Đăng ký Đăng nhập
Trang chủ Các phép chiếu xuyên tâm và các phép thấu xạ. thể hiện trong mô hình xạ ảnh của ...

Tài liệu Các phép chiếu xuyên tâm và các phép thấu xạ. thể hiện trong mô hình xạ ảnh của không gian affine

.DOC
44
4059
110

Mô tả:

TRƯỜNG ĐẠI HỌC SƯ PHẠM TP.HỒ CHÍ MINH KHOA TOÁN – TIN. — – ĐỀ TÀI : “ CÁC PHÉP CHIẾU XUYÊN TÂM VÀ CÁC PHÉP THẤU XẠ. THỂ HIỆN TRONG MÔ HÌNH XẠ ẢNH CỦA KHÔNG GIAN AFFINE” GVHD: PGS.TS LÊ ANH VŨ. SVTH: NHÓM 3 – TOÁN 2A KHÓA 34. NĂM HỌC: 2009 – 2010. Tháng 5 / 2010 1 MỞ ĐẦU: Felix Klein là người đầu tiên đưa ra cách phân loại hình học theo nhóm các biến đổi trong nó, dựa vào cách phân loại này thì hình học xạ ảnh là môn hình học tổng quát nhất trong tất cả các môn hình học cao cấp và sơ cấp sử dụng công cụ tuyến tính. Số lượng khái niệm, định lí của hình học xạ ảnh không nhiều nhưng nó đúng cho mọi hình học khác. Hơn thế từ một số khái niệm, định lí của hình học xạ ảnh có thể suy ra được các khái niệm, định lí của hình học sơ cấp và affine. Thế mạnh của hình học xạ ảnh là có thể giải quyết các bài toán về tính đồng qui và thẳng hàng (đặc biệt là hình học phẳng) một cách tổng quát. Ngoài ra ta có thể sáng tạo các bài toán sơ cấp qua nguyên lý đối ngẫu, phương pháp đưa điểm ra vô tận.... 2 MỤC LỤC Đề tài: Các phép chiếu xuyên tâm và các phép thấu xạ. Thể hiện trong mô hình xạ ảnh của không gian Affine. A. Mô hình xạ ảnh của không gian Affine. I. Xây dựng mô hình. II. Một số thể hiện trong mô hình. B. Phép chiếu xuyên tâm. I. Định nghĩa. II. Các định lý. III. Đối ngẫu của phép chiếu xuyên tâm. IV. Phép chiếu xuyên tâm và đối ngẫu của nó trong P2. V. Một số ứng dụng. C. Phép thấu xạ. I. Phép thấu xạ cặp. II. Phép thấu xạ đơn. III. Các phép thấu xạ trong không gian xạ ảnh P2 và P3 . IV. Các phép biến đổi affine sinh ra bởi các phép thấu xạ . V. Bài tập. 3 A. MÔ HÌNH XẠ ẢNH CỦA KHÔNG GIAN AFFINE I. XÂY DỰNG MÔ HÌNH: Xuất phát từ không gian affine An ta đã biết cách xây dựng mô hình của không gian xạ ảnh Pn bằng cách thêm vào An những điểm vô tận. Bây giờ ngược lại, từ không gian xạ ảnh Pn ta hãy bỏ bớt đi một số điểm nào đó để xây dựng mô hình của không gian affine. Ta hãy chọn trong Pn một siêu phẳng  bất kỳ và đặt An = Pn \ là tập hợp những điểm thuộc Pn mà không thuộc . Ta sẽ chứng minh An là một không gian affine Gọi Vn+1 là không gian vecto nền của không gian xạ ảnh Pn . Trang bị cho Vn+1 cấu trúc affine chính tắc:  : V n 1  V n 1  V n 1 uu r ( x, y ) a xy : y  x n 1 n 1 Khi đó,  V ,V ,  không gian affine, kí hiệu lại là hiệu là một VAn 1 và kí r n 1 0  V n 1 là điểm 0  VA . Mỗi điểm vectơ X  P n [V n 1 ] (đại diện bởi r x  V n 1 ) tương ứng với một không gian vectơ con một chiều của Vn+1 . Xét đường thẳng affine dX qua O có không gian phương là r x ( không gian vectơ 1 chiều sinh bởi r x ). Đường thẳng affine này chỉ phụ thuộc điểm X mà không phụ thuộc vectơ đại diện. 4 �) trong Pn[Vn+1] ( W là không gian vectơ con n Cho siêu phẳng xạ ảnh    (W chiều trong Vn+1 ). Đặt WA là siêu phẳng affine qua O nhận W làm không gian phương. Ta trang bị cho An  P n [V ] \  cấu trúc không gian affine liên kết với W như sau: Trong Khi đó, VAn 1 lấy một siêu phẳng affine WA song song (nhưng khác) với WA . WA là một không gian affine n chiều nhận W làm không gian phương. Lấy X  An , tức là X  P n [V ] và X   . Khi đó vectơ đại diện của r r  x  W  {0} r  X là x  W . Suy ra  r . n 1  x  W  V d X  WA  X  , X  là duy nhất và ánh xạ Từ đó, ta có:  : An  WA X a X là song ánh. An , W cùng với ánh xạ f : An  A n  W r uuu r uuuuuu ( X , Y ) a XY : X Y  là một không gian affine, thật vậy: A1 : r X  An , v  W : ! X   Wa  ( X )  X  ,(  là song ánh).  Mặt khác do WA là không gian affine n chiều nhận W làm không gian phương nên tồn uuuuuu r r   tại duy nhất Y  Wa sao cho: X Y   v . Lại vì uuur  là song ánh nên có duy nhất uuuuuu r r Y  An (tương ứng với Y+ qua  1 ) thỏa: XY  X Y   v . Vậy r uuu r r n X  A , v  W , !Y  A : XY  v n 5 uuu r uuuuur uuuuuu r uuur uuur uur uuu       X , Y , Z  A : XY  YZ  X Y  Y Z  X Z  XY A2 : n Vậy ta đã trang bị cho An  P n [V ] \  cấu trúc không gian affine liên kết với W. II. MỘT SỐ THỂ HIỆN TRONG MÔ HÌNH: 1. Tọa độ và mục tiêu affine: Xét mục tiêu xạ ảnh   Chọn siêu phẳng  :  A0 , A1 , A2 ,....., An , E của không gian xạ ảnh Pn .   A1 , A2 ,...., An làm siêu phẳng vô tận. Gọi Ei là giao điểm của đường thẳng A0Ai với siêu phẳng chứa các đỉnh Ai còn lại của mục tiêu và điểm E (i=1..n). uuuur Đặt ei = A0 Ei (i=1..n), ta được hệ vectơ {ei}i=1..n là các vectơ cơ sở trong không gian vectơ Vn. Do đó ta có thể dùng bộ điểm {A0; E1, E2,…, En} (1) làm mục tiêu affine của không gian affine An = Pn \. Một điểm X trong Pn có tọa độ xạ ảnh là X(x0: x1:…: xn).(X  ). Do đó x0  0. Ta đặt Xi= xi x0 (i=1..n). Vậy tọa độ điểm X(1:X1: X2:…: Xn). Với điểm O đã chọn (trong cách xây dựng mô hình affine ), ta có: uuur uuuu r  OX  X ,  OA0  A0 ,   ei   Ai i  1, 2,..., n nên uuuuu r uuuuur uuur uuuur OX = OA 0 +X1. A 0 E1 +…+Xn. A 0 En uuuur uuuuu r uuuuur Suy ra A0 X =X1. A 0 E1 +…+Xn. A 0 En     Vậy trong không gian affine, điểm X có tọa độ đối với mục tiêu (1) là X(X1, X1,…, Xn). 2.Các m_phẳng affine: 6 Xét một m_phẳng Pm nào đó của Pn mà không nằm trong siêu phẳng Pn-1 = ( Với   A1 , A2 ,...., An ) . Đối với mục tiêu xạ ảnh đã chọn,  có phương trình x0 = 0 và Pm có phương trình là: n  j 0 aij .x j  0 , i  1, 2,..., n  m Trong đó ma trận A=(a)ij có hạng rank(A) = n – m . Gọi Am là tập hợp những điểm X thuộc Pm mà không thuộc  tức là Am= Pm I An và có tọa độ X(x0: x1: …: xn). Ta n  j 0 có: aij .x j  0 , i  1, 2,..., n  m Do X không thuộc  nên x0 ≠ 0 nên chia 2 vế của phương trình m_phẳng cho x0, ta được: n  j 1 aij . X j  aio  0 , i  1, 2,..., n  m (I) Ta thấy ma trận hệ số của hệ phương trình này cũng có hạng là n – m. Thật vậy, ta hãy xét hệ phương trình sau:  n   aij .x j  0 , i  1, 2,..., n  m .  j 0 x  0  o Đặt 7 a10 a11 a12 L a1n  a11 a12 L a1n    a a a L a a  21 22 2n  20  a L a 21 22 2 n .  và B1   B  K   K     an m ,0 an m ,1 an m ,2 L an m ,n  a a L a   n  m ,1 n  m ,2 n  m , n 1  0 0 K 0   Ta có rank(B) = n – m + 1 vì Pm không thuộc . Nếu rank(B1) < n – m thì rank(B) < n – m +1 (vô lý) nên rank(B1) = n – m. Vậy hệ (I) xác định phương trình của một m_phẳng affine. 3. Các phép biến đổi affine: Trong tập hợp tất cả những phép biến đổi xạ ảnh của Pn, ta xét những phép biến đổi xạ ảnh biến siêu phẳng Pn-1 thành chính nó. Mỗi phép biến đổi như vậy biến mỗi điểm có tọa độ xạ ảnh (x0: x1:…: xn) thành điểm có tọa độ xạ ảnh (x0’: x1’:…: xn’) sao cho nếu x0 = 0 thì x0’ = 0 và nếu x0  0 thì x0’  0. Muốn vậy phương trình của phép biến đổi xạ ảnh cần phải có phương trình x 0 = x0’.Do đó phương trình của phép biến đổi xạ ảnh có dạng: n  ' x   i  aij .x j , i  1, 2,..., n j 0   x'  x 0  0 Trong đó ma trận A của phép biến đổi xạ ảnh là một ma trận vuôn cấp n+1 không suy biến và có dạng: a10 a  20 A= L  an 0 1  a11 L a1n  a21 L a2 n  L L   an1 L ann  0 L 0  Khi đó phép biến đổi xạ ảnh nói trên của P n sẽ sinh ra trên không gian affine An một phép biến đổi affine. Thực vậy, ta hãy lấy một điểm X  An có tọa độ xạ ảnh là (x 0: x1:…: xn), trong đó x0  0. Qua phép biến đổi xạ ảnh nói trên điểm X biến thành điểm X ’ có tọa độ xạ ảnh là (x0’: x1’:…: xn’). Chuyển tọa độ xạ ảnh của X và của X’ sang tọa độ affine ta có phép biến đổi là: 8  X 1'  a11. X 1  a12 .X 2  ...  a1n . X n  a10  '  X 2  a21.X 1  a22 . X 2  ...  a2 n .X n  a20 (*) Với Xi= xi , X’i= x 'i  x0 x0 ...  X '  a .X  a .X  ...  a .X  a n1 1 n2 2 nn n n0  n (i=1..n). Trong đó ma trận A’=(aij),( i,j=1..n) là ma trận vuông cấp n không suy biến nên ta được phương trình (*) là phương trình một phép biến đổi affine. 4. Tỉ số kép: a. Giả sử A,B,C,D là bốn điểm phân biệt nằm trên một đường thẳng xạ ảnh (d) của P n nhưng không có điểm nào trong bốn điểm nằm trên siêu phẳng vô tận =Pn-1. Ta chọn mục tiêu xạ ảnh {Ei;E}i=0..n sao cho E0  A, E1=(d) I . Khi đó các điểm B,C,D có tọa độ biểu thị tuyến tính qua E0 và E1. Ta có: A  E0(1:0:0:…:0), E1(0:1: E1 …:0). Do đó tọa độ các điểm còn lại là: B(1:b:0:…:0), D C(1:c:0:…:0), D(1:d:0:…:0). Do A  B nên b  0. Suy ra E0 (d) B C A Pn-1 1 1 =b  0. 0 b Vậy ta có (ABCD)= 1 0 1 b 1 1 c 0 : 1 1 c b 1 d c d  : . 1 cb d b d Nếu chuyển tọa độ các điểm xạ ảnh sang tọa độ affine ta có: A(0,0,…,0), B(b,0,…,0), C(c,0,…,0), D(d,0,…,0). Từ đó ta tính được tọa độ các vectơ sau: 9 uuu r uuu r uuur uuur CA =(-c,0,…,0), CB =(b-c,0,…,0) , DA =(-d,0,…,0), DB =(b-d,0,…,0) Do đó (ABC)= Vậy ta được (ABCD)= c d và (ABD)= c b d b ( ABC ) ( ABD) b. Nếu có một trong bốn điểm A,B,C,D là điểm vô tận, chẳng hạn là điểm D thì khi đó ta có D  E1 và ta có: (ABCD)= 1 0 1 b 1 1 0 c 0 1 c 1 c :  :  . 1 1 0 cb 1 cb c b 1 Vậy (ABCD  )=(ABC). A. PHÉP CHIẾU XUYÊN TÂM I. Định nghĩa Trong không gian xạ ảnh P n cho 2 siêu phẳng Và  và  và điểm C  P n \ {   } pc :    sao cho X   thành pc ( X )  X ' sao cho CX    X ' Khi đó pc được gọi là phép chiếu xuyên tâm từ  lên  với tâm C. Nhận xét: - Phép chiếu xuyên tâm hoàn toàn xác định bởi cặp siêu phẳng α , β và tâm chiếu C. - Phép chiếu xuyên tâm giữ bất động tất cả những điểm giao của hai siêu phẳng α và β. II. Một số định lý 10 1.Định lý 1 : Nếu coi 2 siêu phẳng  và  là 2 không gian xạ ảnh (n-1) - chiều thì phép chiếu xuyên tâm là một đẳng cấu xạ ảnh. Chứng minh: W n và W 'n Gọi Đặt  là 2 không gian vecto nền của  và      là (n-2)-phẳng {A1 ,..., An 1 , An } hệ điểm độc lập xạ ảnh của  Cho Trong đó: Ai   i  1, n  1 An   \  Ta có: Hệ An'  pc ( An ) {A1 ,..., An 1 , An' } độc lập xạ ảnh. Thật vậy: nếu {A1 ,..., An 1 , An' } phụ thuộc xạ ảnh An'    An'   (vô lý.!) ( Do A1 ,..., An 1 độc lập xạ ảnh trong Thì Gọi ei là vector đại diện của Ai en' là vector đại diện của An'  ) i  1, n e là vector đại diện của C ' Ta có: C , An , An thẳng hàng ' Suy ra: en  aen  be Nếu: a 0 en' b.e b 0 en' a.en Vậy An' An' C An a, b  0 chọn a=1 suy ra: en'  en  be 11 Đặt Do   {e1 ,..., en 1 , en }  '  {e1 ,..., en 1 , e } ' n là 2 cơ sở của dim W n  dim W 'n suy ra tồn tại duy nhất đẳng cấu tuyến tính  : W n  W 'n sao cho  (ei )  ei Ta sẽ chứng minh diện là Lấy W n và W 'n X i  1, n  1 có vector đại diện x thì sẽ có và  ( en )  en' pc ( X )  X '   vector đại  ( x)  x ' X có vector đại diện x . Suy ra: pc ( X )  X '   Do X    x  x0 e0  x1e0  ....  xn en   ( x )  x0  e0   x1  e0   ....  xn  en    ( x )  x0 e0  x1e0  ....  xn en'   ( x )  x0 e0  x1e0  ....  xn  en  be    ( x )  x0 e0  x1e0  ....  xn en  xnbe   ( x )  x  ce (c  xnb) Suy ra:  ( x ), x, e phụ thuộc tuyến tính nên ba điểm mà  ( x ), x, e đại diện thẳng hàng, tức  ( x) đại diện cho một điểm nào đó thuộc đường thẳng CX . Mặt khác:  ( x )  W 'n và CX    X ' Dẫn đến:  ( x) là vector đại diện của X’ Vậy ta đã chứng minh X pc được có vector đại diện  ( x)  x ' . Do đó pc x cảm sinh từ đẳng cấu tuyến tính thì sẽ có  sao cho pc ( X )  X '   vector đại diện là là một đẳng cấu xạ ảnh. 2.Định lý 2: 12 Cho 2 siêu phẳng  ,  ' trong P n [V n 1 ] thì ánh xạ xạ ảnh f :    ' là một phép chiếu xuyên tâm khi và chỉ khi mọi phần tử của    ' là tự ứng. Tức là M     ', f ( M )  M Chứng minh: Cách 1: Rõ ràng phép chiếu xuyên tâm biến mọi điểm Ngược lại: giả sử f :   ' M     ' thành chính nó. là ánh xạ xạ ảnh mà M     ', f ( M )  M Nếu: +   ' +  ' thì f  id và f là phép chiếu xuyên tâm với tâm C   Đặt W,W’ lần lượt là không gian vector nền của Và  và  ' Z W  W ' n �n 1 ] Gọi:  : W  W ' là đẳng cấu tuyến tính cảm sinh bởi φ với P  [V lúc đó: f   Nhận xét: ( Giờ f|   '  id|   '   |W  W '  id|W  W ' ,   0 ta sẽ chứng minh với 3 điểm thẳng M   \     '  , M '  f ( M )   '\     '  , C  (   ) thì với hàng X  và f ( X )  X '   ' cũng đi qua điểm C. từ đó kết luận C là tâm chiếu ). Lấy M   \     '  có w  W \ Z làm vector đại diện Suy ra:  ( w)  w ' là vector đại diện của f ( M )  M '   '\     '  Khi đó: W  Z   w  , W '  Z   w '  và {w,w’} độc lập tuyến tính. Xét điểm Lấy X  C  MM ' có vector đại diện  w '  w   (W  W ') .  có vector đại diện là x f ( X )  X '   ' có vector đại diện là  ( x)  x ' . Ta có: 13 x  z  aw (z  Z)   (x)    z     aw    (x)   z  aw '   (x)   x  a   w  w '  Điều này nói cho chúng ta biết: X, X’ đi qua C . Tức là f là phép chiếu xuyên tâm từ C lên  lên  '. Cách 2: Gọi Pn-2 = α ∩ β. +) Chiều thuận: f là một phép chiếu xuyên tâm thì hiền nhiên nó giữ bất động những điểm nằm trên Pn-2. +) Chiều đảo: f là ánh xạ xạ ảnh có tính chất f(M) = M với mọi M thuộc P n-2 cần chứng minh f là phép chiếu xuyên tâm. Trong α chọn một mục tiêu xạ ảnh là {A1, A2, …An-1,An, E} với A1, A2, …,An-1 thuộc Pn2 , ta có An, E không thuộc Pn-2 , gọi A’n = f(An) và E’ = f(E). Trên β ta có mục tiêu là {A1, A2, …An-1,A’n, E’} là ảnh của mục tiêu {A1, A2, …An-1,An, E} qua f. Gọi M = AnE ∩ β thì M thuộc Pn-2 do f(M) = M nên đường thẳng A’nE’ cũng qua M. Trong mặt phẳng xạ ảnh tạo bởi hai đường thẳng AnE và A’nE’ gọi C là giao điểm của AnA’n và EE’. Gọi f ’ là phép chiếu xuyên tâm có cơ sở nền là α và β với tâm chiếu là C. Ta có: f ’(A i) = Ai với i = 1,2,…,n-1 do Ai với i = 1,2,…,n-1 nằm trên Pn-2 và f ’(An) = A’n và f ’(E) = E’. Do sự xác định duy nhất của phép biến đổi xạ ảnh xác định bởi {A1, A2, …An-1,An, E} và {A1, A2, …An-1,A’n, E’} nên f ≡ f ’. Vậy f là phép chiếu xuyên tâm. 14 3.Định lý 3: Trong P n với cho hai siêu phẳng  và  ' . Giả sử f :    ' là một ánh xạ xạ ảnh, không phải là phép chiếu xuyên tâm. Khi đó ta có thể phân tích f thành tích của m phép chiếu xuyên tâm với m  n  1 Chứng minh:  Xét trường hợp  ' và trong    ' có một p-phẳng  mà mọi điểm  của đều tự ứng đối với f  0  p  n  2  . Vì f không phải là phép chiếu xuyên tâm nên      ' . Lấy một điểm A  nhưng A   ' , điểm I   , điểm B trên đường thẳng IA mà không trùng với I, A. Đặt A’=f(A), B’=f(B), thì A’B’ đi qua I. Do đó AA’ và BB’ cắt nhau tại một điểm C nào đó. Lấy một siêu phẳng Gọi g1 :  '  Khi đó, tích 1 chứa  và A nhưng không chứa A’ thì chứa cả B. 1 là phép chiếu xuyên tâm bởi tâm C. g1 o f :   1 là một ánh xạ xạ ảnh, (p+1)-phẳng tổng   A nằm trên giao   1 và mọi điểm của (p+1)-phẳng tổng   A đều bất động đối với g1 o f (vì các điểm trên  đều bất động khi qua f và g1 nên  bất động qua g1 o f và A qua f biến thành A’ mà A’ qua g 1 biến thành giao điểm của CA’ với α1 tức là điểm A vậy A bất biến qua g1 o f , mọi điểm thuộc   A đều biểu thị qua p+1 điểm độc lập trong β và A suy ra nó bất động ). Nếu g1 o f không phải là phếp chiếu xuyên tâm ( tức là   A    1 ) thì cho g1 o f đóng vai trò như f ban đầu ta lại có phép chiếu xuyên tâm g 2 : 1   2 sao 15 cho g 2 og1 o f :    2 trong   2 giữ bất động mọi điểm của một (p+2)- phẳng nào đó nằm . Tiếp tục cách làm như thế sau một số hữu hạn bước ta có thể tìm được các phép chiếu xuyên g1 :  '  1 , g 2 : 1   2 ,...., g p :  p 1   p sao tâm cho tích h  g q o.... og1 o f :    q giữ bất động các điểm của một (n-2)-phẳng. Do đó h là một phép chiếu xuyên tâm. 1 1 Suy ra f  g1 o.... og q oh là tích của q+1 phép chiếu xuyên tâm. Vì q p  n2 nên q  1  n  p  1  n  1.  Xét trường hợp  ' với f. Lấy một điểm điểm số   ' không có điểm nào tự ứng dối C   , đặt C’=f(C) rồi lấy một siêu phẳng  '' đi qua C, không đi qua C’ mà bởi tâm là một điểm và trong  ''   . Gọi s :  '   '' là phép chiếu xuyên tâm U  CC ' , thì s o f :    '' là một ánh xạ xạ ảnh có C     '' tự ứng . Áp dụng trường hợp trên suy ra là tích của một  n  1 phép chiếu xuyên tâm. Do đó f là tích của một số xuyên tâm. Cuối cùng xét trường hợp  n phép chiếu    ' . Chỉ cần lấy một phép chiếu xuyên tâm r :  '   ''' nào đó thì r o f :    ''' là một ánh xạ xạ ảnh rơi vào một trong hai trường hợp trên. Suy ra f là tích của một số  n  1 phép chiếu xuyên tâm. III.Đối Ngẫu Của Phép Chiếu Xuyên Tâm: Cũng như nhiều các khái niệm, định lý trong hình học xạ ảnh thì phép chiếu xuyên tâm cùng với các định lý bài tập về nó thì đều có đối ngẫu. Do tính đối ngẫu cho nên ở đây chúng tôi chỉ nêu khái niệm và định lý mà không chứng minh lại. Và hãy xem như là một bài tập 16 1 Định nghĩa: Trong không gian xạ ảnh P n cho 2 điểm O và O’ và siêu phẳng   P n \ OO ' Gọi B là bó đường thẳng tâm O , B’ là bó đường thẳng tâm O’ Và p : B  B ' theo quy tắc m  B biến thành p (m)  m ' sao cho    m O '  m ' Khi đó p được gọi là phép chiếu xuyên siêu phẳng từ O lên O’ với cơ sở  và 2 tâm O,O’ n=2 phép chiếu xuyên siêu phẳng được gọi lại là phép chiếu xuyên trục. 2. Một số định lý: Định lý 1: phép chiếu xuyên siêu phẳng là một ánh xạ xạ ảnh. Định lý 2: Điều kiện cần và đủ để một ánh xạ xạ ảnh là phép chiếu xuyên siêu phẳng là đường nối hai tâm phải tự ứng. Định lý 3: Một ánh xạ xạ ảnh không phải là phép chiếu xuyên xạ ảnh đều có thể phân tích thành không quá n+1 phép chiếu xuyên siêu phẳng. 3. Bài tập áp dụng. Hãy phát biểu các bài tập ở mục 1.4 dưới dạng bài toán đối ngẫu rồi chứng minh bằng phép chiếu xuyên siêu phẳng. IV. Phép chiếu xuyên tâm và đối ngẫu của nó trong P2: 1. Định nghĩa : a) Định nghĩa 1: Trong mặt phẳng xạ ảnh, một ánh xạ xạ ảnh giữa hai hàng điểm gọi là phép chiếu xuyên tâm (phép phối cảnh) nếu các đường thẳng nối các điểm tương ứng luôn đi qua một điểm C cố định, điểm C được gọi là tâm phối cảnh. 17 b) Đối ngẫu của định nghĩa 1: Trong mặt phẳng xạ ảnh, một ánh xạ xạ ảnh giữa hai chùm đường thẳng được gọi là phép chiếu xuyên trục (phép phối cành) nếu giao điểm của các cặp đường thẳng tương ứng luôn nằm trên một đường thẳng t cố định, đường thẳng t được gọi là trục phối cảnh. 2.Định lý: a) Định lý 1: Điều kiện cần và đủ để một ánh xạ xạ ảnh f giữa hai hàng điểm {m} và {m’} là phép chiếu xuyên tâm là giao điểm O của hai giá tự ứng, tức f(O) = O. b) Định lý đối ngẫu của định lý 1: Điều kiện cần và đủ để một ánh xạ xạ ảnh f giữa hai chùm đường thẳng {S} và {S’} là phép chiếu xuyên trục là đường thẳng nối S và S’ tự ứng, tức f(SS’) = SS’. V.Một số áp dụng: Áp dụng 1 : Chứng minh định lý papus bằng phép chiếu xuyên tâm Trong mặt phẳng xạ ảnh cho 2 đường thẳng phân biệt d1 , d 2 cắt nhau tại O. Trên d1 cho 3 điểm phân biệt A, B, C  O . Trên d2 cho 3 điểm phân biệt A’, B’, C’ khác O . Gọi D,E,F lần lượt là giao điểm của BC’ và B’C, CA’ và AC’ , AB’ và A’B. Khi đó D,E,F thẳng hàng. Chứng minh: Gọi M  AC ' B ' C và N  AB ' A ' C 18 Xét các phép chiếu xuyên tâm h : AB '  d1 với tâm A’ và g : d1  B ' C với tâm C’ Đặt f  gh : AB '  B ' C f biến B’ thành B’ => f là phép chiếu xuyên tâm từ AB’ đến B’C. Ngoài ra, f lần lượt biến A,F,N lần lượt thành M,D,C. Vì vậy, AM   AC ' ,DF, NC   A ' C  đồng quy tại tâm chiếu của f. Mà AC ' A ' C  E suy ra D,E,F thẳng hàng. Áp dụng 2: (Chứng minh định lý Desargues thứ I ) Trong mặt phẳng xạ ảnh cho hai tam đỉnh ABC và A’B’C’. D  AB  A ' B ', E  BC  B ' C ', F  AC  A ' C ' Chứng minh D,E,F thẳng hàng khi và chỉ khi AA’,BB’,CC’ đồng quy. Chứng minh: Chiều thuận: Gọi M  CC ' A ' B ', N  CC ' DF , P  CC ' AB . Xét 2 phép chiếu xuyên tâm sau: h : AB  DF với tâm C biến A,B,D,P thành F,E,D,N g : DF  AB ' với tâm C’ biến F,E,D,N thành A’,B’,D,M 19 Đặt f  g oh : AB  A ' B ' là phép chiếu xuyên tâm (Do là tích của các phép chiếu xuyên tâm và f giữ bất động D  AB  A ' B ' ) Do đó: AA’, BB’,MP   CC ' phải đồng quy tại tâm chiếu O của f. Suy ra: AA’, BB’, CC’ đồng quy. Chiều đảo: Xét hai tam đỉnh DBB’ và FCC’ có A = DB∩FC, A’ = DB’∩FC’, O = BB’∩CC’ do O, A, A’ thẳng hàng (do AA’, BB’, CC’ đồng qui tại O ) nên áp dụng chiều thuận của định lý Desargues thứ I thì BC, B’C’, DF đồng qui tại E, tức D, E, F thẳng hàng. Bài Tập áp dụng: Chứng minh các bài toán sau bằng phép chiếu xuyên tâm: a) Định lý Menalaus 2 b) Trong P  V  , cho 2 đường thẳng phân biệt d và d’ và ba điểm phân biệt A, B ,C không thuộc các đường thẳng đó. Một đường thẳng thay đổi đi qua A cắt d tại M, cắt d’ tại M’. Gọi N’ là giao điểm của BM và d’, N là 2 giao điểm CM’ và d. Chứng minh rằng có điểm I  P  V  để I, N, N’ luôn thẳng hàng. Xét trường hợp đặc biệt khi B trùng với C. 2 c) Trong P  V  , cho 2 đường thẳng phân biệt d và d’ và ba điểm phân biệt A, B ,C không thuộc các đường thẳng đó. Một đường thẳng thay đổi đi qua A cắt d tại M, cắt d’ tại M’. Xác định tập hợp giao điểm của BM và CM’. Chọn đường thẳng vô tận qua A,B,C từ đó suy ra một kết quả của hình học affine phẳng bằng mô hình xạ ảnh của không gian affine. 20
- Xem thêm -

Tài liệu liên quan