Đăng ký Đăng nhập
Trang chủ Nghiên cứu vấn đề giám sát và điều khiển robot qua mạng máy tính [tt]...

Tài liệu Nghiên cứu vấn đề giám sát và điều khiển robot qua mạng máy tính [tt]

.PDF
14
651
134

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI ---------------------------------------TRƯỜNG ĐẠI HỌC CÔNG NGHỆ Phùng Mạnh Dương NGHIÊN CỨU VẤN ĐỀ GIÁM SÁT VÀ ĐIỀU KHIỂN ROBOT QUA MẠNG MÁY TÍNH Chuyên ngành: Kỹ thuật Điện tử Mã số: 62 52 70 01 TÓM TẮT LUẬN ÁN TIẾN SĨ NGÀNH CÔNG NGHỆ ĐIỆN TỬ VIỄN THÔNG Hà Nội - 2013     Công trình được hoàn thành tại:   Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội Người hướng dẫn khoa học: PGS.TS Trần Quang Vinh Phản biện 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phản biện 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phản biện 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luận án sẽ được bảo vệ trước Hội đồng cấp nhà nước chấm luận án tiến sĩ họp tại . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vào hồi giờ ngày tháng năm Có thể tìm hiểu luận án tại: - Thư viện Quốc gia Việt Nam - Trung tâm Thông tin - Thư viện, Đại học Quốc gia Hà Nội       CHƯƠNG 1: MỞ ĐẦU 1.1 Tổng quan về hệ robot nối mạng Hệ robot nối mạng, định nghĩa bởi hiệp hội robot quốc tế RAS, là một hệ robot được điều khiển phân tán qua mạng truyền thông máy tính như mạng Internet hay LAN. Mạng truyền thông có thể là có dây hay không dây, và dựa trên các giao thức bất kỳ như TCP, UDP, hay 802.11. Có hai loại robot nối mạng bao gồm loại hoạt động tự trị và loại điều khiển bằng tay. Nghiên cứu robot nối mạng chuyển các bài toán truyền thống như định vị và điều khiển sang dạng phân tán qua mạng truyền thông không đồng nhất. Các khó khăn đặt ra bao gồm việc đảm bảo hiệu năng và độ tin cậy hệ thống trong điều kiện bị tác động bởi các thông số mạng bất định như độ trì trễ, sự mất mát gói tin, truyền sai thứ tự gói tin, hay băng thông hạn chế. Nhiều ứng dụng thực tiễn của hệ robot nối mạng đã và đang được phát triển từ điều khiển công nghiệp tới cứu hộ cứu nạn. 1.2 Ứng dụng của robot nối mạng Xuất hiện vào năm 1994, hệ robot nối mạng đầu tiên cho phép khám phá sự sống trong vùng bị nhiễm xạ đã nhận được hơn 2,5 triệu lượt sử dụng trong 7 tháng. Bảy năm sau, hơn 40 hệ như vậy đã được phát triển cho phép người dùng từ xa tham quan bảo tàng, chăm sóc vườn cây, khám phá đại dương, thám sát không gian trên khí cầu, và gắp các tinh thể protein. Đến nay, robot nối mạng đã chứng minh được hiệu quả ứng dụng trong công nghiệp (như khai thác hầm mỏ), y tế (như mổ từ xa), giáo dục (như phòng thí nghiệm ảo), dịch vụ (như tương tác người máy), và nhiều lĩnh vực khác. Ở Việt Nam, robot nối mạng cũng đã bắt đầu thu hút được sự quan tâm nghiên cứu và được kỳ vọng tạo ra những phương thức mới giải quyết các vấn đề cấp bách trong giao thông hay cứu hộ cứu nạn. 1.3 Các nghiên cứu liên quan Trước tiềm năng ứng dụng của robot nối mạng, nhiều nghiên cứu đã được thực hiện tập trung chủ yếu vào giải quyết các bài toán cơ bản như định vị, điều khiển ổn định, và dẫn đường. Trong bài toán định vị, các hướng nổi bật bao gồm sử dụng kỹ thuật giao diện (bản đồ ảo, thực tại ảo, tái tạo mô hình 3D…) và bộ lọc tối ưu (bộ lọc Kalman và các cải tiến). Trong bài toán điều khiển ổn định, một số phương pháp đã được đề xuất như sử dụng bộ lọc dự đoán, bộ đệm thời gian, hay điều khiển dựa trên sự kiện. Bài toán dẫn đường được đề cập theo hai hướng là dẫn được trực tiếp và dẫn đường theo hành vi. Bên cạnh ưu nhược điểm riêng, nhìn chung, các nghiên cứu chủ yếu tập trung khắc phục độ trì trễ, hiếm khi giải quyết vấn đề mất mát và truyền sai thứ tự dữ liệu. 1.4 Mục tiêu nghiên cứu của luận án Trên cơ sở phân tích khả năng ứng dụng và các nghiên cứu liên quan, luận án này nghiên cứu một số vấn đề cơ bản trong việc giám sát và điều khiển robot nối mạng bao gồm định vị, điều khiển ổn định, và dẫn đường. Mục tiêu của luận án là tìm ra các giải thuật mới và hiệu quả tạo cơ sở lý thuyết cho các ứng dụng thực tiễn đồng thời đóng góp vào sự phát triển của robot nối mạng. Do mạng truyền thông máy tính nói chung rộng và phong phú về mục đích, cấu trúc, cũng như cách hoạt động, luận án này giới hạn nghiên cứu trong mạng Internet là mạng được sử dụng phổ biến cho hệ robot nối mạng. Với mạng Internet, tác giả cũng giới hạn các tham số chính là độ trì trễ, sự phân phát sai thứ tự gói tin, và độ mất mát gói tin. Tương tự, robot được nghiên cứu là loại robot di động có hai bánh điều khiển vi sai. 1.5 Cấu trúc của luận án 1   2   Luận án bao gồm 6 chương. Chương 1 trình bày tổng quan về robot nối mạng. Chương 2 đặt vấn đề và mô hình hóa hệ thống. Chương 3 trình bày giải thuật định vị. Chương 4 trình bày giải thuật điều khiển ổn định. Chương 5 trình bày giải thuật dẫn đường. Cuối cùng, chương 7 trình bày những đóng góp chính của luận án. CHƯƠNG 2: MÔ HÌNH HỆ THỐNG 2.1 Biểu diễn trong không gian trạng thái của hệ robot nối mạng Mô hình hệ robot nối mạng sử dụng trong luận án được mô tả trong hình 2.2 trong đó bộ điều kiển kết nối với bộ chấp hành qua một mạng truyền thông. Mạng truyền thông gây ra sự trì trễ, phân phát sai thứ tự, và mất mát lên các gói tin dữ liệu trao đổi trong hệ thống. trong đó x là trạng thái, z là phép đo lối ra, u là tín hiệu lối vào, w và v lần lượt là nhiễu hệ thống và nhiễu đó, và f và h lần lượt là các hàm hệ thống. 2.2 Mạng truyền thông Mạng truyền thông sử dụng trong robot nối mạng có thể lựa chọn tương đối rộng từ mạng truyền thông trong công nghiệp như fieldbus, CAN, đến các mạng đa dụng như Ethernet hay Internet. Các mạng này chia sẻ chung một số tính chất tác động tới hệ robot.   Độ trì trễ: Độ trì trễ nói chung là ngẫu nhiên trong quá trình hệ robot hoạt động. Tuy nhiên, tại mỗi thời điểm lấy mẫu, giá trị trễ có thể đo được nhờ so sánh trường thời gian gửi trong gói tin với thời gian nhận được gói tin. Sự phân phát sai thứ tự gói tin: Vấn đề này thường xảy ra khi các gói tin được truyền đi theo các tuyến khác nhau. Gói tin sai thứ tự có thể được mô hình hóa tương đương như một gói tin bị trễ lớn nhảy bậc như sau: ti  tk  ( j  i )Ts trong đó là ti thời gian trễ tương đương của gói tin i tới sai thứ tự vào thời điểm k, tk là thời gian trễ tại thời điểm k, j là số hiệu của gói tin tới đúng thứ tự gần nhất và Ts là thời gian lấy mẫu. Hình 2.2: Mô hình hệ thống và định thời của các tín hiệu. Gọi n và m lần lượt là độ trì trễ truyền và nhận, kca và ksc lần lượt là các biến ngẫu nhiên nhị phân mô tả sự mất mát dữ liệu truyền và nhận, mô hình hệ robot nối mạng khi đó được mô tả trong không gian trạng thái như sau: x k  f (x k 1 , kca n 1u k  n 1 , w k 1 ) z k  ksc m z k  m  ksc m h( x k  m , v k  m )  Sự mất mát gói tin: Sự mất mát gói tin được mô hình hóa như là một biến ngẫu nhiên nhị phân k : 1, 0, ế ó ớ ườ ợ á ả ờ ừ 1 ớ (2.11) (2.4) 4 3   (2.10)   x  vc cos  y  vc sin     2.3 Hệ robot Trong luận án này, một hệ robot nối mạng thực đã được phát triền làm cơ sở cho các nghiên cứu và thực nghiệm. Hình 2.4 trình bày mô hình tổng quát của hệ thống. Hình 2.4: Cấu trúc của hệ robot nối mạng được xây dựng. xk 1  xk  Ts vc (k ) cos  k yk 1  yk  Ts vc (k )sin  k (2.13) (2.16)  k 1   k  Tsc (k ) c 2.3.2 Cấu hình phần cứng Phần cứng hệ thống bao gồm 2 phần: cơ cấu chấp hành và cảm biến, và các thiết bị tương tác và điều khiển. Phần cơ cấu chấp hành và cảm biến bao gồm các động cơ một chiều cho điều khiển chuyển động, cảm biến siêu âm SRF05 cho tránh vật cản, cảm biến từ địa bàn CMPS03 và cảm biến GPS Holux UB-93 cho định vị, cảm biến ảnh EVI-D100 và cảm biến đo xa laser LMS-221 cho xây dựng bản đồ và dẫn đường. Phần thiết bị tương tác và điều khiển bao gồm các máy tính và một cần điều khiển Joystick 3D Logitech. 2.3.3 Mô hình truyền thông 2.3.1 Mô hình động học Robot sử dụng trong luận án này là loại 2 bánh vi sai như trong hình 2.5 trong đó (XG, YG) là hệ tọa độ toàn cục, (XR, YR) là hệ tọa độ gắn với robot, R là bán kính bánh xe, và L là khoảng cách giữa 2 bánh. Việc truyền tải dữ liệu giữa các thành phần của hệ robot nối mạng được thực hiện bởi một mô hình truyền thông đa giao thức. Mô hình này sử dụng các giao thức khác nhau cho mỗi loại dữ liệu cần truyền nhằm tận dụng ưu điểm của mỗi giao thức để qua đó nâng cao hiệu năng truyền thông của toàn hệ thống. Việc lựa chọn giao thức được thực hiện trên cơ sở phân tích đặc điểm của từng giao thức trong mối liên hệ với dữ liệu cần truyền tải. Mô hình động học liên tục và rời rạc của robot khi đó lần lượt được biểu diễn ở phương trình 2.13 và 2.16: Có 3 giao thức chính ở lớp vận chuyển được sử dụng phổ biến cho robot nối mạng là TCP, UDP, và RTP. TCP là giao thức hướng kết nối được thiết kế cho việc truyền dữ liệu một cách tin cậy qua các mạng có băng thông thấp và tỉ lệ lỗi cao. UDP mặt khác là một giao thức tối giản với mục tiêu truyền dữ liệu từ thiết bị này tới thiết bị khác một cách nhanh nhất có thể. RTP được thiết kế chính cho việc truyền tải dữ liệu đa phương tiện như âm thanh hay hình ảnh. Kết quả mô phỏng trên ns-2 của chúng tôi chỉ ra rằng mỗi giao thức có ưu 5 6 Hình 2.5: Robot hai bánh điều khiển vi sai và các tham số.     nhược điểm riêng và không giao thức nào thích hợp để truyền tải toàn bộ các loại dữ liệu khác nhau trong một hệ robot nối mạng. Các loại dữ liệu truyền tải trong hệ robot nối mạng có thể được phân ra 3 nhóm: dữ liệu quản lý, dữ liệu điều khiển, và dữ liệu hình ảnh.    Nhóm dữ liệu quản lý bao gồm các thông tin điều khiển truy cập, xác minh người dùng, và cấu hình hệ thống. Loại dữ liệu này có kích thước nhỏ với băng thông dưới 10Kb/s nhưng yêu cầu độ tin cậy cao. Do đó, giao thức TCP được sử dụng để truyền tải nhóm thông tin này. Nhóm dữ liệu điều khiển bao gồm các lệnh điều khiển, tín hiệu đồng bộ và dữ liệu cảm biến. Loại dữ liệu này yêu cầu thời gian thực với băng thông từ 1Kb/s tới 100Kb/s. Giao thức UDP phù hợp để truyền tải nhóm dữ liệu này. Dữ liệu hình ảnh được truyền một cách liên tục với kích thước gói tin lớn. Loại dữ liệu này yêu cầu thời gian thực và băng thông lớn. Khi cài đặt, giao thức RTP được sử dụng cho loại dữ liệu này. Hình 2.16 trình bày cài đặt của mô hình truyền thông đa giao thức. Kết quả thực nghiệm thực nghiệm cho thấy mô hình này phù hợp cho việc truyền tải dữ liệu trong robot nối mạng. Chất lượng hình ảnh khi truyền tải bằng RTP cho chất lượng tốt hơn TCP ở cùng băng thông. Các thông số độ trì trễ, độ thăng giáng, tỉ lệ mất mát dữ liệu đáp ứng được yêu cầu giám sát và điều khiển robot nối mạng. Hình 2.16: Truyền thông trong hệ robot nối mạng sử dụng mô hình đa giao thức. CHƯƠNG 3: ĐỊNH VỊ SỬ DỤNG BỘ LỌC TỐI ƯU 3.1 Tổng quan bài toán định vị cho robot Định vị, sự xác định vị trí (bao gồm tọa độ và hướng) của robot trong không gian hoạt động, được xem là một trong những vấn đề căn bản nhất của robot di động. Để thực hiện một tác vụ bất kì, robot trước hết cần phải biết vị trí hiện tại của nó trong không gian hoạt động. Các phương pháp định vị hiện nay bao gồm định vị tương đối, định vị tuyệt đối, và định vị tổng hợp. 3.2 Định vị cho robot nối mạng Định vị cho robot nối mạng gặp phải khó khăn liên quan tới tác động của mạng máy tính lên hệ thống. Trong luận án này, tác giả đề xuất giải thuật định vị mới dựa trên lý thuyết về bộ lọc Kalman. Giải thuật này cho phép định vị robot trong điều kiện bị tác động tổng hợp bởi thời gian trễ, sự mất mát gói tin và truyền sai thứ tự gói tin. 8 7     3.3 Giải thuật định vị cho robot nối mạng sử dụng bộ lọc Kalman mở rộng với quan sát quá khứ PO-EKF Giải thuật định vị được xây dựng qua 2 bước. Bước một phát triển một bộ lọc tối ưu cho phép ước lượng trạng thái của hệ tuyến tính. Bước hai mở rộng bộ lọc này cho hệ phi tuyến. Pk  Pk  K k H i Pi  F T Mở rộng tính toán cho hệ phi tuyến bằng cách tuyến tính hóa hệ phi tuyến quanh các giá trị ước lượng rồi áp dụng các phương trình trên ta thu được một bộ lọc tối ưu cho bài toán định vị robot nối mạng như sau: Xét trường hợp f và h trong phương trình (2.4) là tuyến tính, khi đó hệ robot nối mạng có thể biểu diễn như sau: x k  Ak 1x k 1  kca n 1 Bk 1u k  n 1  w k 1  Ak 1x k 1  Bk 1u k  n 1  w k 1  Phương trình cập nhật theo thời gian tại pha dự đoán: xˆ k  f (xˆ k 1 , u k  n 1 , 0) (3.7) Pk  Ak 1 Pk1 AkT1  Wk 1Qk 1WkT1  ksc m H k  m x k  m  ksc m v k  m  H x  v i (3.8) m F   Ak  j ( I  K k  j H k  j ) j 1 i K k  FPi  H iT ( H i Pi  H iT  Vi RiVi T ) 1 xˆ   xˆ   K [z i  h (xˆ  , 0)] Sử dụng lý thuyết bộ lọc Kalman, ta tính được các phương trình cho bộ lọc tuyến tính, cụ thể: k xˆ k  Ak 1xˆ k 1  Bk 1u k  n 1 (3.10) Hiệp phương sai sai số tiền ước lượng:  k 1 k 1 P A P A T k 1 k k i  k Bộ lọc này được đặt tên là bộ lọc Kalman mở rộng với quan sát quá khứ (PO-EKF). 3.4 Kết quả mô phỏng  Qk 1 (3.14) Phương trình hậu ước lượng (pha hiệu chỉnh): xˆ k  xˆ k  K k ( z ik  H i xˆ i ) (3.15) Hệ số Kalman và hiệp phương sai sai số hậu ước lượng: K k  FPi  H iT [ H i Pi  H iT  R i ]1 Hình 3.13 so sánh kết quả định vị sử dụng 3 phương pháp: bộ lọc Kalman mở rộng (EKF), bộ lọc Kalman cải tiến LEKF [29], và bộ lọc PO-EKF do tác giả đề xuất. Bảng 3.2 so sánh yêu cầu tính toán của 3 phương pháp trên. Có thể kết luận rằng thuật toán PO-EKF cho độ chính xác tốt hơn EKF, tương đương độ chính xác của LEKF nhưng yêu cầu tính toán ít hơn LEKF. (3.30) 10 9   k (3.46) P  P  K k H i Pi  F T  k Phương trình tiền ước lượng (pha dự đoán):  k (3.45)  Phương trình cập nhật dữ liệu tại pha hiệu chỉnh: z ik  ksc m z k  m i (3.29)   0.1 0.2 EKF PO-EKF LEKF 0 Error in X (m) RMSE in X (m) 0.15 0.1 0.05 -0.1 -0.2 -0.3 EKF PO-EKF LEKF 0 -0.4 0 200 400 600 Time (100ms) 800 1000 Bảng 3.2: Yêu cầu tính toán đã chuẩn hóa của các bộ lọc EKF LEKF PO-EKF Phép tính dấu chấm động 1.0 36.5 4.7 Thời gian thực thi 1.0 33.7 2.4 3.5 Thực nghiệm Hình 3.34 trình bày kết quả thực nghiệm định vị robot thực tế với môi trường mạng Internet. Các kết quả thực nghiệm với nhiều điều kiện mạng khác nhau đều cho kết quả phù hợp với tính toán và mô phỏng, qua đó chứng minh ưu điểm của bộ lọc PO-EKF về độ chính xác và yêu cầu tính toán. 150 CHƯƠNG 4: ĐIỀU KHIỂN ỔN ĐỊNH SỬ DỤNG LÝ THUYẾT ỔN ĐỊNH LYAPUNOV VÀ BỘ LỌC DỰ ĐOÁN 4.1 Mở đầu Bài toán điều khiển ổn định hệ robot truyền thống (robot không nối mạng) đã được đề cập và giải quyết tương đối hoàn chỉnh trong nhiều nghiên cứu [74] – [76]. Tuy nhiên, với hệ robot nối mạng, hiện mới chỉ có một số nghiên cứu đề cập tới bài toán này và đa phần tập trung khắc phục độ trì trễ. Trong luận án này, tác giả đề xuất giải thuật điều khiển robot nối mạng cho phép ổn định hệ thống trong điều kiện bị tác động tổng hợp của các yêu tố trì trễ, mất mát và sai thứ tự gói tin. Cơ sở của giải thuật dựa trên lý thuyết ổn định Lyapunov và bộ lọc dự đoán. 11   50 100 Time (100ms) Hình 3.34: So sánh sai số ước lượng giữa PO-EKF với EKF và LEKF. Hình 3.15: So sánh sai số ước lượng theo phương X giữa PO-EKF với EKF và LEKF. Tham số 0 12   4.2 Định nghĩa bài toán Xét hệ robot hai bánh điều khiển vi sai có mô hình động học theo phương trình (2.13). Gọi sự sai khác giữa vị trí hiện tại ( x, y, ) và vị trí đích ( x2 , y2 , 2 ) là vector sai số e  ( x2  x , y2  y , 2   )T . Mục tiêu của bộ điều khiển là tìm luật điều khiển của vận tốc dài và vận tốc góc của robot sao vector sai số tiến tới 0: lim e(t )  0 . (  2 ,  2 , 2 )  (0,0,0) . Từ định nghĩa và giả thiết trên, phương trình động học (2.13) của robot được biểu diễn trong hệ tọa độ biến dẫn đường như sau:   v cos      v sin  Theo nghiên cứu của Brockett [88], đối với hệ robot vi sai ràng buộc bởi điều kiện không khả tích (nonholonomic) thì luật điều khiển ổn định trơn biểu diễn trong hệ tọa đề các là không tồn tại. Do đó, một hệ tọa độ mới với 3 tham số (,,) gọi là các biến dẫn đường được định nghĩa như trong hình 4.2 và phương trình (4.1).   v (4.2)  t  sin   Mục tiêu của bộ điều khiển bây giờ trở thành tìm luật điều khiển vận tốc sao cho (,,) tiến tới 0. Hướng tiếp cận của tác giả trong bài toán này bao gồm 2 bước. Trước hết, tìm luật điều khiển ổn định cho hệ robot không nối mạng. Sau đó, luật điều khiển này được mở rộng cho hệ nối mạng bằng cách sử dụng bộ lọc dự đoán. 4.3 Điều khiển ổn định hệ robot không nối mạng Luật điều khiển ổn định hệ robot không nối mạng được xây dựng dựa trên công trình [74]. Chọn hàm Lyapunov như sau: V  V1  V2   Hình 4.2: Tọa độ và hướng của robot trong không gian tọa độ biến dẫn đường.  x2  x    y2  y    atan 2  y2  y, x2  x    2   atan 2  y2  y, y2  x     2 2 2   2  h 2  2 ;  ,h  0 (4.3) Khi đó, có thể chứng minh được rằng đạo hàm của hàm Lyapunov V theo các biến dẫn đường sẽ luôn âm nếu ta chọn luật điều khiển như sau: (4.1) v  ( cos  )  ;   0      Không làm mất tính tổng quát, ta có thể chọn gốc tọa độ sao cho tọa độ đích của robot là ( x2 , y2 , 2 )  (0,0,0), tương đương với 13   2 cos  sin   14   (  h ) (4.5) (4.8)  Pha dự đoán: Rời rạc hóa hệ trên ta thu được luật điều khiển ổn định trong miền rời rạc: xˆ k  f k 1 (xˆ k 1 , u k 1 , 0) vk  ( cos  k )  k wk   k   cos  k sin  k k ( k  hk ) Pk  Ak 1 Pk1 AkT1  Wk 1Qk 1WkT1 (4.12) (4.15)  Pha hiệu chỉnh: 4.4 Điều khiển ổn định hệ robot nối mạng m F   Ak  j ( I  K k  j H k  j ) Với hệ robot nối mạng trong phương trình (2.4), phép đo nhận được tại thời điểm k thực tế phản ánh trạng thái hệ thống tại thời điểm k-m. Đồng thời, tín hiệu điều khiển tại thời điểm k sẽ đến cơ cấu chấp hành vào thời điểm k+n. Do vậy, để luật (4.12) có thể ổn định hệ thống, chúng ta cần phải ước lượng được trạng thái hệ thống tại thời k+n từ phép đo tại k-m, xˆ ( k  n | k  m) (hình 4.3). j 1 K k  FPi  H iT ( H i Pi  H iT  Vi RiVi T ) 1 xˆ   xˆ   K [z i  h (xˆ  , 0)] k k k k (4.16) i P  P  K k H i Pi  F T  k  k  Pha ngoại suy: xˆ k  n  f k  n 1 ( xˆ k  n 1 , u k  n 1 , 0) (4.17) 4.5 Mô phỏng và thực nghiệm Hình 4.11 biểu diễn quỹ đạo và hướng của robot trong 3 thực nghiệm điều khiển robot di chuyển lần lượt từ các điểm (-4,-4,00), (-4,-4,450), (-4,-4,900) tới điểm đích (0,0,00). Hình 4.12 biểu diễn vận tốc dài và vận tốc góc của robot trong quá trình điều khiển. Có thể thấy rằng, robot tiến dần về vị trí đích đồng thời các vận tốc cũng tiến về 0 chứng tỏ hệ thống là ổn định. Hình 4.3: Hệ robot nối mạng có thêm bộ ước lượng trạng thái. Từ chương 4, bộ lọc PO-EKF đã cho phép ước lượng trạng thái hiện tại từ phép đo quá khứ. Nếu ta thêm pha ngoại suy dựa vào mô hình hệ thống thì bộ lọc PO-EKF có thể được cải tiến để ước lượng xˆ ( k  n | k  m) như sau: 16 15     Orientation (degree) -1 Y (m) CHƯƠNG 5: DẪN ĐƯỜNG SỬ DỤNG MỒ HÌNH HÀNH VI 100 0 -2 0 degree 45 degree 90 degree -3 -4 -4 -3 -2 X (m) -1 0 degree 45 degree 90 degree 80 5.1 Mở đầu 60 40 20 0 0 0 20 40 Time (s) 60 80 (b) (a) Hình 4.11: Điều khiển ổn định hệ robot MSSR sử dụng bộ lọc dự đoán: (a) Quỹ đạo robot trong mặt phẳng chuyển động; (b) Biến thiên hướng của robot. Mục tiêu quan trọng của hầu hết các hệ robot di dộng là khả năng định vị và di chuyển tới đích để thực hiện tác vụ được giao. Quá trình này gọi là dẫn đường và thường bao gồm 4 bước: cảm nhận, định vị, nhận dạng, và điều khiển chuyển động. Thực hiện quá trình này có hai phương pháp phổ biến là dẫn đường trực tiếp và dẫn đường dựa vào hành vi. Trong dẫn đường trực tiếp, người điều khiển trực tiếp ra lệnh cho robot dựa trên các thông tin phản hồi. Phương pháp dẫn đường theo hành vi sử dụng khái niệm tập hợp các hành vi sao cho cùng nhau thực hiện được nhiệm vụ đặt ra. Ưu điềm của phương pháp này là tính ổn định của quá trình dẫn đường nhất là trong điều kiện môi trường chứa nhiều thông số bất ổn như vật cản, nhiễu, sự trì trễ… Phương pháp dẫn đường dựa trên hành vi phù hợp với hệ thống robot nối mạng và được lựa chọn cho bài toán dẫn đường. 0.3 0.2 0.1 0 Angular velocity (rad/s) Tangent velocity (m/s) 0.8 0 degree 45 degree 90 degree 0.4 0.2 0 -0.2 0 20 40 Time (s) 60 0 degree 45 degree 90 degree 0.6 0 20 40 Time (s) 60 (b) (a) Hình 4.12: Vận tốc của robot trong quá trình điều khiển ổn định: (a) Vận tốc dài; (b) Vận tốc góc. 5.2 Dẫn đường dựa trên hành vi cho robot nối mạng Hình 5.3 trình bày sơ đồ mô hình dẫn đường theo hành vi thiết kế cho hệ robot nối mạng. Mô hình này bao gồm 4 khối hành vi: theo người điều khiển, tránh vật cản, về đích, và giám sát. Khối hành vi theo người điều khiển có chức năng điều khiển robot thực thi các lệnh do người sử dụng đặt vào như tiến, lùi, rẽ trái, rẽ phải. Khối này đồng thời cũng cập nhật các tham số mạng trong quá trình hoạt động để điều chỉnh độ khuếch đại tín hiệu điều khiển sao cho hệ thống đáp ứng phù hợp với trạng thái mạng. Việc cài đặt khối hành vi theo người điều khiển được thực hiện bằng logic mờ qua 4 bước: xác định bài toán, định nghĩa các biến ngôn ngữ và hàm thành viên, xây dựng luật mờ, và giải mờ. 17   18   trường không biết trước và có nhiều vật cản. Robot đã thành công trong việc tránh vật cản và về đích. Sự phù hợp của tín hiệu điều khiển (hình 5.16) với môi trường và trạng thái mạng (hình 5.15) khẳng định hoạt động hiệu quả các khối hành vi và mô hình dẫn đường. 20 F Obstacle 2 18 G Goal wall 4 16 E Obstacle 4 14 wall 3 12 Y(m) D Hình 5.2: Cấu trúc hệ thống dẫn đường theo hành vi. wall 2 10 C 8 Khối hành vi tránh vật cản sử dụng các dữ liệu từ cảm biến siêu âm để thực hiện nhiệm vụ tránh vật cản. Khi phát hiện hiện vật cản, khối này được kích hoạt và đặt lên mức ưu tiên cao. Việc tránh vật cản, được thực hiện tự động nhằm đảm bảo an toàn cho robot trong quá trình vận hành. Thuật toán tránh vật cản được thực hiện bằng giải thuật logic mờ với các bước cài đặt tương tự như khối hành vi theo người điều khiển. B 6 Obstacle 6 wall 1 2 0 Start A 0 Obstacle 3 5 10 X(m) 15 20 Hình 5.14: Kết quả dẫn đường sử dụng mô hình hành vi. Khối hành vi về đích được thực hiện bằng giải thuật điều khiển ổn định tác giả đã trình bày trong chương 4. Cuối cùng, khối giám sát có nhiệm vụ quản lý, thiết lập mức ưu tiên cho các khối hành vi và quyết định tín hiệu điều khiển nào sẽ được gửi tới bộ phận cơ cấu chấp hành để thực thi. Khối này được cài đặt bằng các luật tương tự như luật điều khiển trong logic mờ. 5.3 Mô phỏng và thực nghiệm Các mô phỏng và thực nghiệm đã được tiến hành để đánh giá thuật toán dẫn đường. Hình 5.14 trình bày kết quả dẫn đường trong môi 19   Obstacle 5 Obstacle 1 4 20   2500 2000 B Time delay (ms) Delay Loss Out-of-order E C D 1. Xây dựng mô hình trạng thái của hệ robot nối mạng trong điều kiện bị tác động bởi độ trì trễ, sự phân phát sai thứ tự dữ liệu, và sự mất mát gói tin. Một hệ robot nối mạng thực đã được phát triển làm cơ sở cho thực nghiệm đánh giá các giải thuật. Mô hình truyền thông đa giao thức đã được đề xuất cho việc truyền tải dữ liệu giữa các thành phần của hệ robot nối mạng. Kết quả này đã được công bố trong các công trình [1][2][3][4][5][10]. F 1500 1000 500 0 200 400 600 800 1000 1200 Time (100ms) 1400 1600 1800 2000 Hình 5.15: Trạng thái mạng trong quá trình dẫn đường. Angular velocity (rad/s) 25 L B 20 R C 15 E 10 A F D 5 0 0 Đóng góp chính của luận án bao gồm: G A 0 dựng mô hình hệ thống, đề xuất thuật toán, và đánh giá thuật toán bằng mô phỏng và thực nghiệm. 200 400 600 800 1000 1200 Time (100ms) G 1400 1600 1800 2000 Hình 5.16: Vận tốc góc của bánh trái và bánh phải trong quá trình dẫn đường. CHƯƠNG 6: KẾT LUẬN Luận án này đã đề xuất các giải thuật cho 3 bài toán cơ bản trong hệ robot nối mạng bao gồm bài toán định vị, điều khiển ổn định, và dẫn đường. Việc xây dựng các thuật toán được thực hiện qua các bước phân tích khả năng ứng dụng, đánh giá nghiên cứu liên quan, xây 2. Đề xuất một giải thuật định vị mới có tên bộ lọc Kalman mở rộng với phép đo quá khứ PO-EKF cho phép định vị chính xác robot trong môi trường mạng. Bộ lọc có thể làm việc với cả hệ tuyến tính và phi tuyến. Nhiều mô phỏng, thực nghiệm, và so sánh đã được thực hiện chứng minh độ chính xác và hiệu năng tính toán của giải thuật. Kết quả này đã được công bố trong các công trình [12][13]. 3. Đề xuất giải thuật điều khiển ổn định trên cơ sở lý thuyết điểu khiển ổn định Lyapunov và bộ lọc dự đoán. Hướng tiếp cận trong giải thuật này tuy tương tự trong [32] nhưng tác giả đã sử dụng bộ lọc hoàn toàn khác cho phép xử lý đồng thời nhiều tác động của mạng với kết quả tối ưu theo nghĩa tối thiểu hiệp phương sai sai số ước lượng. Kết quả này đã được công bố trong các công trình [8][9]. 4. Xây dựng mô hình dẫn đường theo hành vi trong đó đã kết hợp kết quả của các nghiên cứu trên với các khối hành vi khác cho phép dẫn đường cho robot nối mạng trong môi trường không biết trước. Logic mờ đã được ứng dụng nhằm tăng độ thích nghi của hệ thống với các biến thiên mạng. Kết quả này đã được công bố trong các công trình [6][7][11]. 21   22   DANH MỤC CÔNG TRÌNH 1. Trần Quang Vinh, Phùng Mạnh Dương, Trần Hiếu (2005), “Giám sát và điều khiển robot di động qua mạng LAN vô tuyến và Internet”, Tạp chí khoa học Tự nhiên và Công nghệ, Đại học Quốc gia Hà Nội, Tập 21, số 2, tr.85-91. 2. Trần Quang Vinh, Vũ Tuấn Anh, Phùng Mạnh Dương, Trần Hiếu (2006), “Xây dựng robot di động được dẫn đường bằng các cảm biến siêu âm và cảm biến ảnh toàn phương”, Hội nghị Cơ điện tử toàn quốc lần thứ 3 (VCM), tr.153-160. 3. Manh Duong Phung, Quang Vinh Tran, Kok Kiong Tan (2010), “Transport Protocols for Internet-based Real-time Systems: A Comparative Analysis,” The Third International Conference on Communication and Electronics (ICCE). 4. Phùng Mạnh Dương, Quách Công Hoàng, Vũ Xuân Quang, Trần Quang Vinh (2010), “Điều khiển robot di động qua mạng Internet sử dụng kiến trúc truyền thông CORBA”, The International Conference on Engineering Mechanics and Automation (ICEMA), pp.232-237. 5. Trần Quang Vinh, Phạm Mạnh Thắng, Phùng Mạnh Dương (2010), “Mạng thông tin điều khiển trong hệ thống tự động hóa tòa nhà”, Tạp chí Khoa học Tự nhiên và Công nghệ, Đại học Quốc gia Hà Nội, Tập 26, số 2, tr.129-140. 6. Manh Duong Phung, Thanh Van Thi Nguyen, Cong Hoang Quach, Quang Vinh Tran (2010), “Development of a Tele-guidance System with Fuzzy-based Secondary Controller”, The 11th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV), pp.1826-1830. 7. Manh Duong Phung, Thanh Van Thi Nguyen, Tran Quang Vinh (2011), “Control of an Internet-based Robot System Using Fuzzy Logic”, The 2011 IEICE International Conference on Integrated Circuits and Devices in Vietnam (ICDV), pp.98-101. 8. Phùng Mạnh Dương, Nguyễn Thị Thanh Vân, Trần Thuận Hoàng, Trần Quang Vinh (2012), “Điểu khiển ổn định robot di động phân tán qua mạng máy tính sự dụng bộ lọc dự đoán với quan sát quá khứ”, Hội nghị Cơ điện tử Toàn quốc lần thứ 6 (VCM), tr.778-786. 9. T. H. Hoang, P. M. Duong, N. V. Tinh, T. Q. Vinh (2012), “A Path Following Algorithm for Wheeled Mobile Robot Using Extended Kalman Filter”, The 3rd IEICE International Conference on Integrated Circuits and Devices in Vietnam (ICDV), pp.179-183. 10. Manh Duong Phung, Thuan Hoang Tran, Thanh Van Thi Nguyen and Quang Vinh Tran (2012), “Control of Internet-based Robot Systems Using Multi Transport Protocols”, 2012 IEEE International Conference on Control, Automation and Information Sciences (ICCAIS), pp.294299. 11. P. M. Duong, T. T. Hoang, N. T. T. Van, D. A. Viet and T. Q. Vinh (2012), “A Novel Platform for Internet-based Mobile Robot Systems”, The 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp.1969-1974. 12. Manh Duong Phung, Thi Thanh Van Nguyen, Thuan Hoang Tran, and Quang Vinh Tran (2013), “Localization of Networked Robot Systems Subject to Random Delay and Packet Loss”, The 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp.1442-1447. 13. Manh Duong Phung, Thi Thanh Van Nguyen, Thuan Hoang Tran, Quang Vinh Tran (2013), “Localization of Internet-based Mobile Robot”, Tạp chí Khoa học Tự nhiên và Công nghệ, Đại học Quốc gia Hà Nội, Tập 29, số 1, tr. 1-13. 23   24  
- Xem thêm -

Tài liệu liên quan