêm -

Tài liệu liên quan