Đăng ký Đăng nhập
Trang chủ Skkn một số dạng toán thường gặp về số phức và ứng dụng...

Tài liệu Skkn một số dạng toán thường gặp về số phức và ứng dụng

.DOC
30
93
102

Mô tả:

Phạm T Bích Ngọc - THPT Tiên Lữ: MỘT SỐ DẠNG TOÁN THƯỜNG GẶP VỀ SỐ PHỨC VÀ ỨNG DỤNG A- PHẦN MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI Số phức có vai trò quan trọng trong toán học, với sự xuất hiện của số i, một trong những ký hiệu thông dụng nhất trong toán học, đã dẫn đến việc định nghĩa số phức dạng z= a + bi, trong đó a, b là các số thực. Đối với chương trình toán học phổ thông số phức được đưa vào cuối cấp lớp 12, việc làm quen sử dụng và ứng dụng số phức vào giải toán đối với học sinh là một điều khó, mấy năm gần đây trong các đề thi tuyển sinh đại học và cao đẳng đã đề cập đến số phức ở những dạng toán đơn giản. Để giúp các em hiểu sâu hơn về các dạng toán thường gặp về số phức và ứng dụng của số phức, tôi mạnh dạn lựa chọn đề tài: “Một số dạng toán thường gặp về số phức và ứng dụng”. II. MỤC ĐÍCH NGHIÊN CỨU Nghiên cứu đề tài “Một số dạng toán thường gặp về số phức và ứng dụng” nhằm giúp học sinh rèn kỹ năng giải toán về số phức, nhằm phát triển tư duy logic cho học sinh đồng thời nâng cao chất lượng học tập của học sinh, tạo được hứng thú học tập môn toán, góp phần đổi mới phương pháp giảng dạy bộ môn theo hướng phát huy tính tích cực, tự giác, sáng tạo của học sinh , góp phần nâng cao chất lượng đội ngũ học sinh khá giỏi về môn toán, góp phần kích thích sự đam mê, yêu thích môn toán, phát triển năng lực tự học, tự bồi dưỡng kiến thức cho học sinh. Đối tượng áp dụng: học sinh 12. III. NHIỆM VỤ NGHIÊN CỨU Xác định cơ sở khoa học của số phức với dạng đại số và lượng giác phân ra một số dạng toán thường gặp về số phức. Tiếp cận một số ứng dụng của số phức trong giải toán đại số, lượng giác và hình học. IV. ĐỐI TƯỢNG NGHIÊN CỨU Một số dạng toán thường gặp về số phức, ứng dụng của số phức trong giải các bài toán đại số, lượng giác và hình học trong chương trình toán trung học phổ thông. V. PHƯƠNG PHÁP NGHIÊN CỨU Nghiên cứu sách giáo khoa, sách tham khảo, các tài liệu có liên quan về số phức. Thực hiện các tiết dạy tại một số lớp. B – PHẦN NỘI DUNG I- CƠ SỞ LÝ THUYẾT 1. Khái niệm số phức Một số phức là một biểu thức dạng a+bi, trong đó a và b là những số thực và số i thỏa mãn i2=-1. Ký hiệu số phức đó là z và viết z=a+bi. i được gọi là đơn vị ảo, a được gọi là phần thực và b được gọi là phần ảo của số phức z=a+bi Tập hợp các số phức được ký hiệu là C. Chú ý: Số phức z= a+ 0i có phần ảo bằng 0 được coi là số thực và viết là a + 0i =a thuộc R �C Số phức có phần thực bằng 0 được gọi là số ảo (còn gọi là số thuần ảo): z= 0+ bi = bi (b �R ); i= 0 + 1i= 1i Số 0= 0 + 0i vừa là số thực vừa là số ảo. Định nghĩa 2: Hai số phức z= a+ bi (a, b �R ), z’= a’+ b’i (a’,b’ �R ) gọi là bằng nhau nếu a=a’, b= b’ Khi đó ta viết z= z’. 2. Biểu diễn hình học số phức Ta đã biết biểu diễn hình học các số thực bởi các điểm trên một trục số. Đối với các số phức, ta hãy xét mặt phẳng tọa độ Oxy. Mỗi số phức z= a+ bi (a,b �R ) được biểu diễn bởi điểm M có tọa độ (a;b). Ngược lại, rõ ràng mỗi điểm M(a;b) biểu diễn số phức là z= a+ bi. Ta còn viết M(a+bi) hay M(z). Vì lẽ đó, mặt phẳng tọa độ với việc biểu diễn số phức như thế được gọi là mặt phẳng phức. 3. Phép cộng và phép trừ số phức a) Tổng của hai số phức Định nghĩa 3: Tổng của hai số phức z= a+ bi, z’= a’+ b’i (a, b, a’, b’ �R ) là số phức z+ z’ = a+ a’ + (b+b’)i b) Tính chất của phép cộng số phức Từ định nghĩa 3, dễ thấy phép cộng các số phức có các tính chất sau đây, tương tự phép cộng các số thực.  Tính chất kết hợp: (z+ z’) + z”=z+ (z’+ z”) với mọi z, z’, z” �C  Tính chất giao hoán: z+ z’=z’+z với mọi z,z’ �C  Cộng với 0: z+ 0 = 0+ z = z với mọi z �C  Với mỗi số phức z= a+ bi (a,b �R ) nếu ký hiệu số phức –a –bi là –z thì ta có: z+ (-z) = (-z) +z =0 Số -z được gọi là số đối của số phức z. c) Phép trừ hai số phức Định nghĩa 4: Hiệu của hai số phức z và z’ là tổng của z với –z’, tức là z-z’=z+(-z’). Nếu z= a+ bi, z’=a’+b’i (a,b,a’,b’ �R ) thì z-z’ = a-a’ + (b-b’)i 4. Phép nhân số phức a) Tích của hai số phức Định nghĩa 5: Tích của hai số phức z= a+ bi và z’= a’+ b’i (a,b,a’,b’ �R ) là số phức zz’= aa’ – bb’+(ab’+a’b)i b) Tính chất của phép nhân số phức  Tính chất giao hoán: zz’=z’z với mọi z,z’ �C  Tính chất kết hợp: (zz’)z”= z(z’z”) với mọi z,z’,z” �C  Nhân với 1: 1.z = z.1 với mọi z �C  Tính chất phân phối của phép nhân đối với phép cộng: z(z’+z”) = zz’+zz” với mọi z,z’,z” �C 5. Số phức liên hợp và môđun của số phức a) Số phức liên hợp Định nghĩa 6: Số phức liên hợp của z= a+ bi (a, b �R ) là a-bi và được ký hiệu bởi z Như vậy: z  a  bi  a  bi Rõ ràng: z = z nên người ta còn nói z và z là hai số phức liên hợp với nhau (gọi tắt là hai số phức liên hợp). Hai số phức liên hợp khi và chỉ khi các điểm biểu diễn của chúng đối xứng với nhau qua trục Ox. b) Mô đun của số phức Định nghĩa 7: Mô đun của số phức z=a+bi (a, b �R ) là số thực không âm a 2  b 2 và được ký hiệu là z Như vậy: Nếu z= a+bi (a, b �R ) thì z  z z  a 2  b2 6. Phép chia cho số phức khác 0 1 Định nghĩa 8: Số nghịch đảo của số phức z khác 0 là số z  1 z Thương z ' của phép 2 z z chia số phức z’ cho số phức z khác 0 là tích của z’ với số phức nghịch đảo của z, tức là Như vậy: Nếu z �0 thì z'  z ' z 1 z z' z'z  2 z z 7. Căn bậc hai của số phức Định nghĩa: Cho số phức w, mỗi số phức z thỏa mãn z 2  w được gọi là một căn bậc hai của w. 8. Phương trình bậc hai. Nhờ tính được căn bậc hai của số phức, dễ thấy mọi phương trình bậc hai Az 2  Bz  C  0  1 Trong đó A,B,C là những số phức, ( A �0 ) đều có hai nghiệm phức (có thể trùng nhau). Việc giải phương trình đó được tiến hành tương tự như trong trường hợp A, B, C là những số thực. Cụ thể là: Xét biệt thức:   b 2  4ac - Nếu  �0 thì phương trình (1) có hai nghiệm phân biệt: z1  B   B   ; z2  trong đó 2A 2A  là một căn bậc hai của  - Nếu   0 thì phương trình (1) có nghiệm kép: z1  z2   B 2A 9. Dạng lượng giác của số phức Định nghĩa 1: Cho số phức z �0 . Gọi M là điểm trong mặt phẳng phức biểu diễn số z. Số đo (radian) của mỗi góc lượng giác tia đầu Ox, tia cuối OM được gọi là acgument của z Định nghĩa 2: Dạng z  r (cos  i sin  ) trong đó r > 0 được gọi là dạng lượng giác của số phức z �0 . Còn dạng z=a+ bi ( a, b �R ) được gọi là dạng đại số của số phức z. 10. Nhân và chia số phức dưới dạng lượng giác Định lý: Nếu z  r (cos  i sin  ) , z '  r '(cos ' i sin  ')(r �0, r ' �0) thì cos     '  � zz’= rr’ � � � i sin(   ')] , z' r'  � cos   '    i sin   '   � �(Khi r>0) z r � 11. Công thức Moa-vro (Moivre) và ứng dụng a) Công thức Moavro Từ công thức nhân số phức dưới dạng lượng giác, bằng quy nạp toán học dễ dàng suy ra với mọi số nguyên dương n. [r (cos  i sin  )]n  r n  cos  i sin   và khi r=1 ta có: (cos  i sin  ) n  cosn  i sin n b) Căn bậc hai của số phức dưới dạng lượng giác. Từ công thức Moavro dễ thấy số phức z  r (cos  i sin  ) trong đó r>0 có hai căn bậc hai là: � � � � �  �  �  � � � r� cos i sin �và - r � cos i sin � r � cos �   � i sin �   � � 2� 2� � 2 � 2 � �2 � � �2 � II- MỘT SỐ DẠNG TOÁN THƯỜNG GẶP VỀ SỐ PHỨC 1. Tìm tập hợp điểm biểu diễn của số phức Thí dụ 1: Tìm tập hợp các điểm biểu diễn của số phức z sao cho u  z  2  3i là một số thuần z i ảo. Giải: Đặt z= x+ yi (x, y �R ), khi đó: u x   y  1 i �  x  2    y  3 i �  x  2    y  3 i  � � �� � � 2 2 x   y  1 i x   y  1 x  2   y 2  2 x  2 y  3  2  2 x  y  1 i x 2   y  1 2 2 2 2 2 � �  x  1   y  1  5 �x  y  2 x  2 y  3  0 � �� u là số thuần ảo khi và chỉ khi � 2 2 x  y  1  0    x; y  � 0;1 � � Vậy tập hợp các điểm biểu diễn của z là đường tròn tâm I(-1;-1), bán kính Thí dụ 2: Tìm tập hợp các điểm biểu diễn của số phức z  2  3i  1 � x  2   y  3 i  x  4   y  1 i z 4i �  x  2    y  3   x  4    y  1 � 3x  y  1  0 2 2 2 2 Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng có phương trình 3x-y-1=0. Thí dụ 3: Tìm tập hợp các điểm M biểu diễn số phức z thỏa mãn:\ a) z 3 z i b) z  z  3  4i c) z  i  z  i  4 Giải: a) Đặt z= x+ yi (x,y �R ) 2 2 � 9� 9 Ta có: z  3 z  i � x 2  y 2  9 � x 2  y  1 �� x 2  �y  � �  � � 8 � 64 3 � 9� 0; �bán kính R  Vậy tập hợp các điểm M là đường tròn tâm I � 8 � 8� b) Đặt z= x+ yi (x,y �R ) 2 2 Ta có z  z  3  4i � x  y   x  3   4  y  2 � 6 x  8 y  25 2 5 trừ điểm (0;1). z thỏa mãn Vậy tập hợp các điểm M là đường thẳng 6x+ 8y= 25 c) Đặt z=x+yi (x,y �R ) z  i  z  i  4 � x 2   y  1  x 2   y  1  4 2 2 � x 2  y  1 2 �4   � �� �x 2   y  1 2  16  8 x 2   y  1 2  x 2   y  1 2 � �x 2   y  1 2 �16 �x 2   y  1 2 �16 � � � �� � �4 x 2  4 y 2  8 y  4  y 2  8 y  16 2 2 2 x  y  1  y4 � �y �4   � � � �x 2   y  1 2 �16  1 � �x 2 y 2 ��  1  2 4 �3 �y �4  3 � Ta thấy các điểm nằm trong hình tròn (1) và elip (2) và tung độ các điểm nằm trên elio luôn thỏa mãn điều kiện y �4 . Vậy tập hợp các điểm M là elip có phương trình  x2 y 2  1 3 4  Thí dụ 4: Tìm tập hợp các điểm biểu diễn số phức w  1  i 3 z  2 biết rằng số phức z thỏa mãn z  1 �2 Giải: Gọi z= a+ bi (a, b �R ), w= x+ yi (x, y �R ) Ta có     w  1  i 3 z  2 � x  yi  1  i 3  a  bi   2 �x  3  a  1  b 3 � �x  a  b 3  2 � �� �� �y  3a  b �y  3  3  a  1  b  Từ đó  x  3  y  3 2  2 �4 � �16 do (1)  a  1  b2 � � � 2  Vậy tập hợp các điểm cần tìm là hình tròn  x  3  y  3 2  2   �16 có tâm I 3; 3 bán kính R=4. Thí dụ 5: Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn số phức z sao cho số z2  có acgumen bằng z2 3 Giải: Gọi z= x+ yi (x,y �R )  x  2   yi �  x  2   yi � z  2  x  2   yi � �� � �  � 2 2 z  2  x  2   yi  x  2  y ta có  x 2  4  y 2  yi  x  2  x  2   x  2 x2  y2  4  x  2 y y 2   x  2 2 y 2  4y  x  2 2  y2 i  1 z2  có acgumen bằng nên ta có: z2 3 Vì số phức 2 2 x2  y 2  4 2  � �  i  r� cos  i sin � 3� � 3  x  2  y 4y 2 2  r  0 �x 2  y 2  4 r  � 2 2 2 � x  2   y �� 4y r 3 �  � x  2  2  y 2 2 � Từ đó suy ra y>0 (1) và 4y 4y  3 � x2  y 2  4  2 x  y 4 3 2 2 2 � 2 � �4 � � x  �y  � � � 3� �3� � 2  2 Từ (1) và (2) ta có tập hợp các điểm M là đường tròn có tâm nằm trên trục thực. Thí dụ 6: Trong mặt phẳng Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện z   3  4i   2 Giải: Đặt z= x+ yi (x,y �R ) � z  3  4i   x  3   y  4  i Từ z   3  4i   2 ta có  x  3 2   y  4   2 �  x  3   y  4   4 2 2 2 Tập hợp điểm biểu diễn các số phức z là đường tròn tâm I(3; -4), bán kính R=2. Thí dụ 7: Trong mặt phẳng Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn z  i   1 i z Giải: Đặt z= x+ yi (x,y �R ) Ta có: z  i   1  i  z � x   y  1 i   x  y    x  y  i � x 2   y  1   x  y    x  y  2 2 2 � x 2  y 2  2 xy  1  0 � x 2   y  1  2 2 Vậy tập hợp các điểm M biểu diễn các số phức z là đường tròn có phương trình x 2   y  1  2 2 2. Tính mô đun của số phức Thí dụ 8: Giả sử z1; z2 là hai số phức thỏa mãn 6 z  i  2  3iz và z1  z2  1 Tính mô đun 3 z1  z2 Giải: Đặt z= x+ yi (x,y �R ) � 6 z  i  2  3iz � 6 x   6 y  1 i   2  3 y   3 xi �  6 x    6 y  1   2  3 y    3x  � x 2  y 2  2 2 Suy ra z1  z2  Ta lại có: 2 2 1 1 � z  9 3 1 3      1 2 2 2 2  z1  z2   z1  z2  z1  z2  z1  z2  z1 z2  z2 z1   z1 z2  z2 z1 9 9 Suy ra z1 z2  z2 z1   1 9     Khi đó: z1  z2   z1  z2  z1  z2  z1  z2  z1 z2  z2 z1  2 2 2 1 3 1 3 � z1  z2  Chú ý: Học sinh có thể đặt z1; z2 dạng đại số để tính. Thí dụ 9: Gọi z1 và z2 là hai nghiệm phức của phương trình z 2  2 z  10  0 Tính giá trị biểu 2 thức A  z1  z2 2 Giải: Ta có z 2  2 z  10  0 �  z  1  9 �  z  1   3i  2 2 z  1  3i � �� z  1  3i � z1  1  3i � z1   1 z2  1  3i � z2  10 2 2 Vậy A  z1  z2  20 2  32  10 2 Thí dụ 10: Cho số phức z thỏa mãn z 2  6 z  13  0 Tính z  6 zi Giải: z 2  6 z  13  0 �  z  3  4 �  z  3    2i  2 2 2 z  3  2i � �� z  3  2i � Với z  3  2i ta có z  6 6  3  2i   4  i  17 z i 3  3i Với z  3  2i ta có z  6 6 1  3  2i   24  7i  5 z i 3i 5 1  3i  Thí dụ 11: Cho số phức z thỏa mãn z   1 i 3 Tìm Mô dun của số phức z  iz Giải:  Ta có 1  3 Do đó z    3  8 8  4  4i Suy ra z  4  4i 1 i � z  iz  4  4i   4  4i  i  8  8i Vậy z  iz  8 2 Thí dụ 12: Tính mô đun của số phức z biết rằng:  2 z  1  1  i    z  1  1  i   2  2i Giải: Gọi z= a+ bi (a, b �R ) Ta có  2 z  1  1  i    z  1  1  i   2  2i ��  2a  1  2bi �  a  1  bi � � � 1  i   � � � 1  i   2  2i �  2a  2b  1   2a  2b  1 i   a  b  1   a  b  1 i  2  2i � 1 a � 3 a  3 b  2 � � 3 �  3a  3b    a  b  2  i  2  2i � � �� a  b  2  2 1 � � b � 3 Suy ra mô đun: z  a 2  b 2  2 3 � �z1  2i  2 iz1  1 Thí dụ 13: Cho hai số phức z1; z2 thỏa mãn điều kiện: � Tính P  z1  z2 z  2 i  3 iz  1 � 2 �2 biết z1  z2  1 Giải: Đặt z= x+ yi (x,y �R ) z  2i  2 iz  1 � x 2   y  2   2  1  y   2 x 2 � x 2  y 2  2 2 2 � z1  z2  2 2 2 2 2 Đặt z1  a  bi; z2  c  di  a, b, c, d �R  � a  b  2; c  d  2 z1  z2  1 �  a  c    b  d   1 � 2  ac  bd   3 2 Từ 2 P  z1  z2 � P 2   a  c    b  d   a 2  b 2  c 2  d 2  2  ac  bd   7 2 2 Vậy P  7 Thí dụ 14: Trong các số phức z thỏa mãn điều kiện  1 i z 1 i  2  1 Tìm số phức có mô đun nhỏ nhất, lớn nhất. Giải: Đặt z= x+ yi (x,y �R ) thì  1 i z  2  1 � 1 i  2  y   xi 1 � x 2   2  y   1  1 � x 2  y 2  4 y  3 2 � z  x2  y 2  4 y  3 �� Từ (1) ta có:  2  y�� � 1 2 1 y 3 1 4y 3 9 Vậy số phức có mô đun lớn nhất là z=3i và số phức có mô đun nhỏ nhất là z=i   Thí dụ 15: Biết rằng số phức z thỏa mãn u   z  3  i  z  1  3i là một số thực. Tìm giá trị nhỏ nhất của z Giải: Đặt z= x+ yi (x,y �R ) ta có u�  x  3   y  1 i �  x  1   y  3 i � � �� � �  x2  y 2  4x  4 y  6  2  x   y  4 i Ta có: u �R � x  y  4  0 Tập hợp các điểm biểu diễn của z là đường thẳng d: x-y-4=0, M(x;y) là điểm biểu diễn của z thì mô đun của z nhỏ nhất khi và chỉ khi độ dài OM nhỏ nhất � OM  d Tìm được M(-2;2) suy ra z=-2+2i. Thí dụ 16: Biết rằng số phức z thỏa mãn z  2i  2 Tìm giá trị nhỏ nhất và lớn nhất của z 1 i z Giải: Gọi z= x+ yi (x,y �R ) ta có z 2i  2 � x  2   y  1 i  2 x  1   y  1 i z 1 i  x  2 2 2 2 2 2   y  1  2 � � x 2   y  3  10  x  1   y  1 � � � Tập hợp các điểm biểu diễn của z là đường tròn tâm I(0;-3) bán kính R  10 M là điểm biểu diễn của z thì z nhỏ nhất khi và chỉ khi OM nhỏ nhất, z lớn nhất khi và chỉ khi OM lớn nhất.   Tìm được Min z  3  10 khi z  3  10 i   và Max z  3  10 khi z   3  10 i Thí dụ 17:Cho ba số phức z1 , z2 , z3 đều có mô dun bằng 1. Chứng minh rằng: z1  z2  z3  z1 z2  z2 z3  z3 z1 Giải: Vì z1 z2 z3  1 Nên z1 z2  z2 z3  z3 z1  z1 z2  z2 z3  z3 z1 1 1 1     z1  z2  z3  z1  z2  z3 z1 z2 z3 z1 z 2 z3 Suy ra z1  z2  z3  z1 z2  z2 z3  z3 z1 3 Thí dụ 18: Chứng minh rằng nếu số phức z thỏa mãn z  Giải: Đặt a  z  Ta có: 2  a �0  z 8 2 �9 thì z  �3 3 z z 3 � 2� 3 8 � 2� �z  � z  3  6 �z  � z � z� � z� 3 2 8 2 �a  z �z 3  3  6 z  �9  6a z z z 3   3 2 Ta được a  6a  9 �0 �  a  3 a  3a  3 �0 vì a 2  3a  3 >0 nên a  z  3. Tìm số phức z thỏa mãn hệ thức cho trước Thí dụ 19: Tìm số phức z thỏa mãn hai điều kiện: z  1  2i  z  3  4i và z  2i là một số thuần ảo. z i Giải: Đặt z= x+ yi (x,y �R ) Theo bài ra ta có x 1  y  2 i  x  3   4  y  i �  x  1   y  2    x  3   y  4  � y  x  5 2 2 2 2 2 z  2i x   y  2  i x   y  2   y  1  x  2 y  3  i   Số phức w  2 x   1 y i z i x 2   y  1 �x 2   y  2   y  1  0 12 � x � � 2 �2 � 7 �� w là một số ảo khi và chỉ khi �x   y  1  0 �y  x  5 �y  23 � 7 � � Vậy z   12 23  i 7 7 2 Thí dụ 20: Tìm tất cả các số phức z biết z 2  z  z Giải: Gọi z= a+ bi (a,b �R ) ta có: z 2  z  z �  a  bi   a 2  b 2  a  bi 2 2 � a 2  b 2  2abi  a 2  b 2  a  bi � � ab0 2 � 2 2 2 2 � a  2b � a b  a b  a 1 � �� �� �� a   ;b  � 2 b  2a  1  0 2ab  b � � � 1 � a   ;b  2 � 1 1 1 1 Vậy z=0; z    i; z    i 2 2 2 2 1 2 1 2 2 �3 z Thí dụ 21: Tìm số phức z biết z   2  3i  z  1  9i Giải: Gọi z= a+ bi (a,b �R ) ta có: z   2  3i  z  1  9i � a  bi   2  3i   a  bi   1  9i a  3b  1 � a2 � � a  3b   3a  3b  i  1  9i � � �� 3a  3b  9 b  1 � � Vậy z= 2-i Thí dụ 22: Tìm phần ảo của số phức z biết z   2 i   1  2i  2 Giải:    z  1  2 2i 1  2i  5  2i Suy ra z  5  2i Phần ảo của số phức z   2 Thí dụ 23: Tìm số phức z thỏa mãn z  2 và z2 là số thuần ảo. Giải: Gọi z= a+ bi (a,b �R ) Ta có z  a 2  b 2 và z 2  a 2  b 2  2abi � � a 2  b2  2 a2  1 � a  �1 � � � � Yêu cầu bài toán thỏa mãn khi và chỉ khi � 2 � � b  �1 a  b2  0 b2  1 � � � Vậy các số phức cần tìm là 1+i; 1-i; -1+i; -1-i Thí dụ 24: TÌm số phức z biết z  5i 3 1  0 z Giải: Gọi z= a+ bi (a,b �R ) và a 2  b 2 �0 ta có 5i 3 5i 3  1  0 � a  bi   1  0 � a 2  b 2  5  i 3  a  bi  0 z a  bi � a2  b2  a  5  0 � � a 2  b2  a  5  b  3 i  0 � � b 3 0 � � � a2  a  2  0 a  1; b   3 � �� �� b 3 2  a  2; b   3 � � z     Vậy z  1  i 3 hoặc z  2  i 3 3 � 1 i 3 � Thí dụ 25: Tìm phần thực và phần ảo của số phức z  � �1 i � � � � Giải: �1 3 � �  � 1 i 3  2�  cos  i sin � �2 2 i � � 2 � 3� � � � 3 � �  1 i  2 � cos  i sin � 4� � 4 Suy ra z 8  cos  i sin   � �   2 2� cos  i sin � 2  2i 3 � 4� � 3 � 4 2 2� cos  i sin � 4 � � 4 Vậy số phức có phần thực là 2 và phần ảo là 2. 2 1  3i Thí dụ 26: Tìm số phức z thỏa mãn 2 z  i  2  z  z và có một acgumen là  3 z Giải: �1 � 3 � � � � � � 1  3i  2 �  i  2 c os   i sin  � � � � � � � �2 2 � � � 3 � � 3� � � � Giả sử z  r  cos  i sin    r  0  Khi đó � 1  3i 2 � �  � � �  � cos �    � i sin �   � � z r� �3 � �3 � � Theo giả thiết  Suy ra z   2     �  3 3 3 r 3r  i 2 2 2 z i  2 z  z � r  Khi đó � r 2    2 3r  1  4     3r  2 i  2  3ri 3r  2 � r 2  4 3r  0 � r  4 3  r  0 Vậy z  2 3  6i   Thí dụ 27: Tìm số phức z thỏa mãn z  i  2 và  z  1 z  i là số thực Giải: Giả sử z= x+ yi (x,y �R ) Khi đó: z  i  2 � x 2   y  1  2  1 2  z  1  z  i    x  1  yi   x   y  1 i   x  x  1  y  y  1   x  y  1 i  z  1  z  i  �R � x  y  1  0  2  Từ (1) và (2) ta có x=1; y=0 hoặc x=-1; y=2 Vậy z=1; z=-1+ 2i Thí dụ 28: Tìm phần thực, phần ảo của số phức sau: 1   1  i    1  i    1  i   ...   1  i  2 3 20 Giải: P  1   1  i    1  i   ...   1  i  2  1 i 20 20   1 i 21 1 i � 1  i    2i   1  i   210  1  i   1 i  � � � 210  1  i   1 �P  210  210  1 i i 21 2 10   Vậy phần thực là 210 và phần ảo là 210  1 4. Giải phương trình trong tập hợp số phức 3 2 Thí dụ 29: Giải phương trình z   3  i  z   2  i  z  16  2i  0 biết rằng phương trình có 1 nghiệm thực. Giải: Gọi nghiệm thực là z0 ta có: z03   3  i  z02   2  i  z0  16  2i  0 �z03  3 z02  2 z0  16  0 � � �2 � z0  2 �zo  z0  2  0   2 Khi đó ta có phương trình  z  2  z   5  i  z  8  i  0 Tìm được các nghiệm của phương trình là z= -2; z= 2+ i; z= 3- 2i 3 2 Thí dụ 30: Giải phương trình z   2  3i  z  3  1  2i  z  9i  0 biết rằng phương trình có một nghiệm thuần ảo. Giải: Giả sử phương trình có nghiệm thuần ảo là bi, b �R Thay vào phương trình ta được:  bi  3   2  3i   bi   3  1  2i   bi   9i  0 2 � 2b 2  6b  0 � � 2b  6b  b  3b  3b  9 i  0 � � 3 � b  3 b  3b 2  3b  9  0 � � z  3i 2  3 2    2 Phương trình có thể phân tích thành  z  3i  z  2 z  3  0 Các nghiệm của phương trình là z= -3i; z  1 � 2i Thí dụ 31: Giải phương trình trên tập hợp số phức: z 4  z 3  6 z 2  6 z  16  0 Giải: Nhận biết được hai nghiệm z=-1 và z=2   2 Phương trình đã cho tương đương với  z  2   z  1 z  8  0 Giải ra ta được bốn nghiệm: z  1; z  2; z  �2 2i 5. Dạng lượng giác của số phức Thí dụ 32: Viết dưới dạng lượng giác của số phức z sao cho z  1 và một acgument của 3 z 3 là  1 i 4 Giải: z  1 thì 3 1  cosi sin   3 1 1 � z   cos  i sin     cos     i sin     3 3 z �2 2� � �   i  2� cos  i sin � vì 1  i  2 � � �2 � 2 � 4� � 4 � nên � z 1 � � � � �  cos � 4  � i sin �   � � � 1 i 3 2 � � 4� 4� � � do đó    3    2k �    2k , k �Z 4 4 2 1�  � cos  i sin � vậy z  � 3� 2 2� Thí dụ 33: Tìm số phức z sao cho z  3i   1 và z+1 có một acgument là  z i 6 Giải: z  3i  1 � z  3i  z  i � x   y  3 i  x   y  1 i z i � x 2   y  3  x 2   y  1 � y  2 2 z+1 có một acgument là  2  tức là: 6 � � � � r � � z 1  r � cos �  � i sin �  � � 2 �6� � �6� �  3 i   r  0 ta có: � r 3 x 1  � r4 � 2 �� z  1  x  1  2i � � � z  2 3  1  2i � r �x  2 3  1 � 2   � 2 Thí dụ 34: Cho số phức z  1  cos    i sin Tìm moodun, acgument và viết z dưới dạng 7 7 lượng giác. Giải: Ta có: 2 �  � � � z  � 1  cos � sin 2  2 � 1  cos � 7� 7 7� � � 8 � 4 �  2� 1  cos � 2 cos s 7 � 7 �  8 sin  � 7  7  cot 4  tan �  � Gọi  là một acgument của z thì tan   �  4 7 � 14 � 1  cos 2sin 2 7 7  sin Suy ra      k , k �Z 14 Vì phần thực 1  cos Vậy z  2 cos 4 7     0 , phần ảo  sin  0 nên ta chọn một acgument là  7 7 14 � � � � � � cos �  � i sin �  � � � � 14 � � � 14 � �   Thí dụ 35: Tìm một acgument của số phức z  1  i 3 biết một acgument của z bằng Giải: z có một acgument bằng �1 3 �   i� nên z  z  � � � 3 �2 2 � �1 3 �  Do đó z  1  i 3   z  2  � �2 2 i � � � �     Khi z  2 một acgument của z  1  i 3 là  3  3   Khi 0  z  2 một acgument của z  1  i 3 là  4 3  Khi z  2 thì z  1  i 3 =0 nên acgument không xác định. Thí dụ 36: Viết số phức z dưới dạng lượng giác biết z  1  z  3i và i z có một acgument là  6 Giải: Đặt z  r  cos  i sin    r  0,  �R  Khi đó z  r  cos  isin  � � � � � � � iz  r  sin   i cos    r � cos �   � i sin �   � � � �2 � � �2 � Theo giả thiết thì      �   2 6 3 Khi đó: z  1  z  3i � r 3r r �r � 1  i   3 �  1� 2 2 2 �2 � 2 2 2 2 r2 �r � 3r �r � �r � � �  1�   3 �  1� � r 2  4 �  1�� r  1 4 �2 � 4 �2 � �2 � Vậy z  cos    i sin 3 3 III- ỨNG DỤNG SỐ PHỨC TRONG GIẢI TOÁN 1 .CHỨNG MINH ĐẲNG THỨC VÀ BẤT ĐẲNG THỨC Thí dụ37: Chứng minh rằng cos  1 5  5 4 Giải: Đặt x  cos     , y  sin ; z  x  iy  cos  i sin 5 5 5 5   4 3 2 Ta có: z 5  1 hay  z  1 z  z  z  z  1  0 Vì z �1 nên z 4  z 3  z 2  z  1 =0 do z �0 nên chia hai vế cho z 2 ta được �2 1 � � 1 � �z  2 � �z  � 1  0 � z �� z� 2 � 1� � 1� � �z  � �z  � 1  0 � z� � z� 1� 1� 1� 5 Ta để ý rằng x  �z  �từ đẳng thức trên ta có: 4 x 2  2 x  1  0 � x  2� z � 4 Do x>0 nên x  cos  1 5  5 4 Thí dụ 38: Chứng minh công thức: sin 5  16sin 5   20sin 3   5sin   1 cos5  16 cos5   20 cos3   5cos   2  Giải: Áp dụng công thwcsMoiver ta có:  cos  i sin   5  cos5  i sin 5 Khai triển nhị thức:  cos  i sin   5  cos5  5i cos 4  sin   10i 2cos 3 sin 2   10i 3 cos 2  sin 3   5i 4 cos  sin 4   i 5 sin 5        1  sin    cos5   10 cos3  1  cos 2   5cos  1  cos 2    i sin 2 2 2    10 1  sin 2  sin 3   sin 5   Đồng nhất phần thực, phần ảo và rút gọn ta được (1) Công thức (2) chứng minh tương tự. Thí dụ 39: Chứng minh rằng: a) cos  3 5 1  cos  cos  7 7 7 2 b) cos  2 3 1  cos  cos  7 7 7 2 Giải: Các đẳng thức trên ngoài cách chứng minh bằng lượng giác (Nhân vế trái với 2sin thể dùng số phức để giải. a) Đặt z  cos Mặt khác    i sin � z 7  cos  i sin   1 hay z 7  1  0 7 7  ) còn có 7 cos  3 5 1 � 1 � 1 �3 1 � 1 �5 1 � z10  z 8  z 6  z 4  z 2  1  cos  cos  �z  � �z  � �z  � 7 7 7 2 � z � 2 � z3 � 2 � z5 � 2z5 Vì z 7  1  0 nên z10   z 3 và z 8   z Suy ra z10  z 8  z 6  z 4  z 2  1  z 6  z 4  z 3  z 2  z  1  z6  z5  z4  z3  z 2  z  1 z5  Do đó: cos z7 1 5  z  z5 z 1  3 5 z5 1  cos  cos  5  7 7 7 2z 2 b) Xét phương trình x 7  1  0 Dễ thấy các nghiệm của phương trình là các căn bậc 7 của số -1. Tập nghiệm của phương trình là: i {e 7 ,e i 3 7 ,...,e i13 7 } 7 Mặt khác: i 7 e ,e i 3 7 ,...,e i13 7 �i 27 � e � 1 i � � � 0 e7 i e7 Nên tổng phần thực của nó bằng 0 Do đó:  3 5 7 9 11 13  cos  cos  cos  cos  cos  cos 0 7 7 7 7 7 7 7 3 5 � �  � 2� cos  cos  cos � 1  0 7 7 � � 7  2 3 1 � cos  cos  cos  7 7 7 2 cos Thí dụ 40: Cho a, b, c là các số thực sao cho: cos a  cos b  cos c  sin a  sin b  sin c  0 Chứng minh rằng: cos 2a  cos 2b  cos 2c  sin 2a  sin 2b  sin 2c  0 Giải: Đặt x  cos a  i sin a y  cos b  i sin b z  cos c  i sin c Ta có x+ y + z=0 1 1 1     cos a  i sin a    cos b  i sin b    cos c  i sin c   0 x y z Do đó: xy + yz +zx=0
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất