Đăng ký Đăng nhập
Trang chủ NHÓM CON CỦA NHÓM TUYẾN TÍNH XẠ ẢNH UNIMODULAR BẬC HAI TRÊN TRƯỜNG HỮU HẠN GỒM C...

Tài liệu NHÓM CON CỦA NHÓM TUYẾN TÍNH XẠ ẢNH UNIMODULAR BẬC HAI TRÊN TRƯỜNG HỮU HẠN GỒM CHÍN PHẦN TỬ

.PDF
34
381
88

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Minh Quân NHÓM CON CỦA NHÓM TUYẾN TÍNH XẠ ẢNH UNIMODULAR BẬC HAI TRÊN TRƯỜNG HỮU HẠN GỒM CHÍN PHẦN TỬ LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Minh Quân NHÓM CON CỦA NHÓM TUYẾN TÍNH XẠ ẢNH UNIMODULAR BẬC HAI TRÊN TRƯỜNG HỮU HẠN GỒM CHÍN PHẦN TỬ Chuyên ngành: Đại số và Lý thuyết số Mã số: 60 46 01 04 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. BÙI XUÂN HẢI Thành phố Hồ Chí Minh – 2014 LỜI CẢM ƠN Để hoàn thành quyển luận văn này, tôi không thể chỉ dựa vào những kiến thức đã được học tại trường, mà còn phải tự tìm hiểu, nghiên cứu; cùng với sự động viên giúp đỡ nhiệt tình của bạn bè, tập thể lớp Cao học Đại số và Lý thuyết số k22. Đặc biệt là sự giảng dạy và hướng dẫn tận tình của PGS.TS. Bùi Xuân Hải. Do đó, với tất cả lòng kính trọng và biết ơn , tôi xin gửi tới Thầy lời tri ân chân thành và sâu sắc của mình. Đồng thời tôi cũng xin gửi lời cảm ơn quý thầy cô bộ môn, Ban giám hiệu, phòng Sau đại học Trường Đại học Sư phạm Tp. Hồ Chí Minh đã tạo điều kiện thuận lợi trong suốt quá trình học tập và thực hiện luận văn của tôi. Tôi cũng không quên cảm ơn gia đình, người thân đã khuyến khích, động viên, giúp đỡ tôi cách này cách khác để tôi hoàn thành luận văn này. Sau cùng, dù đã cố gắng thực hiện và hoàn thành luận văn nhưng ắt sẽ không tránh khỏi những mặt thiếu sót. Rất mong nhận được ý kiến đóng góp chân thành của quý thầy cô và các bạn. TP. Hồ Chí Minh, ngày 14 tháng 02 năm 2014 Nguyễn Minh Quân 1 MỤC LỤC LỜI CẢM ƠN .............................................................................................................. 1 MỤC LỤC .................................................................................................................... 2 BẢNG KÝ HIỆU ......................................................................................................... 3 LỜI NÓI ĐẦU.............................................................................................................. 5 CHƯƠNG 1: MỘT SỐ KIẾN THỨC CHUẨN BỊ .................................................. 6 1.1. Các định lý Sylow .........................................................................................................6 1.2. Nhóm đơn ....................................................................................................................9 1.3. Định lý Poincare ........................................................................................................14 1.4. Cấp của một số nhóm tuyến tính trên trường hữu hạn ........................................16 CHƯƠNG 2: NHÓM CON CỦA NHÓM TUYẾN TÍNH XẠ ẢNH UNIMORDULAR BẬC HAI TRÊN TRƯỜNG HỮU HẠN GỒM CHÍN PHẦN TỬ ............................................................................................................................... 25 2.1. Các 3-nhóm con Sylow của G ...................................................................................25 2.2. Các 5-nhóm Sylow của G ..........................................................................................26 2.3. Các 2-nhóm con Sylow của G ...................................................................................26 2.4. Một số nhóm con khác của G...................................................................................28 KẾT LUẬN ................................................................................................................ 31 TÀI LIỆU THAM KHẢO ........................................................................................ 32 2 BẢNG KÝ HIỆU (a, b) – ước chung lớn nhất của hai số nguyên a, b k n – k là ước của n H ≤ G - H là nhóm con của G H  G – H là nhóm con chuẩn tắc của G 𝐾 ∗ − nhóm các phần tử khả nghịch của trường 𝐾 Fq - trường hữu hạn gồm q phần tử 𝑍(𝐺 ) − tâm của 𝐺 |𝐺 | − cấp của nhóm 𝐺 |𝑎| − cấp của phần tử 𝑎 𝑎−1 − phần tử nghịch đảo của phần tử 𝑎 𝐸 − ma trận đơn vị 𝑀𝑛 (𝐾) − vành ma trận vuông cấp 𝑛 trên 𝐾 𝐺𝐿(𝑛, 𝐾) − nhóm tuyến tính tổng quát bậc 𝑛 trên 𝐾 𝑆𝐿(𝑛, 𝐾) − nhóm tuyến tính đặc biệt bậc 𝑛 trên 𝐾 PSL(n,K) – nhóm tuyến tính xạ ảnh đặc biệt bậc n trên K 𝜏𝑣,𝜌 (𝑥) − phép co 𝑡𝑖𝑗 (𝑎) − phép co sơ cấp 𝑆𝑛 − nhóm đối xứng bậc 𝑛 𝐴𝑛 − nhóm thay phiên bậc 𝑛 3 〈𝑎〉 − nhóm con sinh bởi 𝑎 [𝐺: 𝐻 ] − chỉ số của H trong G 𝑦 𝑥 ≔ 𝑥 −1 𝑦𝑥 −phần tử liên hợp với 𝑦 trong một nhóm 𝐻 𝑥 ≔ 𝑥 −1 𝐻𝑥 −nhóm con liên hợp với 𝐻 𝑁𝐺 (𝐻 ) − chuẩn hóa tử của H trong 𝐺 𝐺 ⁄𝐻 − nhóm thương của G theo 𝐻 [𝑎, 𝑏] ≔ 𝑎−1 𝑏 −1 𝑎𝑏 −giao hoán tử của 𝑎 và 𝑏. 4 LỜI NÓI ĐẦU Lý thuyết nhóm là một chuyên ngành quan trọng trong ngành toán lý thuyết nói chung. Trong chương trình cao học của chuyên ngành Đại số và Lý thuyết số thì sự hiểu biết, nắm bắt khối kiến thức về Lý thuyết nhóm cũng là một điều hết sức cần thiết không phải chỉ cho bản thân môn học mà còn nhằm tạo điều kiện để nghhiên cứu những môn học khác nữa. Nhằm tìm hiểu sâu hơn các phương pháp nghiên cứu trong Lý thuyết nhóm, đặc biệt là trong Lý thuyết nhóm hữu hạn, tôi đã chọn cho mình đề tài luận văn cao học là “nhóm con của nhóm tuyến tính xạ unimodular bậc hai trên trường hữu hạn gồm chín phần tử”. Luận văn gồm hai chương: Chương 1: Một số kiến thức chuẩn bị Chương này chủ yếu trình bày về Định lý Sylow và một số ứng dụng; định nghĩa nhóm đơn và một số nhóm đơn; Định lý Poincare; Định lý Jordan-Dickson về tính đơn của các nhóm tuyến tính xạ ảnh đặc biệt và cấp của một số nhóm tuyến tính. Chương 2: Nhóm con của nhóm tuyến tính xạ ảnh unimodular bậc hai trên trường hữu hạn gồm chín phần tử Chương này chủ yếu nói về các 2-nhóm con Sylow; 3-nhóm con Sylow; 5-nhóm con Sylow của PSL(2,9) và một số nhóm con khác của PSL(2,9). 5 CHƯƠNG 1: MỘT SỐ KIẾN THỨC CHUẨN BỊ 1.1. Các định lý Sylow Định nghĩa 1.1.1 Cho G là một nhóm và p là một số nguyên tố. Khi đó: i) Nếu mọi phần tử của G đều có cấp là lũy thừa của p thì G được gọi là p-nhóm. ii) Nếu H là nhóm con của G và H là p-nhóm thì ta nói H là p-nhóm con của G. iii) Một p-nhóm con tối đại trong G được gọi là p-nhóm con Sylow của G. Tính chất 1.1.2: Nếu H  G thì G là p-nhóm khi và chỉ khi H và G/H là p-nhóm. Chứng minh: Nếu G là p-nhóm thì dễ thấy các nhóm con H và G/H là p-nhóm. Ngược lại, giả sử H và G/H là p-nhóm, lấy g ∈ G thì g p ∈ H , với số n nào đó. Khi đó, với số r n nào đó thì g p n+r = e suy ra g = p s . Vậy G là p-nhóm. Tính chất 1.1.3: Cho H là nhóm con của G, p là số nguyên tố, P và Q là hai p-nhóm con Sylow phân biệt của H, P* ⊃ P, Q* ⊃ Q và P* , Q* là các p-nhóm con Sylow của G thì P* ≠ Q* . Chứng minh. Giả sử P* = Q* thì P, Q là p-nhóm con của H và P < P, Q , là điều mâu thuẫn. Vậy P* ≠ Q* . Ta gọi n p (G ) là số các p-nhóm con Sylow và Syl p (G ) là tập hợp các p-nhóm con Sylow của G. Tính chất 1.1.4: Nếu H là nhóm con của G và p là số nguyên tố thì n p ( H ) ≤ n p (G ). Chứng minh. 6 Gọi P ∈ Syl p ( H ) thì tồn tại P* ∈ Syl p (G ) để P* ⊃ P . Theo Tính chất 1.1.3 ta suy ra n p ( H ) ≤ n p (G ). Định lý 1.1.5: (Định lý Sylow 1) Giả sử G = p m k với p là số nguyên tố và ( p, k ) = 1. Khi đó với mọi 1 ≤ r ≤ m , tồn tại trong G một nhóm con có cấp p r . Nói riêng, tồn tại trong G các p − nhóm con Sylow. Định lý 1.1.6: (Định lý Sylow 2) Giả sử G là một nhóm hữu hạn và p là một ước nguyên tố của G . Khi đó: Mọi p -nhóm con H của G đều nằm trong p -nhóm con Sylow nào đó của i) G. ii) Tất cả các p -nhóm con Sylow của G đều liên hợp với nhau. iii) Nếu r là số các p -nhóm con Sylow của G thì r ≡ 1 (modp). Đinh lý 1.1.7: Giả sử G là một nhóm hữu hạn và P là một p-nhóm con Sylow của G. Khi đó: i) P là một p-nhóm con Sylow duy nhất của G khi và chỉ khi P chuẩn tắc trong G. ii) [G: NG(P)] = np(G). Định lý 1.1.8 Cho nhóm G có cấp pq, với p, q là hai số nguyên tố. Khi đó i) Nếu 𝑝 = 𝑞 thì G là nhóm aben. Hơn nữa, G đẳng cấu với 𝑍𝑝2 nếu G chứa phần tử cấp 𝑝2 và đẳng cấu với 𝑍𝑝 × 𝑍𝑝 nếu G không chứa phần tử cấp 𝑝2 . ii) Nếu 𝑝 ≠ 𝑞 thì G không là nhóm đơn. Hơn nữa, nếu q ≠ 1 (mod p) thì G có p – nhóm con Sylow chuẩn tắc. Trong trường hợp này G là nhóm cyclic. Chứng minh. i) Với p = q, G là nhóm aben. Thật vậy, gọi 𝑍(𝐺 ) = {𝑎 ∈ 𝐺: 𝑎𝑥 = 𝑥𝑎, ∀𝑥 ∈ 𝐺} là tâm của G và C(a) = {x∈G: xa = ax}. Trước hết ta chứng minh công thức: |𝐺 | = 7 |𝑍(𝐺)| + ∑𝑚 𝑖=1[𝐺: 𝐶(𝑥𝑖 )], trong đó {xi}i∈Ilà các phần tử không nằm trong tâm. Xét tác động * : G×G→G, x*g = xgx-1, ∀x, g∈G của nhóm G lên tập G. Theo công thức = G Z (G ) + ∑ [G : Gx ] . Mặt khác: phân tích thành quỹ đạo, ta có: i∈I i xi } {x ∈ G : xxi x −1 == xi } {x ∈ G : xxi = xi x} = C ( xi ) {x ∈ G : x * xi == Gxi =  G  xi ∈ Z (G ) ⇔ C ( xi ) = Như vậy, ta vừa chứng minh được |𝐺 | = |𝑍(𝐺)| + ∑𝑚 𝑖=1[𝐺: 𝐶(𝑥𝑖 )], trong đó {xi}i∈I là các phần tử không nằm trong tâm. Suy ra |𝑍(𝐺)| = |𝐺 | − ∑𝑚 𝑖=1[𝐺: 𝐶(𝑥𝑖 )], do đó |𝑍(𝐺 )| chia hết cho p . Mặt khác, 𝑍(𝐺 ) ≠ ∅ nên |𝑍(𝐺 )| là ước của p2. Khi đó |𝑍(𝐺 )| = 𝑝 hoặc |𝑍(𝐺 )| = 𝑝2 . Nếu |𝑍(𝐺 )| = 𝑝 thì ta xét nhóm thương 𝐺/𝑍(𝐺), ta có |𝐺/𝑍(𝐺)| = 𝑝, suy ra 𝐺/𝑍(𝐺) =< 𝑥𝑍(𝐺) >. Mặt khác |𝑍(𝐺 )| = 𝑝 nên 𝑍(𝐺 ) =< 𝑦 >, do đó mỗi phần tử của G có dạng 𝑔 = 𝑥 𝑢 𝑦 𝑣 . Do tính giao hoán của x và y nên G giao hoán. Còn nếu |𝑍(𝐺 )| = 𝑝2 thì dễ thấy 𝑍(𝐺 ) = 𝐺 nên G giao hoán. Vậy, G đẳng cấu với Z p 2 nếu G chứa phần tử cấp p2 và đẳng cấu với 𝑍𝑝 × 𝑍𝑝 nếu G không chứa phần tử cấp p2. ii) Giả sử p < q. Theo Định lý Sylow, tồn tại các nhóm con A, B của G sao cho |𝐴| = 𝑝 và |𝐵| = 𝑞 . Hơn nữa, A chính là một p – nhóm con Sylow của G, B chính là một q – nhóm con Sylow của G. Mà mọi nhóm hữu hạn có cấp nguyên tố đều là = A nhóm cyclic, nên ta có thể xem = a ;B b với a, b ∈ G , cấp của a là p, cấp của b là q. Gọi n p là số các p – nhóm con Sylow của G, nq là số các q – nhóm Sylow của G. Ta có nq = 1 + kq, nq | p (do nq |pq và (nq,q) = 1) (theo Định lý Sylow) và p < q nên nq = 1 Khi đó: B  G . Vậy G không là nhóm đơn. Tương tự n p = 1 + kp, n p | q . Khi đó, ta có hai trường hợp. Nếu 𝑛𝑝 = 1 thì A là nhóm con chuẩn tắc của G. Ta sẽ chứng minh ab có cấp là pq. Thật vậy, ta có A∩ B = {e} (do p và q nguyên tố cùng nhau) ,mà aba −1b −1 ∈ A ∩ B (do A và B là các nhóm con chuẩn tắc của G) nên ab = ba . Khi đó, do cấp của a và b nguyên tố cùng nhau nên ab có cấp là pq. Như vậy 𝐺 = 〈𝑎𝑏〉 = 𝑍𝑝𝑞 (do G có cấp là pq). Trong trường 8 hợp n p = q , G không phải là nhóm Abel. Ta có tập tích AB là một nhóm con của G, −1 −1 b1 )( a2b2 ) a= bởi vì ( a1= 1 ( b1b2 ) a2 −1 ( a a )( a b b −1 1 2 −1 −1 2 1 2 2 a ) ∈ AB (do B  G ). Mặt khác AB  pq , mà AB ⊂ G nên 0 ≤ AB ≤ pq , suy ra AB = pq . Do đó G = AB. Vậy, G không là nhóm đơn do G có q- nhóm con Sylow chuẩn tắc. Nếu q ≡/ 1( mod p ) thì G có một p-nhóm con Sylow chuẩn tắc. Trong trường hợp này G là nhóm cyclic. Định lý 1.1.9: Cho P ∈ Syl p (G ) , nếu x, y là hai phần tử của Z(P) liên hợp trong G thì chúng liên hợp trong N G ( P). Chứng minh. Tồn tại u ∈ G để y = xu . Từ x ∈ Z ( P ) , y ∈ Z ( P u ) thì P, P u là nhóm con Sylow của Z ({ y}) . Khi đó n p ( Z ({ y}) ) hữu hạn, theo Định lý Sylow tồn tại z ∈ Z ( y ) để uz z y= y. P uz = P , suy ra uz ∈ N G ( P) và x= 1.2. Nhóm đơn Định nghĩa 1.2.1: Nhóm G được gọi là nhóm đơn nếu G không có nhóm con chuẩn tắc nào khác ngoài {1} và chính nó. Định lý 1.2.2: Cho G là nhóm đơn có cấp n và p là ước nguyên tố của n. Khi đó, số các p– nhóm con Sylow của G nhiều hơn 1. Chứng minh. Giả sử P là p – nhóm con Sylow duy nhất của G. Theo chứng minh 1.1.9, [𝐺: 𝐺𝑃 ] = 𝑛𝑝 = 1, hay 𝐺 = 𝐺𝑃 , do đó 𝑥𝑃𝑥 −1 = 𝑃 với mọi 𝑥 ∈ 𝐺 . Như vậy P phải là nhóm con chuẩn tắc thực sự của G, điều này mâu thuẫn với giả thiết G là nhóm đơn. Do đó số các p– nhóm con Sylow của G phải nhiều hơn 1. Định lý 1.2.3. Cho G là nhóm cấp p2q, trong đó p, q là các số nguyên tố phân biệt. Khi đó G không là nhóm đơn và G có p- nhóm con Sylow chuẩn tắc hoặc G có qnhóm con Sylow chuẩn tắc. 9 Chứng minh. Gọi np,nq lần lượt là số các p- nhóm con Sylow và số các q- nhóm con Sylow. Giả sử G không có p- nhóm con Sylow chuẩn tắc và q- nhóm con Sylow chuẩn tắc. Khi đó np> 1 và nq> 1. Ta có, nq là ước của p2q và nq nguyên tố cùng nhau với q. Vì thế nq = p2 hoặc nq = p. Ta xét hai trường hợp: Trường hợp nq = p2, chú ý rằng nếu Q là q- nhóm con Sylow thì Q có cấp q và do đó x có cấp q với mọi e ≠ x Q. Vì thế, mỗi q-nhóm con Sylowchứa đúng q - 1 phần tử cấp q. Dễ thấy hai q- nhóm con Sylow tuỳ ý hoặc là bằng nhau, hoặc có giao là nhóm con tầm thường. Do đó số phần tử có cấp q của G là nq(q - 1). Gọi L là tập các phần tử của G không có cấp q. Ta có: |L|= p2q - nq(q - 1) = p2q - p2(q - 1) = p2. Giả sử P là một p- nhóm con Sylow. Khi đó cấp của P là p2 và vì thế tất cả p2 phần tử của P đều không có cấp q. Suy ra P = L. Do đó G chỉ có duy nhất một p- nhóm con Sylow, tức là np= 1, vô lí. Trường hợp nq = p. Theo Định lí Sylow, nq≡ 1(mod q), vì thế p ≡1(mod q). Suy ra p > q. Ta có, nplà ước của p2q và nguyên tố cùng nhau với p, vì thế np = q. Theo Định lí Sylow, np≡ 1(mod p), do đó q ≡ 1(mod p). Vì thế q > p, vô lí. Định lý 1.2.4: Mọi nhóm cấp pqr (p, q, r là các số nguyên tố đôi một khác nhau) không là nhóm đơn. Chứng minh. Giả sử p < q < r . Lấy G là nhóm cấp pqr . Giả sử G là nhóm đơn. Đặt n p , nq , nr lần lượt là số các p- nhóm con Sylow, q- nhóm con Sylow và r- nhóm con Sylow. Do G là nhóm đơn nên G không có nhóm con chuẩn tắc thực sự. Theo 1.2.2, n p > 1, nq > 1, nr > 1 . Theo Định lí Sylow, ta có n p | qr , kết hợp với n p > 1 ta được n p = q , hoặc n p = r , hoặc n p = qr . Mà q< r nên n p ≥ q . Mặt khác, nq = pr và n p ≡ 1(mod q ) , kết hợp với nq > 1, p < q < r ta suy ra nq = r hoặc nq = pr . Vậy nq ≥ r . Hơn nữa, nr | pq và nr ≡ 1 (mod r), kết hợp với nr > 1, p < q < r , ta suy ra nr = pq . 10 Khi đó, số phần tử cấp r trong G là nr ( r − 1= ) pq ( r − 1) ; số phần tử cấp q trong G là nq ( q − 1) ≥ r ( q − 1) ; số phần tử cấp p trong G là n p ( p − 1) ≥ q ( p − 1) . Suy ra G ≥ pq ( r − 1) + q ( p − 1) + r ( q − 1) > pqr , điều này mâu thuẫn. Vậy G không là nhóm đơn. Định lý 1.2.5: Mọi nhóm cấp p n đều không là nhóm đơn với mọi n > 1. Chứng minh. Lấy G là nhóm cấp p n . Giả sử G là nhóm đơn. Theo Định lí Sylow, G có nhóm con H cấp p n−1 , [G : H ] = p . Khi đó, G | p ! nên p n | p ! , suy ra n = 1 . Điều này mâu thuẫn với giả thiết. Vậy G không là nhóm đơn. Định lý 1.2.6: Các nhóm cấp 2𝑛 . 3 (𝑛 ≥ 2) không là nhóm đơn. Chứng minh. Dùng phản chứng , giả sử G là nhóm đơn có cấp 2𝑛 . 3 (𝑛 ≥ 2) thì n2 > 1 nhưng theo Định lý Sylow, 𝑛2 3 và n2 ≡ 1(mod 2) suy ra n2 = 3 ⇒ ∃ H ≤ G, [G:H] = n2 = 3. Khi đó, G3! = 6 ⇒ 2n-11 (vô lý vì n – 1 ≥ 2). Định nghĩa 1.2.7: Cho M là tập. Khi đó kí hiệu Sym(M) là nhóm đối xứng trên tập M. Định nghĩa 1.2.8: Cho S ⊂ Sym( M ) và a ∈ M . Khi đó kí hiệu y (a ) khi y (a ) ≠ a, y ∈ S . y (= a ) a, y ∈ S   (π { y y ∈ S }) ( a ) =  a khi Ta nói π { y y ∈ S } là tích hình thức các phần tử của S và viết tắt là π y khi không có sự hiểu lầm. Định nghĩa 1.2.9: Cho G là một nhóm, H là nhóm con chỉ số n và x1 ,..., xn ∈ G sao cho G =∪{ xi H 1 ≤ i ≤ n} . Lấy y ∈ G sao cho y xi = x A(i ) hi , trong đó hi ∈ H và A là 11 hàm đi từ {1,...,n} vào chính nó. Ta định nghĩa phép biến đổi T đi từ G vào H sao cho T ( y ) = (π hi )[H , H ] . Cho G là một nhóm, H là nhóm con có chỉ số hữu hạn của G và S là tập con của G. ∪{ xH x ∈ S } , S hữu hạn, y ∈ G và T là phép biến đổi từ G Định lý 1.2.10: Nếu G = vào H, thì có tập con S ' = { x1 ,..., xr } của S và ni ∈ N sao cho ( ) T ( y ) π xi−1 y ni= xi [H,H], ∑ ni = [G : H ] và ni nhỏ nhất để xi−1 y ni xi ∈ H . Chứng minh. Tồn tại A ∈ Sym( S ) sao cho với mọi= x ∈ S , yx ( A( x))hx , hx ∈ H . Gọi ( x ,..., x ) là chu trình bất kỳ của A. Khi đó i1 im = y xi1 xi2 h= x= xi1 him ; i1 ,..., y xim −1 im him −1 , y xim xi−1 1= y m xi1 him ...hi1 ∈ H . = xi−1 1 y r xi1 xi−1 1 xir +1 hir ...hi1 ∉ H , sao cho m nhỏ nhất. Do Tuy nhiên, nếu r < m thì định nghĩa của phép biến đổi, T ( y ) là tích của [H,H] và các phần tử trong tất cả các chu trình của A. Định lý được chứng minh. Định lý 1.2.11: (Định lý Burnside) Cho G là một nhóm hữu hạn, P là p -nhóm con Sylow của G và NG ( P) = CG ( P). Khi đó P có phần bù chuẩn tắc trong G (tức là tồn tại nhóm K chuẩn tắc trong G và K  P = {1} sao cho G = KP ). Nói riêng G không là nhóm đơn. Chứng minh. Ta có N G ( P) = CG ( P) , P ∈ N G ( P) và P là nhóm aben. Gọi T là phép biến đổi từ G vào P. Giả sử G = ∪{ xP x ∈ S } và y ∈ P \ {e} . Theo Định lý 1.2.10, có tập con S ' của S sao cho 12 { } [G : P ] và x −1 y nx x ∈ P . Theo Định lý 1.1.9 tồn tại = T ( y ) π x −1 y nx x x ∈ S ' với ∑ nx = z ∈ N G ( P) để z −1 y nx z = x −1 y nx x . Vì N G ( P) = CG ( P) nên x −1 y nx x = y nx . Do đó, từ ( y) ([G : P ], p ) = 1 suy ra T= ∑n π= y n y= y[G:P] ≠ e. x x Do đó Ker(T ) ∩ P = E. Suy ra PT = P , G / Ker(T ) ≅ P và G = P . Ker(T ) . Từ đó suy ra G = Ker(T ) P và Ker(T) là phần bù chuẩn tắc của P. Định lý 1.2.12: Nếu G là nhóm đơn có cấp pm>p với p là số nguyên tố và không là ước của m, P là p-nhóm con Sylow của G thì CG ( P) < N G ( P) < G và [N G ( P) : CG ( P ) ] ( p − 1) . Chứng minh. Do G là nhóm đơn nên N G ( P) < G . Theo Định lý Burnside thì CG ( P) < N G ( P) . Khi đó N G ( P) / CG ( P) đẳng cấu với nhóm con của Aut(P), mà Aut(P) là nhóm cyclic cấp p-1, nên [ N G ( P) : CG ( P) ] ( p − 1) . Định lý 1.2.13: Nếu G là nhóm hữu hạn, p là số nguyên tố, i∈ N và np không đồng dư với 1 modun pi thì tồn tại hai nhóm con p-Sylow phân biệt H và K sao cho [H : H ∩ K ] < p . i Chứng minh. Gọi H ∈ Syl p (G ) . Khi đó ta phân chia Syl p (G ) vào các lớp tương đương với M Lh , h ∈ H . Số các lớp tương đương Cl '( L) là L  M khi và chỉ khi = [ H : H ∩ NG ( L)] =[ H : H ∩ L ] . Giả sử [ H : H ∩ K ] ≥ p , thì tất cả các Cl '( L) ngoại i trừ Cl '( H ) đều có p j , j ≥ i số. Do đó có n p =1 + p j1 + ... + p jr ≡ 1(mod p i ) . Điều này mâu thuẫn. Vậy [ H : H ∩ K ] < p i . 13 1.3. Định lý Poincare Định nghĩa 1.3.1: Cho G là một nhóm và H là nhóm con của G. Khi đó ta ký hiệu H G := ∩ gHg −1 . g∈G Mệnh đề 1.3.2: H G là nhóm con chuẩn tắc lớn nhất của G nằm trong H. Chứng minh. Dễ thấy H G là nhóm con của G. Hơn nữa, H G là nhóm con chuẩn tắc của G. Thật vậy, với mọi x ∈ G ta luôn có xH G x −1 = x( ∩ gHg −1 ) x −1 = ∩ xgH ( xg ) −1 = HG . g∈G g∈G Mặt khác, giả sử K là nhóm con của H và K chuẩn tắc trong G, ta chứng minh K chứa trong H G . Thật vậy, do K  G và K ≤ H nên= K gKg −1 ⊆ gHg −1 , ∀g ∈ G . Do đó K ⊆ ∩ gHg −1 =H G . g∈G Định lý 1.3.3: Cho G là một nhóm. Giả sử rằng G có nhóm con H chỉ số n>1. Khi đó tồn tại một đồng cấu ρ : G → Sn sao cho kerρ ≤ H . Chứng minh. Gọi X là tập hợp tất cả các lớp kề trái của G theo nhóm con H và lấy a ∈ G. Ta định nghĩa hàm ρa : X → X gH  agH , ∀g ∈ G Dễ dàng kiểm tra được mỗi ρ a là một hoán vị của X ( nghịch đảo của nó là ρ a −1 ) và ρ : G → SX a  ρa là đồng cấu. Mà S X ≅ Sn nên ta có đồng cấu 14 ρ : G → Sn a  ρa Nếu a ∈ Kerρ thì agH= gH , ∀g ∈ G. Nói riêng aH = H nên a ∈ H . Do đó Kerρ ≤ H . Hệ quả 1.3.4: Giả sử ρ : G → Sn là ánh xạ được xác định trong Định lý 1.3.3. Khi đó, ta có i) H G = Ker ρ ii) G HG có thể nhúng vào trong Sn. Chứng minh. Id X } i) Ta có Ker ρ = {a ∈ G ρa = Với mọi a ∈ Kerρ thì ρ a = Id X ⇔ ρ a ( gH ) = gH , ∀gH ∈ X gH ⇔ agH = ⇒ g −1ag ∈ H ⇔ a ∈ gHg −1 , ∀g ∈ G ⇒ a ∈ HG . Ngược lại, nếu a ∈ H G thì a ∈ gHg −1 , ∀g ∈ G . Từ đó suy ra agH= gH , ∀g ∈ G nên a ∈ Kerρ . Vậy H G = Ker ρ . ii) Theo i) ta có H G = Ker ρ . Khi đó G G HG Kerρ ≅ Im ρ nên G HG ≅ Im ρ ⊆ Sn . Vậy có thể nhúng vào trong Sn. Định lý 1.3.5: (Định lý Poincare) Nếu G là nhóm đơn và H là nhóm con chỉ số n>1 trong G thì G nhúng được vào Sn . Chứng minh. 15 Do H G  G và G là nhóm đơn nên H G = {1} . Từ đó, do Hệ quả 1.3.4 suy ra, G nhúng được vào Sn. Hệ quả 1.3.6: Nếu G là nhóm đơn có nhóm con chỉ số n > 1 thì cấp của G là ước của n!. 1.4. Cấp của một số nhóm tuyến tính trên trường hữu hạn Cho K là một vành chia, V là một không gian vectơ m-chiều trên K. Khi đó ta định nghĩa: Định nghĩa 1.4.1: Nhóm tuyến tính tổng quát 𝐺𝐿(𝑉) là nhóm tất cả ánh xạ tuyến tính không suy biến trên V. Một ma trận (hoặc phép biến đổi tuyến tính) có định thức 1 được gọi là unimodular. Nhóm tuyến tính đặc biệt 𝑆𝐿(𝑉) là nhóm con của 𝐺𝐿(𝑉) gồm tất cả các phép biến đổi unimodular. Ký hiệu Z(V) gồm tất cả các phép biến đổi vô hướng, 𝑆𝑍(𝑉) gồm tất cả các phép biến đổi vô hướng unimodular. Khi đó ta định nghĩa Nhóm tuyến tính xạ ảnh tổng quát 𝑃𝐺𝐿(𝑉) = 𝐺𝐿(𝑉)/𝑍(𝑉), Nhóm tuyến tính xạ ảnh đặc biệt 𝑃𝑆𝐿(𝑉) = 𝑆𝐿(𝑉)/𝑆𝑍(𝑉), Chọn một cơ sở được sắp {e1 ,..., en } của V, khi đó mỗi 𝑇 ∈ 𝐺𝐿(𝑉) xác định một ma trận, trong đó 𝑇𝑒𝑗 = ∑𝑖 𝛼𝑖𝑗 𝑒𝑖 (cột thứ j của A gồm các tọa độ của 𝑇𝑒𝑗 ). Ta có định nghĩa: Định nghĩa 1.4.2: Nhóm tuyến tính tổng quát bậc n trên K 𝐺𝐿(𝑛, 𝐾) = {�𝑎𝑖𝑗 � ∈ 𝑀𝑛 (𝐾), 𝑑𝑒𝑡�𝑎𝑖𝑗 � ≠ 0}. Nhóm tuyến tính đặc biệt bậc n trên K 𝑆𝐿(𝑛, 𝐾) = {�𝑎𝑖𝑗 � ∈ 𝑀𝑛 (𝐾), 𝑑𝑒𝑡�𝑎𝑖𝑗 � = 1} Nhóm tuyến tính xạ ảnh tổng quát 𝑃𝐺𝐿(𝑛, 𝐾) = 𝐺𝐿(𝑛, 𝐾)/𝑍(𝑛, 𝐾). 16 Nhóm tuyến tính xạ ảnh đặc biệt bậc n trên K 𝑃𝑆𝐿(𝑛, 𝐾) = 𝑆𝐿(𝑛, 𝐾)/𝑆𝑍(𝑛, 𝐾). Trong đó 𝑍(𝑛, 𝐾) = {𝛼𝐸 ∈ 𝑀𝑛 (𝐾), 𝛼 ≠ 0} 𝑆𝑍(𝑛, 𝐾) = {𝛼𝐸 ∈ 𝑀𝑛 (𝐾), 𝛼 𝑛 = 1} Nếu K = F (q ) là trường hữu hạn với 𝑞 = 𝑝𝑛 phần tử thì ta có thể thay các ký hiệu 𝐺𝐿(𝑛, 𝐾), 𝑆𝐿(𝑛, 𝐾), 𝑃𝐺𝐿(𝑛, 𝐾), 𝑃𝑆𝐿(𝑛, 𝐾) lần lượt là 𝐺𝐿 (𝑛, 𝑞), 𝑆𝐿(𝑛, 𝑞), 𝑃𝐺𝐿(𝑛, 𝑞), 𝑃𝑆𝐿(𝑛, 𝑞). Định nghĩa 1.4.3. Hiển nhiên 𝐺𝐿(𝑉) ≅ 𝐺𝐿(𝑛, 𝐾) và S𝐿(𝑉) ≅ 𝑆𝐿(𝑛, 𝐾). Xét không gian vec tơ V trên K và V* là không gian đối ngẫu của V. Với các phần tử 𝑣 ∈ 𝑉 và 𝜌 ∈ 𝑉 ∗ thỏa 𝜌(𝑣 ) = 0, ánh xạ 𝜏𝑣,𝜌 (𝑥) = 𝑥 + 𝑣𝜌(𝑥), ∀𝑥 ∈ 𝑉 là một phép biến đổi tuyến tính khả nghịch trong không gian vec tơ V và được gọi là một phép co. Hiển nhiên, nếu 𝜏 là phép co thì 𝜏 −1 cũng là phép co. Cho 0 ≠ 𝑎 𝜖 𝐾 và 𝑖 ≠ 𝑗 là các số nguyên 1 < 𝑖, 𝑗 < 𝑛, một phép co sơ cấp 𝑡𝑖𝑗 (𝑎) là một ma trận cấp 𝑛 × 𝑛 có dạng 1 + 𝑎𝐸𝑖𝑗 . Phép co sơ cấp chỉ khác ma trận đơn vị là a ở vị trí thứ (i, j). Các phép co sơ cấp nằm trong 𝑆𝐿(𝑛, 𝐾) và có vai trò tương tự như các 3- chu trình trong 𝐴𝑛 . Tầm quan trọng của chúng là do phép nhân trái của một ma trận với phép co sơ cấp là cộng a lần dòng thứ j vào dòng thứ i, vì thế được gọi là phép toán dòng. Định lý 1.4.4. Với 𝑛 > 1, 𝑆𝐿(𝑛, 𝐾) được sinh bởi các phép co sơ cấp. Chứng minh. Cho 𝐴 ∈ 𝑆𝐿(𝑛, 𝐾). Ta đưa A về 1𝑛 bằng phép toán dòng. Cộng một dòng vào −1 (1 − 𝑎11 ) lần dòng thứ dòng thứ hai nếu cần thiết, ta có thể giả sử 𝑎21 ≠ 0. Cộng 𝑎21 17 hai vào dòng đầu ta được 1 ở vị trí (1, 1). Trừ đi bội của dòng đầu ta nhận được 0 ở cột đầu bên dưới dường chéo. Định thức con thứ (1, 1) thuộc vào 𝑆𝐿(𝑛 − 1, 𝐾) và có thể xử lí tương tự cho đến khi ta thu được một ma trận với 1 trên dường chéo và 0 bên dưới. Hơn nữa các phép toán dòng đưa ma trận về dạng đồng nhất. Do đó −1 −1 𝑇𝑘 𝑇𝑘−1 … 𝑇1 𝐴 = 1𝑛 với phép co đã biết 𝑇𝑖 , và 𝐴 = 𝑇1−1 … 𝑇𝑘−1 𝑇𝑘 : Dĩ nhiên 𝑇𝑖−1 là một phép co và mọi phép co đều thuộc vào 𝑆𝐿(𝑛, 𝐾). Định lý 1.4.5. Tâm của SL(n, K ) trong GL(n,K) là 𝑍(𝑛, 𝐾). Chứng minh. Rõ ràng một ma trận vô hướng giao hoán với ma trận bất kỳ trên 𝐺𝐿(𝑛, 𝐾). Ngược lại, cho 𝐴 = (𝑎𝑖𝑗 ) thuộc tâm của 𝑆𝐿(𝑛, 𝐾) trên 𝐺𝐿(𝑛, 𝐾). Viết 𝐸𝑖𝑗 là ma trận sơ cấp cấp 𝑛 × 𝑛 với 1 ở vị trí 𝑖𝑗 và 0 ở các vị trí còn lại. Như vậy 1 + 𝐸𝑖𝑗 ∈ 𝑆𝐿(𝑛, 𝐾) nếu 𝑖 ≠ 𝑗, vì thế A và 1 + 𝐸𝑖𝑗 giao hoán khi 𝐴𝐸𝑖𝑗 = 𝐸𝑖𝑗 𝐴. Hệ số thứ (𝑘, 𝑗) của 𝐴𝐸𝑖𝑗 là 𝑎𝑘𝑖 khi 𝐸𝑖𝑗 𝐴 là 0 nếu 𝑘 ≠ 𝑖 và là 𝑎𝑗𝑗 trong trường hợp còn lại. Do đó 𝑎𝑘𝑖 = 0 nếu 𝑘 ≠ 𝑖 và 𝑎𝑖𝑖 = 𝑎𝑗𝑗 , suy ra A vô hướng. Định lý 1.4.6. i) Tâm của 𝐺𝐿(𝑉) là 𝑍(𝑉). ii) Tâm của 𝑆𝐿(𝑛, 𝐾) là 𝑆𝑍(𝑛, 𝐾). Chứng minh. i) Nếu 𝑇 ∈ 𝐺𝐿(𝑉) không là một phép biến đổi vô hướng thì có 𝑣 ∈ 𝑉 sao cho {𝑣, 𝑇𝑣} độc lập. Mở rộng ra một cơ sở {𝑣, 𝑇𝑣, 𝑢3 , … , 𝑢𝑚 } của V. Dễ thấy {𝑣, 𝑣 + 𝑇𝑣, 𝑢3 , … , 𝑢𝑚 } cũng là một cơ sở của V. Do đó có một phép biến đổi tuyến tính (không suy biến) 𝑆: 𝑉 → 𝑉 với 𝑆𝑣 = 𝑣, 𝑆(𝑇𝑣) = 𝑣 + 𝑇𝑣 và 𝑆𝑢𝑖 = 𝑢𝑖 với mọi 𝑖 ≥ 3. Bây giờ T và S không giao hoán, với 𝑇𝑆(𝑣) = 𝑇𝑣 khi 𝑆𝑇(𝑣) = 𝑣 + 𝑇𝑉. Do đó 𝑇∉ 𝑍(𝐺𝐿(𝑉)), suy ra 𝑍(𝐺𝐿(𝑉 )) = 𝑍(𝑉 ). 18
- Xem thêm -

Tài liệu liên quan