Đăng ký Đăng nhập
Trang chủ Tính điều khiển được của một số lớp phương trình parabolic...

Tài liệu Tính điều khiển được của một số lớp phương trình parabolic

.PDF
122
458
103

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ——————— * ——————— VŨ MẠNH TỚI TÍNH ĐIỀU KHIỂN ĐƯỢC CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH PARABOLIC LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2016 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ——————— * ——————— VŨ MẠNH TỚI TÍNH ĐIỀU KHIỂN ĐƯỢC CỦA MỘT SỐ LỚP PHƯƠNG TRÌNH PARABOLIC Chuyên ngành: Phương trình vi phân và tích phân Mã số: 62 46 01 03 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. Cung Thế Anh Hà Nội - 2016 1 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của tôi dưới sự hướng dẫn của PGS.TS. Cung Thế Anh. Các kết quả được phát biểu trong luận án là hoàn toàn trung thực và chưa từng được ai công bố trong bất cứ một công trình nào khác. Nghiên cứu sinh Vũ Mạnh Tới 2 LỜI CẢM ƠN Luận án được hoàn thành dưới sự hướng dẫn nghiêm khắc, tận tình, chu đáo của PGS.TS. Cung Thế Anh. Tác giả xin bày tỏ lòng kính trọng và biết ơn sâu sắc PGS.TS. Cung Thế Anh, người Thầy đã dẫn dắt tác giả làm quen với nghiên cứu khoa học từ những ngày sau khi tốt nghiệp đại học. Ngoài những chỉ dẫn về mặt khoa học, sự động viên và lòng tin tưởng của thầy dành cho tác giả luôn là động lực lớn giúp tác giả say mê trong nghiên cứu. Tác giả xin trân trọng gửi lời cảm ơn đến Ban Giám hiệu, Phòng sau Đại học, Ban Chủ nhiệm Khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội, đặc biệt là các thầy cô giáo trong Bộ môn Giải tích, Khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội đã luôn giúp đỡ, động viện, tạo môi trường học tập nghiên cứu thuận lợi cho tác giả. Tác giả xin được bày tỏ lòng biết ơn đến Ban Giám hiệu trường Đại học Thủy lợi, các thầy cô và các anh chị đồng nghiệp công tác tại Bộ môn Toán, Khoa Công nghệ Thông tin, Trường Đại học Thủy lợi đã luôn tạo điều kiện thuận lợi, giúp đỡ và động viên tác giả trong suốt quá trình học tập và nghiên cứu. Lời cảm ơn sau cùng, tác giả xin dành cho gia đình, những người luôn yêu thương, chia sẻ, động viên tác giả vượt qua khó khăn để hoàn thành luận án. 3 Mục lục Lời cam đoan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Một số kí hiệu dùng trong luận án . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 MỞ ĐẦU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1. LÍ DO CHỌN ĐỀ TÀI . . . . . . . . . . . . . . . . . . . . . . . 7 2. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU . . . . . . . . . . . . . 9 3. MỤC ĐÍCH, ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU . . . 12 4. PHƯƠNG PHÁP NGHIÊN CỨU . . . . . . . . . . . . . . . . . 13 5. KẾT QUẢ CỦA LUẬN ÁN . . . . . . . . . . . . . . . . . . . . 13 6. CẤU TRÚC CỦA LUẬN ÁN . . . . . . . . . . . . . . . . . . . 15 Chương 1. MỘT SỐ KIẾN THỨC CHUẨN BỊ . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.1. MỘT SỐ KHÔNG GIAN HÀM . . . . . . . . . . . . . . . . . . 16 1.1.1. Một số không gian hàm . . . . . . . . . . . . . . . . . . 16 1.1.2. Không gian hàm phụ thuộc thời gian . . . . . . . . . . . 17 1.2. LÍ THUYẾT ĐIỀU KHIỂN ĐƯỢC CỦA HỆ TUYẾN TÍNH TRONG KHÔNG GIAN VÔ HẠN CHIỀU . . . . . . . . . . . 18 1.2.1. Một số định nghĩa . . . . . . . . . . . . . . . . . . . . . 18 1.2.2. Phương pháp duy nhất Hilbert (HUM) 20 . . . . . . . . . 4 1.3. MỘT SỐ BẤT ĐẲNG THỨC THƯỜNG DÙNG . . . . . . . . 21 1.3.1. Một số bất đẳng thức kiểu Hardy . . . . . . . . . . . . . 21 1.3.2. Một số bất đẳng thức sơ cấp . . . . . . . . . . . . . . . 23 1.4. MỘT SỐ KẾT QUẢ THƯỜNG DÙNG . . . . . . . . . . . . . 24 Chương 2. TÍNH ĐIỀU KHIỂN ĐƯỢC VỀ 0 CỦA PHƯƠNG TRÌNH PARABOLIC CHỨA TOÁN TỬ GRUSHIN . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.1. ĐẶT BÀI TOÁN VÀ PHÁT BIỂU KẾT QUẢ CHÍNH . . . . . 26 2.2. MỘT SỐ KẾT QUẢ BỔ TRỢ . . . . . . . . . . . . . . . . . . 28 2.2.1. Tính đặt đúng của bài toán . . . . . . . . . . . . . . . . 28 2.2.2. Khai triển Fourier . . . . . . . . . . . . . . . . . . . . . 29 2.2.3. Tốc độ tán xạ . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4. Bất đẳng thức Carleman . . . . . . . . . . . . . . . . . . 32 2.3. CHỨNG MINH KẾT QUẢ CHÍNH . . . . . . . . . . . . . . . 44 2.3.1. Lược đồ chứng minh Định lí 2.1 . . . . . . . . . . . . . . 44 2.3.2. Bất đẳng thức quan sát được . . . . . . . . . . . . . . . 45 2.3.3. Chứng minh tính không điều khiển được trong Định lí 2.1 49 Chương 3. TÍNH ĐIỀU KHIỂN ĐƯỢC VỀ 0 KHI THỜI GIAN ĐỦ LỚN CỦA PHƯƠNG TRÌNH PARABOLIC CHỨA TOÁN TỬ GRUSHIN VỚI THẾ VỊ KÌ DỊ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1. ĐẶT BÀI TOÁN VÀ PHÁT BIỂU KẾT QUẢ CHÍNH . . . . . 55 3.2. CHỨNG MINH KẾT QUẢ CHÍNH . . . . . . . . . . . . . . . 58 3.2.1. Khai triển Fourier và tốc độ tán xạ . . . . . . . . . . . . 58 3.2.2. Tính quan sát được đều của bài toán liên hợp . . . . . . 62 3.3. CHỨNG MINH BẤT ĐẲNG THỨC CARLEMAN . . . . . . . 67 3.3.1. Một số tính chất của hàm trọng . . . . . . . . . . . . . 67 3.3.2. Chứng minh Định lí 3.3 . . . . . . . . . . . . . . . . . . 70 5 Chương 4. TÍNH ĐIỀU KHIỂN ĐƯỢC VỀ 0 CỦA MỘT LỚP PHƯƠNG TRÌNH PARABOLIC MỘT CHIỀU NỬA TUYẾN TÍNH SUY BIẾN VỚI THẾ VỊ KÌ DỊ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.1. ĐẶT BÀI TOÁN . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2. TÍNH ĐẶT ĐÚNG CỦA BÀI TOÁN . . . . . . . . . . . . . . 88 4.2.1. Không gian hàm và toán tử . . . . . . . . . . . . . . . . 88 4.2.2. Tính đặt đúng của bài toán . . . . . . . . . . . . . . . . 89 4.3. TÍNH ĐIỀU KHIỂN ĐƯỢC VỀ 0 . . . . . . . . . . . . . . . . 95 4.3.1. Tính điều khiển được về 0 của bài toán tuyến tính hóa . 95 4.3.2. Tính điều khiển được về 0 của bài toán nửa tuyến tính . 103 KẾT LUẬN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 1. KẾT QUẢ ĐẠT ĐƯỢC . . . . . . . . . . . . . . . . . . . . . . 110 2. KIẾN NGHỊ MỘT SỐ VẤN ĐỀ NGHIÊN CỨU TIẾP THEO . 110 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN . . . . . 112 TÀI LIỆU THAM KHẢO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 MỘT SỐ KÍ HIỆU THƯỜNG DÙNG TRONG LUẬN ÁN C0∞ (Ω) không gian các hàm khả vi vô hạn có giá compact trong Ω ∥ · ∥∞ chuẩn trong L∞ (Ω × (0, T )) S01 (Ω) không gian Sobolev có trọng dùng để nghiên cứu các bài toán chứa toán tử Grushin (xem trang 28) 1 Sµ,0 (Ω) không gian Sobolev có trọng dùng để nghiên cứu các bài toán chứa toán tử Grushin với thế vị kì dị (xem trang 57) 1 Hα,0 (0, 1) không gian Sobolev có trọng dùng để nghiên cứu bài toán chứa toán tử suy biến một chiều (xem trang 88) Gs toán tử Grushin (xem trang 9) ∇ vectơ gradient ∆ toán tử Laplace D2 ma trận Hessian div ≡ ∇· toán tử divergence I toán tử đồng nhất IN1 ma trận đơn vị cấp N1 0RN1 phần tử 0 trong RN1 1ω hàm đặc trưng của miền ω ⇀ hội tụ yếu a⊗b tích tensor giữa hai vectơ a và b 7 MỞ ĐẦU 1. LÍ DO CHỌN ĐỀ TÀI Trong khoảng hai thập kỉ gần đây, tính điều khiển được (bao gồm tính điều khiển được chính xác, tính điều khiển được về 0, tính điều khiển được xấp xỉ) đã được nghiên cứu đối với nhiều lớp phương trình đạo hàm riêng tuyến tính và nửa tuyến tính. Bởi phương pháp duy nhất Hilbert HUM (Hilbert Uniqueness Method) đề xuất bởi J.-L. Lions (xem [48, 49, 50]), tính điều khiển được của bài toán tuyến tính được qui về tính quan sát được của bài toán liên hợp tương ứng. Để thiết lập tính quan sát được của bài toán liên hợp tương ứng thông qua các bất đẳng thức quan sát, một trong những công cụ hiệu lực nhất là các ước lượng kiểu Carleman toàn cục. Còn tính điều khiển được của bài toán nửa tuyến tính được chứng minh bằng cách sử dụng tính điều khiển được của bài toán tuyến tính hóa tương ứng và phương pháp điểm bất động đề xuất lần đầu tiên bởi Zuazua [68, 69] cho phương trình truyền sóng nửa tuyến tính. Một trong những lớp phương trình đạo hàm riêng được nghiên cứu nhiều là lớp phương trình tiến hóa kiểu parabolic, chứa đựng phương trình truyền nhiệt cổ điển, nhiều lớp phương trình parabolic xuất hiện trong hóa học, sinh học và trong cơ học chất lỏng. Nghiên cứu tính điều khiển được của các phương trình parabolic đã thu hút sự quan tâm của nhiều nhà toán học trong khoảng hai thập niên gần đây. Sau những nghiên cứu tiên phong của Fursikov và Imanuvinov [37, 43], Lebeau và Robbiano [46] bằng công cụ ước lượng Carleman, đã có nhiều tiến bộ trong việc tìm hiểu về các tính chất điều khiển được của các phương trình parabolic không suy biến với các hệ số biến thiên. Các kết 8 quả này cũng được mở rộng cho các bài toán parabolic nửa tuyến tính trong [29, 31, 32, 33, 34, 70, 71]. Các kết quả đạt được đều dựa trên công cụ chính là bất đẳng thức Carleman cho nghiệm của bài toán liên hợp tương ứng. Các bất đẳng thức Carleman được thiết lập khi này yêu cầu phần chính của phương trình là toán tử elliptic đều, miền bị chặn và không có thế vị kì dị. Bên cạnh đó, tính điều khiển được của các phương trình parabolic đều trong miền không bị chặn cũng đã được nghiên cứu trong [18, 38, 55]. Có thể nói ngày nay lí thuyết điều khiển được đối với các phương trình parabolic đều đã khá hoàn thiện trong cả trường hợp tuyến tính và nửa tuyến tính. Trong khoảng một thập kỉ trở lại đây, tính điều khiển được của phương trình parabolic suy biến, không có hoặc có thế vị kì dị, đã được nghiên cứu bởi nhiều nhà toán học. Những nghiên cứu này được thúc đẩy bởi nhiều bài toán vật lí khác nhau như mô hình tầng lớp biên [17], các mô hình di truyền quần thể cá, các mô hình khí hậu Bydyko-Sellers, . . . . Tuy nhiên, hầu hết các kết quả đạt được hiện tại chủ yếu trong trường hợp một chiều (xem [2, 19, 20, 23, 24, 35, 36, 52, 53, 62] và các tài liệu trích dẫn trong đó), trong khi mới chỉ có rất ít kết quả điều khiển được trong trường hợp nhiều chiều, chủ yếu là trường hợp hai chiều đối với phương trình parabolic chứa toán tử div(A(x)∇u) với A(x) là ma trận vuông cấp hai đối xứng [25], phương trình parabolic chứa toán tử Grushin [12], phương trình Kolmogorov [11, 45], và một lớp phương trình suy biến nhiều chiều với số hạng đối lưu [65, 66, 67]. Ngoài ra, các kết quả về tính điều khiển được của các phương trình suy biến/kì dị nửa tuyến tính vẫn còn rất ít. Đây đang là những vấn đề thời sự thu hút được sự quan tâm nghiên cứu của nhiều nhà toán học trong và ngoài nước. Chúng tôi sẽ chọn những vấn đề này làm đề tài nghiên cứu trong luận án tiến sĩ của mình. 9 2. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU Như đã đề cập đến trong phần Lí do chọn đề tài, việc nghiên cứu tính điều khiển được của các phương trình parabolic suy biến hoặc có thế vị kì dị trong trường hợp nhiều chiều hoặc trong trường hợp nửa tuyến tính đang là vấn đề thời sự hiện nay. Dưới đây, chúng tôi điểm qua một số kết quả tiêu biểu theo hướng nghiên cứu này: Một trong những lớp phương trình suy biến nhiều chiều được nghiên cứu mạnh trong vài năm gần đây là lớp phương trình chứa toán tử Grushin Gs u = ∆x u + |x|2s ∆y u, s ≥ 0. Toán tử này được đưa ra đầu tiên bởi Grushin trong [41]. Chú ý rằng G0 = ∆ là toán tử Laplace, và Gs khi s > 0, không là elliptic trong những miền có giao với mặt x = 0. Đây là ví dụ điển hình cho lớp toán tử hypoelliptic, nhưng không là elliptic. Sự tồn tại và dáng điệu tiệm cận nghiệm của các phương trình và hệ parabolic nửa tuyến tính chứa toán tử này đã được nghiên cứu gần đây trong cả trường hợp ôtônôm và không ôtônôm (xem, chẳng hạn, [4, 5, 7]). Tính điều khiển được của phương trình parabolic chứa toán tử Grushin được nghiên cứu đầu tiên trong trường hợp hai chiều bởi Beauchard, Cannarsa và Guglielmi [12]. Xem thêm kết quả gần đây trong [14]. Tuy nhiên, tính điều khiển được của lớp phương trình này trong trường hợp nhiều chiều vẫn còn nhiều vấn đề mở. Một lớp phương trình parabolic rất được quan tâm khác là lớp phương trình parabolic chứa toán tử Laplace với thế vị kì dị: Aµ = −∆ − µ/|x|2 . Các kết quả về tính đặt đúng của bài toán cũng như dáng điệu tiệm cận nghiệm của phương trình parabolic chứa tử Aµ đã được nghiên cứu bởi nhiều nhà toán học (xem [8, 9, 16, 64] và các tài liệu trích dẫn trong đó). Trong khi đó, tính điều khiển được của phương trình parabolic chứa toán tử này đã nhận được trong các công trình của Vancostenoble-Zuazua [63] và Ervedoza [30] cho trường hợp 10 kì dị ở bên trong miền, và Cazacu [26] cho trường hợp kì dị ở trên biên. Gần đây, trong trường hợp hai chiều, tính điều khiển được xấp xỉ cho phương trình parabolic chứa toán tử Grushin với thế vị kì dị µ/|x|2 đã được nghiên cứu bởi Morancey [56] nhờ tính chất thác triển duy nhất của toán tử tương ứng. Hơn nữa, trong [21], các tác giả đã chứng minh tính điều khiển được về 0 khi thời gian đủ lớn cho phương trình parabolic chứa toán tử Grushin với thế vị kì dị µ/|x|2 khi s = 1 và miền không gian là (0, 1) × (0, 1), tức là, với suy biến và kì dị ở trên biên. Như đã đề cập trong [21, 56], tính điều khiển được về 0 là vấn đề hoàn toàn mở khi có suy biến và thế vị kì dị ở bên trong miền. Xét toán tử parabolic suy biến và có thế vị kì trong trường hợp một chiều: P u = ut − (xα ux )x − λ u, x ∈ (0, 1), α ≥ 0, xβ (1) với các điều kiện biên tương ứng tùy thuộc vào α. Toán tử này có rất nhiều điều thú vị. Trong trường hợp α = 0 và β = 2, ta có thế vị kì dị dạng nghịch đảo bình phương mà xuất hiện trong vật lí phân tử, cơ học lượng tử phi tương đối, vũ trụ học lượng tử hay trong lí thuyết cháy nổ (xem [10, 58] và các tài liệu trích dẫn trong đó). Thế vị này sinh ra nhiều hiện tượng thú vị và trong nghiên cứu của Baras và Goldstein [9] chỉ ra rằng: Nghiệm dương tồn tại toàn cục (với mọi λ ∈ R) nếu β < 2 nhưng trái lại thì nghiệm bùng nổ hoàn toàn (với mọi giá trị của λ) nếu β > 2. Do đó, số mũ β = 2 là số mũ tới hạn. Điều đó cho thấy trường hợp có thế vị λ/|x|2 thực sự thú vị. Khi số mũ là tới hạn, tức là khi β = 2, giá trị của tham số λ sẽ quyết định dáng điệu nghiệm của phương trình. Thật vậy, cũng trong [9] đã chỉ ra rằng nghiệm dương tồn tại toàn cục khi λ ≤ 1/4 và nghiệm bùng nổ hoàn toàn khi λ > 1/4. Giá trị tới hạn 1/4 của tham số λ là giá trị tối ưu trong bất đẳng thức Hardy ∫ 1 ∫ 1 1 u2 2 dx với mọi u ∈ H01 (0, 1). ux dx ≥ 2 4 x 0 0 (2) Trong trường hợp toán tử (1) không có kì dị (β = 0), tính điều khiển được về 0 khi α ∈ [0, 2), (khi α ≥ 2, tính không điều khiển được về 0 được chứng minh 11 trong [22]), được chứng minh trong [24] mà công cụ chính là đi thiết lập ước lượng Carleman dựa trên bất đẳng thức Hardy sau ∫ 1 ∫ (1 − α)2 1 u2 α 2 x ux dx ≥ dx, với mọi u ∈ C0∞ (0, 1). 2−α 4 0 0 x (3) Như nói ở trên, trong trường hợp α = 0, từ bất đẳng thức (2), số mũ tới hạn của thế vị kì dị λ/xβ là β = 2. Mặt khác, từ (3) cho thấy số mũ tới hạn của thế vị λ/xβ là β = 2 − α khi α ̸= 0. Điều này dẫn đến khi xét toán tử P phải có giả thiết β ≤ 2 − α. Không mất tính tổng quát, ta giả sử rằng β > 0 vì khi β ≤ 0, thế vị không còn kì dị và kết quả tính điều khiển được có ngay được từ [24]. Như trong trường hợp α = 0, giá trị tới hạn của tham số λ khi β = 2 − α được cho bởi hằng số tối ưu trong (3), tức là λ(α) = (1 − α)2 /4. Do vậy, toán tử P được nghiên cứu với các giả thiết λ ≤ λ(α) trong trường hợp tới hạn β = 2 − α, và không cần điều kiện của λ trong trường hợp dưới tới hạn, tức là khi β < 2 − α. Các kết quả về tính điều khiển được của lớp phương trình parabolic một chiều tuyến tính/nửa tuyến tính suy biến không có thế vị kì dị đã được nghiên cứu trong [2, 19, 20, 23, 24, 52, 53]. Trong trường hợp suy biến và có thế vị kì dị (toán tử cho bởi (1)), tính điều khiển được về 0 mới được Vancostenoble [62] nghiên cứu cho trường hợp tuyến tính. Tính điều khiển được trong trường hợp nửa tuyến tính vẫn hoàn toàn mở. Từ những phân tích ở trên, chúng ta thấy rằng bên cạnh những kết quả đạt được, tính điều khiển được của các phương trình tiến hóa kiểu parabolic suy biến hoặc có thế vị kì dị vẫn còn nhiều vấn đề mở. Nói riêng, những vấn đề mở mà chúng tôi quan tâm nghiên cứu trong luận án này bao gồm: • Tính điều khiển được của phương trình parabolic suy biến chứa toán tử Grushin trong trường hợp nhiều chiều. • Tính điều khiển được của phương trình parabolic suy biến chứa toán tử Grushin với thế vị kì dị kiểu Hardy µ/|x|2 trong trường hợp nhiều chiều. • Tính điều khiển được của phương trình parabolic một chiều suy biến với 12 thế vị kì dị trong trường hợp nửa tuyến tính. Khi nghiên cứu tính điều khiển được của phương trình parabolic tuyến tính thì tính điều khiển được chính xác thường không đạt được do hiệu ứng trơn của nghiệm so với dữ kiện ban đầu. Hơn nữa tính điều khiển được về 0 kéo theo tính điều khiển được xấp xỉ của hệ. Do vậy trong luận án này chúng tôi chỉ tập trung vào việc nghiên cứu tính điều khiển được về 0 của những lớp phương trình trên. Ngoài ra, chúng tôi cũng chỉ xét bài toán khi điều khiển có giá bên trong miền. Bài toán điều khiển biên đối với lớp phương trình parabolic suy biến/kì dị là một vấn đề rất phức tạp và mới chỉ có một vài kết quả gần đây [15, 40]. Chúng tôi lựa chọn những vấn đề trên làm nội dung nghiên cứu của luận án tiến sĩ: "Tính điều khiển được của một số lớp phương trình parabolic". 3. MỤC ĐÍCH, ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU • Mục đích luận án: Nghiên cứu tính điều khiển được về 0 của phương trình parabolic chứa toán tử Grushin trong trường hợp nhiều chiều, phương trình parabolic chứa toán tử Grushin có thế vị kì dị trong trường hợp nhiều chiều, phương trình parabolic một chiều nửa tuyến tính suy biến có thế vị kì dị. • Đối tượng nghiên cứu: Bài toán điều khiển đối với lớp phương trình parabolic chứa toán tử Grushin không có hoặc có thế vị kì dị trong trường hợp nhiều chiều và lớp phương trình parabolic một chiều nửa tuyến tính suy biến có thế vị kì dị. • Phạm vi nghiên cứu: ◦ Nội dung 1: Bài toán điều khiển được đối với phương trình parabolic chứa toán tử Grushin trong miền nhiều chiều. 13 ◦ Nội dung 2: Bài toán điều khiển được đối với phương trình parabolic chứa toán tử Grushin với thế vị kì dị kiểu Hardy trong miền nhiều chiều. ◦ Nội dung 3: Bài toán điều khiển được đối với lớp phương trình parabolic một chiều nửa tuyến tính suy biến với thế vị kì dị. 4. PHƯƠNG PHÁP NGHIÊN CỨU • Để nghiên cứu tính điều khiển được của bài toán tuyến tính, chúng tôi sử dụng phương pháp duy nhất Hilbert (HUM): Tính điều khiển được của bài toán tuyến tính được đưa về tính quan sát được của bài toán liên hợp tương ứng. Sử dụng khai triển Fourier và bởi đẳng thức Bessel-Parseval, vấn đề này được đưa về tính quan sát được đều theo tần số của hệ số Fourier. Bất đẳng thức quan sát được đều sẽ được thiết lập nhờ các bất đẳng thức Carleman mới tương ứng và các đánh giá phù hợp của tốc độ tán xạ. • Để nghiên cứu tính điều khiển được của bài toán nửa tuyến tính, chúng tôi sử dụng phương pháp điểm bất động đề xuất bởi Zuazua: Kết hợp tính điều khiển được của bài toán tuyến tính hóa tương ứng và các định lí điểm bất động phù hợp (trong luận án sử dụng định lí Schauder). 5. KẾT QUẢ CỦA LUẬN ÁN Luận án đạt được những kết quả chính sau đây: • Đối với bài toán điều khiển cho phương trình parabolic chứa toán tử Grushin trong trường hợp nhiều chiều: Chứng minh được tính điều khiển được về 0 tại mọi thời điểm T > 0 khi s ∈ (0, 1) (suy biến yếu). Khi s = 1 (suy biến mạnh) ta chứng minh được tính điều khiển được về 0 khi thời gian điều khiển đủ lớn và tính không điều khiển được về 0 khi thời gian 14 điều khiển quá nhỏ. Chứng minh được tính không điều khiển được về 0 khi s > 1 (suy biến quá mạnh). • Chứng minh được tính điều khiển được về 0 khi thời gian điều khiển đủ lớn của phương trình parabolic chứa toán tử Grushin khi s = 1 với thế vị kì dị µ/|x|2 trong trường hợp nhiều chiều. • Chứng minh được tính điều khiển được về 0 của một lớp phương trình parabolic một chiều nửa tuyến tính suy biến có thế vị kì dị. Các kết quả của luận án là mới, có ý nghĩa khoa học, và góp phần vào việc hoàn thiện lí thuyết điều khiển được đối với lớp phương trình parabolic suy biến không có/có thế vị kì dị. Các kết quả chính đạt được đã được công bố trong 03 bài báo trên các tạp chí khoa học quốc tế uy tín (trong danh mục ISI) và đã được báo cáo tại: • Đại hội Toán học toàn quốc lần thứ VIII, Nha Trang, 08/2013; • Hội thảo quốc tế "On Equilibrium and Fixed Point Problems Theory and Algorithms", Viện NCCC về Toán, Hà Nội, 25-26/08/2014; • Hội thảo quốc tế "Some Selected Problems in Optimization and Control Theory", Viện NCCC về Toán, Hà Nội, 04-07/02/2015; • Hội thảo Tối ưu và Tính toán khoa học lần thứ XIII, Ba Vì, 23-25/04/2015; • Xêmina của Bộ môn Giải tích, Khoa Toán-Tin, Trường Đại học Sư phạm Hà Nội; • Xêmina của Phòng Phương trình vi phân, Viện Toán học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam; • Xêmina của Bộ môn Toán ứng dụng và Tính toán khoa học, Khoa ToánCơ-Tin học, Trường Đại học Khoa học Tự nhiên, ĐHQG Hà Nội. 15 6. CẤU TRÚC CỦA LUẬN ÁN Ngoài phần Mở đầu, Kết luận, Danh mục công trình đã công bố và danh mục Tài liệu tham khảo, luận án gồm 4 chương: Chương 1 trình bày một số kiến thức chuẩn bị. Chương 2 trình bày các kết quả tính điều khiển được về 0 của phương trình parabolic chứa toán tử Grushin trong trường hợp hình hộp nhiều chiều. Chương 3 trình bày tính điều khiển được về 0 khi thời gian đủ lớn của phương trình parabolic chứa toán tử Grushin khi s = 1 với thế vị kì dị kiểu Hardy bên trong miền trong trường hợp nhiều chiều. Chương 4 trình bày tính điều khiển được về 0 của một lớp phương trình parabolic một chiều nửa tuyến tính suy biến với thế vị kì dị. 16 Chương 1 MỘT SỐ KIẾN THỨC CHUẨN BỊ Trong chương này, chúng tôi trình bày một số kiến thức chuẩn bị, bao gồm: Một số không gian hàm, lí thuyết điều khiển được cho các hệ tuyến tính trong không gian vô hạn chiều, một số bất đẳng thức thường dùng và một số kết quả thường dùng. 1.1. MỘT SỐ KHÔNG GIAN HÀM 1.1.1. Một số không gian hàm Cho Ω là tập mở trong RN với biên ∂Ω. Trong luận án này, chúng tôi có sử dụng các không gian hàm quen thuộc sau (xem, chẳng hạn [1]): • Lp (Ω), 1 ≤ p < +∞, là không gian Banach bao gồm tất cả các hàm khả tích Lebesgue bậc p trên Ω với chuẩn (∫ )1/p ∥u∥Lp (Ω) := |u|p dx . Ω Chú ý rằng Lp (Ω) là không gian Banach phản xạ khi 1 < p < +∞; Không gian L2 (Ω) là không gian Hilbert với tích vô hướng ∫ (u, v) = u.vdx, Ω và chuẩn là ∥ · ∥L2 (Ω) = (u, u)1/2 . • L∞ (Ω) là không gian Banach bao gồm tất cả các hàm đo được và bị chặn hầu khắp trên Ω với chuẩn ∥u∥∞ := esssup|u(x)|. Ω 17 • H 1 (Ω) là không gian Hilbert bao gồm tất cả các hàm u ∈ L2 (Ω) sao cho ∂u ∂u có đạo hàm suy rộng ,..., ∈ L2 (Ω) và có chuẩn được xác định ∂x1 ∂xN bởi (∫ ) 1/2 ∥u∥H 1 (Ω) := (|u| + |∇u| )dx 2 2 . Ω • H01 (Ω) là bao đóng của C0∞ (Ω) trong chuẩn của H 1 (Ω). Khi Ω là miền bị chặn thì chuẩn của H01 (Ω) thường dùng là (∫ ∥u∥H01 (Ω) = )1/2 |∇u| dx 2 . Ω • H 2 (Ω) là không gian Hilbert bao gồm tất cả các hàm u ∈ L2 (Ω) có các đạo hàm suy rộng Dα u ∈ L2 (Ω), |α| ≤ 2, và chuẩn xác định bởi ∥u∥H 2 (Ω)  ∫ :=  2 ∑ 1/2 |Dα u|2 dx . Ω |α|=0 1.1.2. Không gian hàm phụ thuộc thời gian Với X là không gian Banach phản xạ với chuẩn ∥ · ∥X và T > 0, khi đó ta có định nghĩa các không gian hàm phụ thuộc thời gian như sau (xem [1]): • C([0, T ]; X) là không gian Banach gồm tất cả các hàm liên tục u : [0, T ] → X với chuẩn ∥u∥C([0,T ];X) := max ∥u(t)∥X . 0≤t≤T • Lp (0, T ; X), 1 ≤ p ≤ +∞ gồm tất cả các hàm đo được u : (0, T ) → X với chuẩn (∫ )1/p T i) ∥u∥Lp (0,T ;X) := 0 ∥u(t)∥pX dt < +∞ với 1 ≤ p < +∞, ii) ∥u∥L∞ (0,T ;X) := esssup∥u(t)∥X < +∞. 0≤t≤T 18 Khi đó Lp (0, T ; X) là không gian Banach, và nó là phản xạ nếu 1 < p < +∞. Không gian đối ngẫu của Lp (0, T ; X) là Lq (0, T ; X ′ ) với 1/p+1/q = 1 và X ′ là không gian đối ngẫu của X. • Với X là không gian Banach, ta định nghĩa H 1 (0, T ; X) là không gian Banach bao gồm các hàm u ∈ L2 (0, T ; X) sao cho tồn tại đạo hàm suy rộng ∂t u ∈ L2 (0, T ; X) với chuẩn (∫ T ∥u∥H 1 (0,T ;X) := )1/2 (∥u(t)∥2X + ∥u′ (t)∥2X )dt < +∞. 0 1.2. LÍ THUYẾT ĐIỀU KHIỂN ĐƯỢC CỦA HỆ TUYẾN TÍNH TRONG KHÔNG GIAN VÔ HẠN CHIỀU Trong phần này chúng tôi trình bày một số kết quả của lí thuyết điều khiển được của hệ tuyến tính trong không gian vô hạn chiều (có thể xem trong một số cuốn sách chuyên khảo [27, 39]):   ∂t u = Au + Bv,  u(0) = u0 . (1.1) Ở đó, u0 ∈ X cho trước, v là điều khiển; A : D(A) ⊂ X → X là toán tử tuyến tính không bị chặn sinh ra nửa nhóm {S(t)}t≥0 và B : U → V là các toán tử xác định trong các không gian Banach sao cho hệ (1.1) đặt đúng. 1.2.1. Một số định nghĩa Ta quan tâm đến tính điều khiển được của (1.1) với các định nghĩa sau. Định nghĩa 1.1. Ta nói rằng hệ điều khiển (1.1) là điều khiển được chính xác tại tại thời điểm T > 0 nếu và chỉ nếu, với mọi u0 , u1 ∈ X , tồn tại hàm điều khiển v ∈ L2 (0, T ; U) sao cho bài toán (1.1) có nghiệm u thỏa mãn: u(T ) = u1 .
- Xem thêm -

Tài liệu liên quan