Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Toán học Skkn môn toán thpt phương trình vô tỷ dành cho học sinh trung học phổ thông khôn...

Tài liệu Skkn môn toán thpt phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên

.DOC
23
1220
85

Mô tả:

Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên A. ĐẶT VẤN ĐỀ I-LÝ DO CHỌN ĐỀ TÀI: Trong giáo dục vấn đề đổi mới, cải cách nhằm nâng cao chất lượng dạy và học là một vấn đề được rất nhiều người quan tâm. Bản thân tôi là một giáo viên dạy bộ môn toán Trung học phổ thông. Qua những năm công tác trực tiếp giảng dạy và đặc biệt trong những năm học vừa qua tôi được phân công dạy luyện thi đại học, chương trình đào tạo và bồi dưỡng học sinh giỏi, tôi luôn suy nghĩ làm thế nào để học sinh và giáo viên vừa học vừa nghiên cứu thuận lợi nhất, để cải tiến phương pháp giảng dạy sao cho học sinh tiếp thu bài học nhanh nhất và đạt hiệu quả cao nhất. Với đặc thù của bộ môn, tôi nhận thấy rằng việc học tập và nghiên cứu theo các chuyên đề tạo điều kiện rất thuận lợi cho học sinh tiếp thu kiến thức sâu sắc, nắm vấn đề logic và phân dạng bài tập. Tuy nhiên, việc sử dụng các chuyên đề hiện nay còn gặp rất nhiều khó khăn như: Các chuyên đề còn thiếu nhiều, chất lượng các chuyên đề chưa đáp ứng được yêu cầu thực tế, tỉ lệ học sinh tiếp thu kiến thức theo chuyên đề rất ít. Trong quá trình thực hiện còn có nhiều khó khăn cũng như thuận lợi vậy tôi mạnh dạn đưa ra ý kiến để đồng nghiệp tham khảo và góp ý. II-MỤC ĐÍCH NGHIÊN CỨU - Giúp hình thành cho học sinh kỹ năng ứng dụng giải bài tập về “phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên” trong các bài tập ôn thi học sinh giỏi và ôn thi quốc gia dành cho bậc Trung học phổ thông. - Giáo viên tham gia dạy luyện thi đại học và bồi dưỡng học sinh giỏi làm căn cứ nghiên cứu. III-ĐỐI TƯỢNG VÀ KHÁCH THỂ NGHIÊN CỨU - Đối tượng: “phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên” và các đề tài liên quan. - Khách thể: Học sinh Trung học phổ thông không chuyên toán. Người thực hiện: Ths. NguyÔn TÊn Hßa 1 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên IV-NHIỆM VỤ NGHIÊN CỨU - Trao đổi với giáo viên cùng chuyên môn để tìm ra hướng nghiên cứu và tiếp cận đề tài có hiệu quả nhất. - Tìm hiểu thực trạng và khả năng tiếp thu kiến thức của học sinh về chuyên đề này. - Rút ra bài học kinh nghiệm góp phần nâng cao chất lượng giảng dạy của giáo viên. V-GIỚI HẠN ĐỀ TÀI Do thời gian nghiên cứu hạn hẹp nên đề tài chỉ nghiên cứu một vấn đề “phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên” trong số rất nhiều vấn đề của toán học. Người thực hiện: Ths. NguyÔn TÊn Hßa 2 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên B. NỘI DUNG I- THỰC TRẠNG VỀ TRÌNH ĐỘ VÀ ĐIỀU KIỆN HỌC TẬP CỦA HỌC SINH 1. Thực trạng chung: Học sinh Trung học phổ thông không chuyên khi tiếp cận kiến thức chuyên nội dung kiến thức khá trừu tượng nên việc tiếp thu kiến thức còn nhiều khó khăn. Bên cạnh đó thời gian dành cho ôn luyện khá ít, việc học tập nghiên cứu ở nhà còn hạn chế. Vì vậy, để các em học tập, ôn luyện có hiệu quả thì bên cạnh sách giáo khoa mà các em có sẵn thì hệ thống các chuyên đề mà giáo viên chuẩn bị là rất cần thiết. 2. Chuẩn bị thực hiện đề tài: - Thông qua thực tiễn giảng dạy. - Sưu tầm tài liệu, trao đổi kinh nghiệm với đồng nghiệp. II- CƠ SƠ LÝ LUẬN 1. Khái niệm: Lí thuyết “phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên” là một phần lí thuyết được giảng dạy trong trường phổ thông thuộc chương trình cơ bản, chương trình nâng cao và chuyên ban của môn toán. 2. Ý nghĩa của phương pháp tọa độ trong mặt phẳng dành cho học sinh Trung học phổ thông: Chuyên đề này và một số chuyên đề khác như: "phương trình hàm", "lí thuyết đồng dư trong số học", "bất đẳng thức", "giá trị lớn nhất và giá trị nhỏ nhất", "hệ phương trình", “phương pháp tọa độ trong mặt phẳng”… của cùng tác giả là trợ thủ đắc lực cho việc ôn luyện thi đại học và luyện thi học sinh giỏi bộ môn toán Trung học phổ thông dành cho học sinh không học theo chương trình chuyên ban. Việc sử dụng các chuyên đề nói chung, chuyên đề “phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên” nói riêng Người thực hiện: Ths. NguyÔn TÊn Hßa 3 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên vào việc ôn luyện thi đại học và luyện thi học sinh giỏi bộ môn toán Trung học phổ thông đặc biệt có hiệu quả với học sinh không chuyên. Vì lí do học sinh không chuyên thời gian ôn luyện ngắn, thời gian học chương trình không chuyên kéo dài nên học sinh không đủ thời gian học ôn cả chương trình nâng cao. Nhìn về góc độ phương pháp ngoài việc thể hiện tính cụ thể, trừu tượng các chuyên đề toán còn góp phần giúp cho học sinh không học theo chương trình chuyên ban tiếp cận với việc ôn luyện thi đại học và luyện thi học sinh giỏi dễ dàng hơn khi sử dụng chúng đúng lúc, đúng cách, xen kẽ vào quá trình học chính khoá, để cập nhật, mở rộng kiến thức toán học, để giải quết vấn đề dạy học khám phá,… Tóm lại các chuyên đề toán học nói chung chuyên đề “phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên” nói riêng có ý nghĩa quan trọng trong việc nâng cao hiệu quả của quá trình dạy học. 3. Nguyên tắc sử dụng chuyên đề toán học: - Sử dụng đúng lúc, đúng nội dung và phương pháp dạy học đảm bảo học sinh ôn luyện tiếp cận được, đảm bảo không phân tán tư tưởng của học sinh khi tiến hành các hoạt động học tập tiếp theo. - Tránh sử dụng nhiều loại chuyên đề cùng một lần. - Sử dụng đủ cường độ: nguyên tắc này chủ yếu đề cập nội dung và phương pháp dạy học sao cho thích hợp với trình độ tiếp thu và lứa tuổi của học sinh. Người thực hiện: Ths. NguyÔn TÊn Hßa 4 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên III-NỘI DUNG VÀ CÁCH THỰC HIỆN CHUYÊN ĐỀ: PHƯƠNG TRÌNH VÔ TỶ 1. PHƯƠNG PHÁP BIỂN ĐỔI TƯƠNG ĐƯƠNG Dạng 1 : Phương trình  x  D (*) A  B  AB 0  A B Lưu ý: Điều kiện (*) được chọn tuỳ thuôc vào độ phức tạp của A  0 hay B 0 Dạng 2: Phương trình B  0 AB  2 A B Dạng 3: Phương trình A 0  A  B  C ۳ B 0   A  B  2 AB  C (chuyển về dạng 2) +) 3 +) A  3 B  3 C  A  B  3 3 A.B  3  A 3 B C 3 3 và ta sử dụng phép thế : A  B  C ta được phương trình : A  B  3 3 A.B.C  C Ví dụ 1: Giải phương trình sau : x  3  3x  1  2 x  2 x  2 Giải: Điều kiện x  0 Bình phương 2 vế không âm của phương trình ta được: 1  x  3  3x  1  x  2 x  2 x  1 , để giải phương trình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phương trình giải sẽ rất đơn giản nếu ta chuyển vế phương trình : 3x  1  2 x  2  4 x  x  3 2 2 Bình phương hai vế ta có : 6 x  8 x  2  4 x  12 x  x  1 Thử lại x=1 thỏa mãn Ví dụ 2: Giải phương trình sau : Người thực hiện: Ths. NguyÔn TÊn Hßa 5 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên x3  1  x  1  x2  x  1  x  3 x3 Giải: Điều kiện : x  1 Bình phương 2 vế phương trình? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : x3  1 . x  3  x 2  x  1. x  1 x3 , từ nhận xét này ta có lời giải như sau : (2)  x3  1  x  3  x2  x  1  x  1 x3 x  1  3 x3  1  x2  x  1  x2  2x  2  0   x3 x  1  3 Bình phương 2 vế ta được: Thử lại : x  1  3, x  1  3 l nghiệm Bài 1: Giải phương trình: f) 3 x  2  x 1 b) x  2 x  3  0 g) x  9  5  2x  4 2 c) x  x  1  1 h) 3x  4  2 x  1  x  3 a) e) x2  1  x  1 3x  2  x  1  3 2 2 i) ( x  3) 10  x  x  x  12 Bài 2: Tìm m để phương trình sau có nghiệm:  x 2  3x  2  2m  x  x 2 Bài 3: Cho phương trình: x  1  x  m -Giải phương trình khi m=1 -Tìm m để phương trình có nghiệm. 2 Bài 4: Cho phương trình: 2 x  mx  3  x  m -Giải phương trình khi m=3 -Với giá trị nào của m thì phương trình có nghiệm. 2 Người thực hiện: Ths. NguyÔn TÊn Hßa 6 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên 2. PHƯƠNG PHÁP TRỤC CĂN THỨC a) Phương pháp Một số phương trình vô tỉ ta có thể nhẩm được nghiệm x0 như vậy phương trình luôn đưa về được dạng tích  x  x0  A  x   0 ta có thể giải phương trình A  x   0 hoặc chứng minh A  x   0 vô nghiệm , chú ý điều kiện của nghiệm của phương trình để ta có thể đánh gía A  x   0 vô nghiệm b) Ví dụ Ví dụ 1: Giải phương trình sau : 3 x 2  5 x  1  x 2  2  3  x 2  x  1  x 2  3 x  4 Giải:  3x Ta nhận thấy : x 2 2  5 x  1   3 x 2  3 x  3  2  x  2  v  2    x 2  3x  4   3  x  2  Ta có thể trục căn thức 2 vế : 2 x  4 3 x 2  5 x  1  3  x 2  x  1  3x  6 x 2  2  x 2  3x  4 Dể dàng nhận thấy x=2 là nghiệm duy nhất của phương trình . 2 2 Ví dụ 2. Giải phương trình sau : x  12  5  3x  x  5 Giải: Để phương trình có nghiệm thì : x 2 ۳ 12 x2 5 3x 5 0 x 5 3 Ta nhận thấy : x=2 là nghiệm của phương trình , như vậy phương trình có thể phân tích về dạng  x  2  A  x   0 , để thực hiện được điều đó ta phải nhóm , tách như sau : Người thực hiện: Ths. NguyÔn TÊn Hßa 7 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên x2  4 x  12  4  3 x  6  x  5  3  2  2  x2  x  2  2  x  12  4  x 2  12  4 x2  4  3 x  2  x2  5  3   3  0  x  2 x2  5  3  x 1 x2 x 2  12  4 Dễ dàng chứng minh được : x2  x2  5  3  3  0, x  5 3 3 2 3 Ví dụ 3. Giải phương trình : x  1  x  x  2 Giải :Đk x  2 Nhận thấy x=3 là nghiệm của phương trình , nên ta biến đổi phương trình 3 3   x  1  2  x  3  x  2  5   x  3 1   2 3  x  3  x 2  3 x  9  x3  2  5 x3 1 3 Ta chứng minh :     2 3 x2  1    2 3 x2  1  4  x3 x 2  1  2 x  1  4 2 3 2  1  x3 3  2 x 1  1  3 2 2 x 2  3x  9 x3  2  5 Vậy pt có nghiệm duy nhất x=3 3. PHƯƠNG PHÁP ĐẶT ẨN PHỤ 3.1. Phương pháp đặt ẩn phụ thông thường. -Nếu bài toán có chứa f ( x) và f ( x) khi đó đặt t  f ( x) (với điều kiện tối thiểu là t  0 . đối với các phương trình có chứa tham số thì nhất thiết phải tìm điều kiện đúng cho ẩn phụ). -Nếu bài toán có chứa f ( x) , số) khi đó có thể đặt : t  g ( x) và f ( x) , khi đó f ( x). g ( x)  k (với k là hằng g ( x)  Người thực hiện: Ths. NguyÔn TÊn Hßa 8 k t Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên -Nếu bài toán có chứa có thể đặt: t  f ( x)  -Nếu bài toán có chứa x  a cos t g ( x) ; f ( x).g ( x) và f ( x)  g ( x)  k khi đó g ( x) suy ra f ( x).g ( x)  t2  k 2 a  x thì đặt x  a sin t với 2 2    t 2 2 hoặc với 0  t   -Nếu bài toán có chứa x f ( x)  x 2  a 2 thì đặt x a t sin t với     2 ; 2  \  0 hoặc a   t   0;   \   2 cos t với -Nếu bài toán có chứa    t   ;  x 2  a 2 ta có thể đặt x  a .tan t với  2 2 Người thực hiện: Ths. NguyÔn TÊn Hßa 9 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên Bài 1: Giải phương trình: 2 a) x  x  2 x  8  12  2 x f) 2 2 b) 2 x  5 2 x  3 x  9  3 x  3 g) 2 2 c) x  4 x  6  2 x  8 x  12 2 2 h) x  x  11  31 2 2 d) 3x  15 x  2 x  5 x  1  2 2 i) ( x  5)(2  x)  3 x  3x 2 2 x2  5x  2  2 2 x2  5x  6  1 x 2  3x  2  2 2 x 2  6 x  2   2 2 e) ( x  4)( x  1)  3 x  5 x  2  6 Bài 2: Giải phương trình: a) x3  1 x  2 3 6 4 2 2 d) 64 x  112 x  56 x  7  2 1  x  x 2  1  x2  b) 3 1 1 x   1 x   c) 1  x  2 x 1  x2  2x2  1  0 2  1  x    2  1  x 2  3 e) f) x x x 1 2  35 12  x  3  x  1  4  x  3 1 1  m 2 x 1  x Bài 3: Cho phương trình: -Giải phương trình với m  2 2 3 -Tìm m để phương trình có nghiệm. Bài 4: Cho phương trình: 2  x2  2x   x2  2x  3  m  0 -Giải phương trình với m = 9 -Tìm m để phương trình có nghiệm. 3.2. Phương pháp đặt ẩn phụ không hoàn toàn Là việc sử dụng một ẩn phụ chuyển phương trình ban đầu thành một phương trình với một ẩn phụ nhưng các hệ số vẫn còn chứa x. -Từ những phương trình tích  2x  3  x    x 1 1  x 1  x  2  0  2x  3  x  2  0 Người thực hiện: Ths. NguyÔn TÊn Hßa 9 , x 1  3 x3 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên Khai triển và rút gọn ta sẽ được những phương trình vô tỉ không tầm thường chút nào, độ khó của phương trình dạng này phụ thuộc vào phương trình tích mà ta xuất phát. Từ đó chúng ta mới đi tìm cách giải phương trình dạng này .Phương pháp giải được thể hiện qua các ví dụ sau . Bài 1. Giải phương trình :   x2  3  x2  2 x  1  2 x2  2 t  3 t 2   2  x  t  3  3x  0   2 t  x  1 Giải: t  x  2 , ta có : 2 2 Bài 2. Giải phương trình :  x  1 x  2 x  3  x  1 Giải: 2 Đặt : t  x  2 x  3, t  2 x  1 t  x 2  1   Khi đó phương trình trở thành : x 2  1   x  1 t  0 Bây giờ ta thêm bớt , để được phương trình bậc 2 theo t có  chẵn t  2 x 2  2 x  3   x  1 t  2  x  1  0  t 2   x  1 t  2  x  1  0   t  x  1 Từ một phương trình đơn giản :  1 x  2 1 x   1 x  2  1 x  0 , khai triển ra ta sẽ được pt sau 2 Bài 3. Giải phương trình sau : 4 x  1  1  3x  2 1  x  1  x Giải: Nhận xét : đặt t  1  x , pttt: 4 1  x  3x  2t  t 1  x (1) 2 Ta rt x  1  t thay vo thì được pt:   3t 2  2  1  x t  4   1  x 1  0 Nhưng không có sự may mắn để giải được phương trình theo t    2  1 x  2  48   x 1 1 không có dạng bình phương . Muốn đạt được mục đích trên thì ta phải tách 3x theo    2 1 x , Cụ thể như sau : 3x    1  x   2  1  x  thay vào pt (1) ta được: Người thực hiện: Ths. NguyÔn TÊn Hßa 10 1 x  2 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên 2 Bài 4. Giải phương trình: 2 2 x  4  4 2  x  9 x  16 Giải . Bình phương 2 vế phương trình: 4  2 x  4   16 2  4  x 2   16  2  x   9 x 2  16 Ta đặt : t  2  4  x2   0 Ta phải tách 2 . Ta được: 9 x  16t  32  8 x  0 9 x 2   2  4  x 2    9  2  x 2  8 làm sao cho  t có dạng chình phương . Nhận xét : Thông thường ta chỉ cần nhóm sao cho hết hệ số tự do thì sẽ đạt được mục đích. Bài tập: Giải các phương trình sau: 3 3 a) (4 x  1) x  1  2 x  2 x  1 2 2 b) x  1  2 x x  2 x 2 2 c) x  1  2 x x  2 x 2 2 d) x  4 x  ( x  2) x  2 x  4 3.3. Phương pháp đặt ẩn phụ chuyển về hệ. a) Dạng thông thường: Đặt u    x  , v    x  và tìm mối quan hệ giữa   x và   x  từ đó tìm được hệ theo u,v. Chẳng hạn đối với phương u  m a  f  x    m a f x mb f x c v  m b  f  x      trình: ta có thể đặt:  từ đó suy ra u m  vm  a  b  u m  v m  a  b . Khi đó ta có hệ  u  v  c 3 3 Ví dụ: Giải phương trình: x  1  2 2 x  1 3 3 Đặt y  2 x  1  y  1  2 x Phương trình trở thành Người thực hiện: Ths. NguyÔn TÊn Hßa 11 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên  x  y  3  x3  1  2y  x3  1  2y  x  1  2 y   3 3   2   3 2  x  xy  y  2  0( vn )  y  1  2x  x  y  2( x  y )   x 3  1  2 y   x  y  1  x  y  1  5  2  1  5  x  y  2 Vậy phương trình có 3 nghiệm Bài tập: Giải các phương trình sau: 3 a) 2  x  1  x  1 b) 3 9  x  2  x 1 2 c) x  x  1  ( x  1) x  x  x  0 b) Dạng phương trình chứa căn bậc hai và lũy thừa bậc hai:  d  ac    ax  b  c(dx  e) 2   x   với  e  bc   Cách giải: Đặt: dy  e  ax  b khi đó phương trình được chuyển thành hệ: 2  dy  e  ax  b   dy  e   ax  b    2 2  c  dy  e    x  dy  e   ->giải  dy  e  c(dx  e)   x   Nhận xét: Để sử dụng được phương pháp trên cần phải khéo léo biến đổi phương trình ban đầu về dạng thỏa mãn điều kiện trên để đặt ẩn phụ.Việc chọn  ;  thông thường chúng ta chỉ cần viết dưới dạng : x    n  pn a'x  b'   là chọn được. c) Dạng phương trình chứa căn bậc ba và lũy thừa bậc ba.  d  ac   3  3 ax  b  c  dx  e    x   với  e  bc   3 Cách giải: Đặt dy  e  ax  b khi đó phương trình được chuyển thành hệ: Người thực hiện: Ths. NguyÔn TÊn Hßa 12 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên 3  dy  e  3 ax  b   dy  e   ax  b    3 3 dy  e  c dx  e   x      c  dx  e    x  dy  e     c  dy  e  3  acx  bc   3  c(dx  e)  ( ac  d ) x  dy  bc Bài tập: Giải các phương trình sau: a) x  1  x2  4 x  5 3 3 g) x  1  2 2 x  1 b) 3 x  1  4 x 2  13 x  5 h) 3 3 c) x  2  3 3x  2 d) 4x  9  7 x2  7 x 28 15 30 x 2  4 x   2004  e) 2 2 i) 4 x  13x  5  3 x  1  0 x0    x 3 35  x 3 x  3 35  x3  30 2 j) 4 x  13x  5  3 x  1  0  30060 x  1  1 3 2 3 f) 3x  5  8 x  36 x  53  25 3 k) l) 3 81x  8  x 3  2 x 2  4 x2 3 6 x  1  8 x3  4 x  1 3. PHƯƠNG PHÁP HÀM SỐ Sử dụng các tính chất của hàm số để giải phương trình là dạng toán khá quen thuộc. Ta có 3 hướng áp dụng sau đây: Hướng 1: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng: f ( x)  k Bước 2: Xét hàm số y  f ( x) Bước 3: Nhận xét:  Với x  x0  f ( x)  f ( x0 )  k do đó x0 là nghiệm  Với x  x0  f ( x)  f ( x0 )  k do đó phương trình vô nghiệm  Với x  x0  f ( x)  f ( x0 )  k do đó phương trình vô nghiệm  Vậy x0 là nghiệm duy nhất của phương trình Hướng 2: Thực hiện theo các bước Bước 1: Chuyển phương trình về dạng: f ( x)  g ( x ) Bước 2: Dùng lập luận khẳng định rằng f ( x) và g(x) có những tính chất trái ngược nhau và xác định x0 sao cho f ( x0 )  g ( x0 ) Người thực hiện: Ths. NguyÔn TÊn Hßa 13 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên Bước 3: Vậy x0 là nghiệm duy nhất của phương trình. Hướng 3: Thực hiện theo các bước: Bước 1: Chuyển phương trình về dạng f (u )  f (v) Bước 2: Xét hàm số y  f ( x) , dùng lập luận khẳng định hàm số đơn điệu Bước 3: Khi đó f (u )  f (v)  u  v Ví dụ 1: Giải phương trình :   2 x  1  2 Xét hàm số  2 x  1 2  2 x  1  2     3   3x  2   f  t   t 2  t2  3   3x  2 y  x2  x  1  x2  x  1 Miền xác định: D= R . 2x 1 2 x2  x 1  2x 1 2 x2  x 1 y '  0  (2 x  1) x 2  x  1  (2 x  1) x 2  x  1  (2 x  1)(2 x  1)  0   2 2 2 2  (2 x  1) ( x  x  1)  (2 x  1) ( x  x  1) Hàm số đồng biến lim y  lim x   x   2x x  x  1  x2  x  1 2  1 lim y  1. x    BBT x y’ y f  2 x  1  f  3 x   , là hàm đồng biến trên R, ta có x2  x  1  x2  x  1  m . y'   3  Ví dụ 2: Tìm m để phương trình sau có nghiệm: Giải: Xét hàm số   4 x 2  4 x  4  3x 2  9 x 2  3  0 -∞ +∞ + 1 Người thực hiện: Ths. NguyÔn TÊn Hßa 14 x 1 5 Phương trình vô tỷ dành cho học sinh trung học phổ thông không chuyên -1 Vậy phương trình có nghiệm khi -1 - Xem thêm -