Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Cảm biến sinh học trên cơ sở transistor hiệu ứng trường (fet) sử dụng ống nano c...

Tài liệu Cảm biến sinh học trên cơ sở transistor hiệu ứng trường (fet) sử dụng ống nano cacbon.

.PDF
154
377
137

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan rằng đề tài: “Cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng (FET) sử dụng ống nano carbon” là công trình của tôi. Tất cả các xuất bản đƣợc công bố chung với các cán bộ hƣớng dẫn khoa học và các đồng nghiệp đã đƣợc sự đồng ý của các tác giả trƣớc khi đƣa vào luận án. Các kết quả trong luận án là trung thực, chƣa từng đƣợc công bố và sử dụng để bảo vệ trong bất cứ một luận án nào khác. Hà Nội, ngày 12 tháng 12 năm 2012 Tác giả luận án Nguyễn Thị Thủy 1 LỜI CẢM ƠN ******* Trong suốt thời gian học tập và nghiên cứu 4 năm tại viện ITIMS đã giúp tôi có thêm rất nhiều kiến thức và kinh nghiệm trong công tác nghiên cứu khoa học. Cùng với sự quan tâm chỉ bảo tận tình, chu đáo của Ban giám đốc, của các Thầy cô giáo, toàn thể cán bộ Viện đào tạo quốc tế về khoa học vật liệu (ITIMS) tới nay tôi đã có thể hoàn thành luận án tiến sĩ: “Cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng (FET) sử dụng ống nano carbon” Để có đƣợc thành quả này, tôi xin đƣợc bày tỏ lòng biết ơn sâu sắc tới GS.TS Nguyễn Đức Chiến và TS. Mai Anh Tuấn - những ngƣời thầy đã nhiệt tình chỉ bảo, định hƣớng và giúp đỡ về mặt khoa học để tôi có thể hoàn thành đề tài luận án tiến sĩ. Tôi xin chân thành cảm ơn tới Ban giám đốc, toàn thể cán bộ Viện đào tạo quốc tế về khoa học vật liệu (ITIMS); Viện Tiên tiến Khoa học và Công nghệ (HAST); Viện đào tạo sau đại học - Trƣờng Đại học Bách khoa Hà Nội, Viện khoa học Việt Nam đã tạo mọi điều kiện về cơ sở vật chất, hỗ trợ về chuyên môn cũng nhƣ thủ tục hành chính trong suốt quá trình học tập và thực hiện đề tài. Tôi cũng xin chân thành cảm ơn tới Ban giám hiệu Trƣờng Đại học điện lực; Khoa điện tử viễn thông - Trƣờng Đại học điện lực đã tạo mọi điều kiện để hỗ trợ tôi trong thời gian đi học và đóng góp những ý kiến quí báu về mặt chuyên môn trong quá trình thực hiện đề tài luận án. Tôi xin gửi lời cảm ơn sâu sắc tới PGS.TS Nguyễn Văn Hiếu, Tiến sỹ Phƣơng Đình Tâm, Thạc sỹ Nguyễn Văn Toán, Tiến sỹ Trần Quang Huy, Tiến sỹ Chu Thị Xuân, Tiến sỹ Phạm Đức Thành, các anh chị đã chỉ dẫn cho tôi những kiến thức và kỹ năng thực nghiệm. Xin chân thành cảm ơn nhóm cảm biến sinh học - Viện ITIMS. Tất cả các kết quả của luận án đều đƣợc thực hiện và giúp đỡ của các anh, chị, em trong nhóm nghiên cứu. Tôi xin chúc các anh, chị, em may mắn và thành đạt trên con đƣờng nghiên cứu khoa học trong tƣơng lai. Xin chân thành cảm ơn đến tất cả các đồng nghiệp, bạn bè, gia đình đã động viên giúp đỡ trong thời gian qua cả về vật chất lẫn tinh thần, sự trợ giúp về chuyên 2 môn, các công việc có liên quan trực tiếp hoặc gián tiếp đến luận án, v.v… đã giúp tôi hoàn thành bản luận án này. Cuối cùng, tôi xin gửi lời cảm ơn sâu sắc đến chồng và hai con tôi, những ngƣời đã động viên, chia sẻ những khó khăn trong suốt thời gian tôi làm luận án. Xin chân thành cảm ơn! Hà Nội, ngày 12 tháng 12 năm 2012 Tác giả luận án Nguyễn Thị Thủy 3 MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT .......................................................9 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ...................................................................11 MỞ ĐẦU ...................................................................................................................17 CHƢƠNG I. CẢM BIẾN SINH HỌC TRÊN CƠ SỞ TRANSISTOR HIỆU ỨNG TRƢỜNG ỐNG NANO CARBON (CNTFETs)......................................................21 I.1 GIỚI THIỆU VI KHUẨN E.COLI .....................................................................21 I.2 GIỚI THIỆU CẢM BIẾN SINH HỌC ................................................................22 I.3 GIỚI THIỆU ỐNG NANO CARBON ................................................................25 I.3.1 Cấu tạo của ống nano carbon ............................................................................25 I.3.2 Tính chất của ống nano carbon .........................................................................28 I.3.3 Phƣơng pháp chế tạo ống nano carbon .............................................................29 I.4 TRANSISTOR HIỆU ỨNG TRƢỜNG TRÊN CƠ SỞ CẤU TRÚC MOS (MOSFET) ................................................................................................................30 I.5 TRANSISTOR HIỆU ỨNG TRƢỜNG TRÊN CƠ SỞ ỐNG NANO CARBON (CNTFETs) ...............................................................................................................33 I.5.1 Cấu tạo và nguyên lý hoạt động của CNTFETs ...............................................33 I.5.2 Công nghệ chế tạo CNTFETs ...........................................................................35 I.5.2.1 Transistor hiệu ứng trƣờng ống nano carbon cực cổng dƣới .........................35 I.5.2.2 Transistor hiệu ứng trƣờng ống nano carbon cực cổng trên ..........................37 I.6 GIỚI THIỆU CHUNG VỀ ADN .........................................................................38 I.7 CÁC PHƢƠNG PHÁP CỐ ĐỊNH ADN LÊN BỀ MẶT ỐNG NANO CARBON CHO CẢM BIẾN SINH HỌC. .................................................................................40 I.7.1 Phƣơng pháp hấp phụ vật lý .............................................................................41 I.7.2 Phƣơng pháp liên kết cộng hoá trị ....................................................................43 I.8 CẢM BIẾN SINH HỌC TRÊN CƠ SỞ CNTFETs PHÁT HIỆN LAI HOÁ ADN ..........................................................................................................................46 I.9 KẾT LUẬN..........................................................................................................47 4 CHƢƠNG II. NGHIÊN CỨU CÔNG NGHỆ BIẾN TÍNH VÀ PHÂN TÁN ỐNG NANO CARBON ĐỊNH HƢỚNG ỨNG DỤNG TRONG CẢM BIẾN SINH HỌC VÀ CHẾ TẠO CNTFETs .........................................................................................49 II.1 GIỚI THIỆU .......................................................................................................49 II.1.1 Các phƣơng pháp biến tính CNTs ...................................................................49 II.1.2 Các phƣơng pháp phân tán ống nanno carbon (CNTs) ...................................51 II.2 VẬT LIỆU VÀ PHƢƠNG PHÁP ......................................................................53 II.2.1 Vật liệu hoá chất ..............................................................................................53 II.2.2 Quy trình biến tính và phân tán ống nano carbon ...........................................54 II.2.2.1 Xây dựng hệ thiết bị phản ứng .....................................................................54 II.2.2.2 Phƣơng pháp biến tính ống nano carbon (CNTs) .........................................55 II.2.2.3 Phƣơng pháp phân tán ống nano carbon trong dung dịch DMF ..................56 II.2.3 Cố định ADN sử dụng ống nano carbon lên vi điện cực ................................56 II.2.3.1 Thông tin về cảm biến ..................................................................................57 II.2.3.2 Phƣơng pháp cố định ADN dò của vi khuẩn E.Coli lên bề mặt cảm biến ...57 II.3 KẾT QUẢ VÀ THẢO LUẬN ............................................................................60 II.3.1 Phân tán ống nano carbon trong dung dịch DMF ...........................................60 II.3.1.1 Hình ảnh của CNTs phân tán trong dung dịch DMF ...................................60 II.3.1.2 Hình thái bề mặt của CNTs phân tán trong dung dịch DMF .......................61 II.3.1.3 Phổ hấp thụ UV-Vis của CNTs phân tán trong dung dịch DMF .................62 II.3.1.4. Phổ tán xạ Raman của CNTs phân tán trong dung dịch DMF ....................62 II.3.1.5 Phổ hồng ngoại FTIR của CNTs phân tán trong dung dịch DMF ...............63 II.3.2 Các yếu tố ảnh hƣởng đến quá trình phân tán của CNTs trong dung dịch DMF ...................................................................................................................................63 II.3.2.1 Ảnh hƣởng của thời gian rung siêu âm đến quá trình phân tán CNTs .........65 II.3.2.2 Ảnh hƣởng của giá trị pH đến quá trình phân tán CNTs..............................67 II.3.3 Cố định chuỗi ADN dò của vi khuẩn E.Coli lên bề mặt ống nano carbon .....69 II.3.3.1 Phân tán ống nano carbon trong dung dịch ADN ........................................69 5 II.3.3.2 Đặc trƣng cố định ADN dò của vi khuẩn E.Coli lên ống nano carbon ........70 II.3.4 Đặc trƣng đáp ứng ra của cảm biến .................................................................72 II.3.4.1 Thời gian đáp ứng của cảm biến ..................................................................72 II.3.4.2 Đặc trƣng tín hiệu ra của cảm biến ...............................................................73 II.4 KẾT LUẬN ........................................................................................................74 CHƢƠNG III. NGHIÊN CỨU, THIẾT KẾ, CHẾ TẠO TRANSISTOR HIỆU ỨNG TRƢỜNG TRÊN CƠ SỞ ỐNG NANO CARBON (CNTFETs) .............................75 III.1 GIỚI THIỆU .....................................................................................................75 III.2 THIẾT KẾ CNTFETs .......................................................................................76 III.2.1 Cấu tạo CNTFETs cực cổng dƣới ..................................................................76 III.2.2 Thiết kế mặt nạ (MASK) cho CNTFETs .......................................................77 III.2.3 Thiết kế bản mạch in cho CNTFETs cực cổng dƣới .....................................80 III.3 CHẾ TẠO CNTFETs CỰC CỔNG DƢỚI .......................................................81 III.3.1 Vật liệu hoá chất.............................................................................................81 III.3.2 Qui trình chế tạo CNTFETs cực cổng dƣới ...................................................81 III.4 HÀN DÂY VÀ ĐÓNG GÓI .............................................................................93 III.4.1 Hàn dây ..........................................................................................................93 III.4.2 Đóng gói CNTFETs cực cổng dƣới ...............................................................94 III.5 XÂY DỰNG HỆ ĐO VÀ PHƢƠNG PHÁP ĐO ĐẶC TÍNH CNTFETs .......95 III.5.1 Hệ đo ..............................................................................................................95 III.5.2 Phƣơng pháp đo đặc tính điện CNTFETs ......................................................95 III.6 KẾT QUẢ VÀ THẢO LUẬN ..........................................................................96 III.6.1 Hình thái CNTFETs .......................................................................................96 III.6.2 Tính chất tiếp xúc kim loại S/D-CNTs ..........................................................97 III.6.3 Đƣờng đặc tuyến ra ID –VDS của CNTFETs ..................................................99 III.6.4 Đặc tuyến truyền đạt ID –VGS của CNTFETs...............................................100 III.6.5 Các thông số của CNTFETs .........................................................................101 III.6.6 Ảnh hƣởng của trễ điện đến tín hiệu ra của CNTFETs................................105 6 III.6.7 Ảnh hƣởng của chiều dài kênh đến các đặc trƣng của CNTFETs ...............107 III.7 KẾT LUẬN .....................................................................................................108 CHƢƠNG IV. PHÁT TRIỂN CẢM BIẾN SINH HỌC TRÊN CƠ SỞ TRANSISTOR HIỆU ỨNG TRƢỜNG ỐNG NANO CARBON (CNTFETs) ĐỂ PHÁT HIỆN LAI HÓA ADN CỦA VI KHUẨN E.COLI .....................................109 IV.I GIỚI THIỆU ....................................................................................................109 IV.2 VẬT LIỆU VÀ PHƢƠNG PHÁP ..................................................................110 IV.2.1 Vật liệu hoá chất ..........................................................................................110 IV.2.2 Thông tin về cảm biến..................................................................................110 IV.2.3 Phƣơng pháp thực nghiệm ...........................................................................111 IV.2.3.1. Xử lý bề mặt cảm biến trƣớc khi cố định ADN .......................................111 IV.2.3.2 Phƣơng pháp cố định ADN .......................................................................111 IV.2.4 Đo đặc trƣng nhạy của cảm biến..................................................................114 IV.3 KẾT QUẢ VÀ THẢO LUẬN ........................................................................115 IV.3.1 Đặc trƣng cố định ADN dò của vi khuẩn E.Coli lên ống nano carbon .......115 IV.3.1.1 Ảnh hiển vi điện tử quét............................................................................115 IV.3.1.2 Đặc trƣng phổ hồng ngoại FTIR ...............................................................116 IV.3.1.3 Đặc trƣng ảnh hiển vi huỳnh quang ..........................................................118 IV.3.1.4 Đặc trƣng phổ Raman ...............................................................................119 IV.3.2 Đặc trƣng đáp ứng của cảm biến sinh học CNTFETs ................................120 IV.3.2.1 Đặc trƣng tín hiệu cố định ADN dò của vi khuẩn E.Coli .........................120 IV.3.2.2 Đặc trƣng tín hiệu lai hóa ADN của vi khuẩn E.Coli ...............................121 IV.3.2.3 Thời gian đáp ứng của cảm biến sinh học CNTFETs ...............................123 IV.3.2.4 Độ nhạy của cảm biến sinh học CNTFETs..............................................124 IV.3.3 Các yếu tố ảnh hƣởng của quá trình cố định ADN dò đến tín hiệu ra của cảm biến sinh học CNTFETs ..........................................................................................126 IV.3.3.1 Ảnh hƣởng của nồng độ ADN dò .............................................................126 IV.3.3.2 Ảnh hƣởng của thời gian cố định ADN dò ...............................................128 7 IV.3.3.3 Ảnh hƣởng của giá trị pH .........................................................................129 IV.3.4 Độ ổn định của cảm biến sinh học CNTFETs…………………………….130 IV.3.4.1 Ảnh hƣởng của phủ màng BSA ................................................................130 IV.3.4.2 Ảnh hƣởng của nhiệt độ lai hoá ................................................................131 IV.3.4.3 Thời gian sống của cảm biến sinh học CNTFETs ....................................132 IV.3.4.4 Độ lặp lại của cảm biến sinh học CNTFETs ............................................133 IV.4 KẾT LUẬN .....................................................................................................134 KẾT LUẬN CHUNG ..............................................................................................136 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ..................138 TÀI LIỆU THAM KHẢO .......................................................................................140 8 DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT TT Viết tắt 1 ADN 2 3 Từ tiếng Anh đầy đủ Nghĩa tiếng Việt ARN Deoxyribonucleic acid Ribonucleic acid Axit nucleic Axit ribonucleic 4 APTS BSA Amino Propyl Triethoxy Silane Bovine serum albumin Chất APTS Albumin huyết thanh bò 5 CNTs Carbon nanotubes Ống nano carbon 6 CVD Chemical vapour deposition Lắng đọng hoá pha hơi 7 COOH Carboxyl 8 CNTFETs Field effect transistor based on carbon nanotube 9 DMF D Dimethylformamide Drain Nhóm chức cacboxylic Transistor hiệu ứng trƣờng trên cơ sở ống nano carbon Chất DMF Cực máng EDC FET 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride Enzyme linked immuno sorbent assay Field effect transistor FM Fluorescence microscopy Thử nghiệm hấp phụ miễn dịch gắn men Transistor hiệu ứng trƣờng Hiển vi huỳnh quang FE-SEM Hiển vi điện tử quét phát xạ trƣờng Phổ hồng ngoại biến đổi Fourier Cực cổng 10 11 12 13 14 ELISA Chất EDC 17 G Field Emision Scanning Electron Microscope Fourier transform infrared spectroscopy Gate 18 GTD Glutaraldehyde Chất GTD HIV Human immunodeficiency virus MWCNT Multi-walled carbon nanotube MOS Metal oxide semiconductor Virus gây suy giảm miễn dịch cho ngƣời Ống nano carbon đa tƣờng Kim loại ôxít bán dẫn MOSFET Metal oxide semiconductor field effect transistor 23 NMP N-methylpyrrolidone Transistor hiệu ứng trƣờng cấu trúc kim loại ôxít bán dẫn Chất NMP 24 NHS N-hydroxysulfo-succinimide Chất NHS 15 16 19 20 21 FTIR 22 9 25 ISFET Ion sensitive field effect transistor 26 PBS Phosphate buffered saline Transistor hiệu ứng trƣờng nhạy ion Muối đệm phốt phát PCR Polymerase chain reaction Phản ứng chuỗi polyme QCM S Quartz crystal microbalance Source Vi cân tinh thể thạch anh Cực nguồn SWCNT Single-walled carbon nanotube SMCC TEM Succinimidyl 4 - (Nmaleimidomethyl) cyclohexane-1carboxylate Transmission electron microscopy Ống nano carbon đơn tƣờng Chất SMCC TOAB Tetra-n-octylammonium bromide Hiển vi điện tử truyền qua Chất TOAB UV-Vis Ultraviolet-visible Tử ngoại-khả kiến 27 28 29 30 31 32 33 34 10 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Ảnh chụp kính hiển vi điện tử vi khuẩn E.coli .........................................22 Hình 1.2 Nguyên lý hoạt động của cảm biến sinh học. ............................................23 Hình 1.3 Cấu tạo của ống nano carbon. ....................................................................26 Hình 1.4 Hình ảnh mô phỏng ống nano carbon đơn tƣờng và đa tƣờng ..................26 Hình 1.5 Vector chiral miêu tả cấu tạo của CNTs . ..................................................27 Hình 1.6 Cấu trúc của các dạng ống nano cacbon khác nhau đƣợc định nghĩa theo giá trị của n, m . .........................................................................................................27 Hình 1.7 Ống nano carbon bán dẫn và kim loại .......................................................28 Hình 1.8 Tổng hợp CNTs bằng phƣơng pháp CVD có sử dụng các hạt xúc tác nano vàng . .........................................................................................................................29 Hình 1.9 Sơ đồ cấu trúc của MOSFET ....................................................................30 Hình 1.10 Mô tả mạch điện tƣơng đƣơng của một MOSFET ................................31 Hình 1.11 Đặc tuyến ID - VDS của MOSFET. ...........................................................33 Hình 1.12 Sơ đồ cấu tạo của CNTFETs. ...................................................................34 Hình 1.13 Đƣờng đặc tuyến truyền đạt ID - VGScủa CNTFETs…………………...34 Hình 1.14 Hình ảnh hiển vi lực nguyên tử của CNTFETs cực cổng dƣới ...............35 Hình 1.15 Đƣờng đặc tuyến ra ID - VDS của CNTFETs ...........................................36 Hình 1.16 Cấu trúc CNTFETs cực cổng dƣới ........................................................38 Hình 1.17 Cấu trúc CNTFETs cực cổng trên ……………………………………...39 Hình 1.18 Cấu trúc và sự lai hóa của phân tử ADN . ...............................................39 Hình 1.19 Các đoạn ADN đƣợc hấp phụ trên bề mặt ống nano carbon ...................41 Hình 1.20 Phƣơng pháp chung để chức năng hoá ống nano carbon. ........................44 Hình 1.21 Cố định ADN lên trên ống nano carbon . ................................................45 Hình 1.22 Phép đo độ dẫn theo điện áp cực cổng (G-VGS) ......................................47 Hình 2.1 Biến tính CNTs bằng axit và sau đó thực hiện chuyển hóa tiếp theo để tạo các nhóm chức este và amid. .....................................................................................50 Hình 2.2 Biến tính CNTs thông qua các phản ứng thế nhóm florua trên CNTs. ......50 11 Hình 2.3 Các phản ứng cộng hợp để gắn các nhóm chức lên CNTs. .......................51 Hình 2.4 Sơ đồ hệ thiết bị phản ứng để biến tính CNTs. ..........................................54 Hình 2.5 Ảnh hệ thiết bị phản ứng biến tính CNTs. .................................................54 Hình 2.6 Sơ đồ các bƣớc biến tính CNTs bằng phƣơng pháp ôxi hoá. ....................55 Hình 2.7 Quy trình phân tán CNTs trong dung dịch DMF. ......................................56 Hình 2.8 Vi cảm biến có cấu hình 10 µm x10 µm. ...................................................57 Hình 2.9 Cố định ADN -CNTs lên vi điện cực. ........................................................58 Hình 2.10 Sơ đồ hệ đo sử dụng bộ khuếch đại Lock-in RS 830. ..............................59 Hình 2.11 Hình ảnh của CNTs phân tán trong dung dịch DMF trƣớc và sau khi biến tính. ............................................................................................................................60 Hình 2.12 Ảnh hiển vi điện tử quét FE - SEM của CNTs phân tán trong dung dịch DMF trƣớc và sau khi biến tính ...............................................................................61 Hình 2.13 Phổ hấp thụ UV-Vis của CNTs phân tán trong dung dịch DMF trƣớc và sau khi biến tính. .......................................................................................................62 Hình 2.14 Phổ tán xạ Raman của CNTs phân tán trong dung dịch DMF trƣớc và sau khi biến tính...............................................................................................................63 Hình 2.15 Phổ hồng ngoại FTIR của CNTs phân tán trong dung dịch DMF trƣớc và sau khi biến tính. .......................................................................................................64 Hình 2.16 Hình ảnh của CNTs đã biến tính phân tán trong dung dịch DMF với các thời gian rung siêu âm khác nhau..............................................................................65 Hình 2.17 Phổ hấp thụ UV-Vis của CNTs phân tán trong dung dịch DMF với các thời gian rung siêu âm khác nhau..............................................................................66 Hình 2.18 Ảnh hiển vi điện tử quét FE - SEM của CNTs phân tán trong dung dịch DMF phủ trên đế silíc với thời gian rung siêu âm. ...................................................67 Hình 2.19 Hình ảnh của CNTs phân tán trong dung dịch DMF với giá trị pH khác nhau. ..........................................................................................................................67 Hình 2.20 Phổ hấp thụ UV-Vis của CNTs phân tán trong dung dịch DMF với giá trị pH khác nhau.............................................................................................................68 Hình 2.21 Hình ảnh của CNTs phân tán trong dung dịch có chứa chuỗi ADN dò của vi khuẩn E.Coli .........................................................................................................69 12 Hình 2.22 Ảnh FE -SEM và ảnh TEM của CNTs phân tán trong dung dịch có chứa chuỗi ADN dò của vi khuẩn E.Coli. .........................................................................70 Hình 2.23 Phổ FTIR của CNTs , chuỗi ADN đơn, CNTs đƣợc cố định ADN dò của vi khuẩn E.Coli..........................................................................................................71 Hình 2.24 Đáp ứng của cảm biến, nồng độ ADN dò 10 μM, nhiệt độ 300C. ...........72 Hình 2.25 Đặc trƣng lai hóa của chuỗi ADN đích của vi khuẩn E.Coli với nồng độ chuỗi ADN dò của vi khuẩn E.Coli 10 μM, tại nhiệt độ 300C ................................73 Hình 3.1 Cấu tạo transistor hiệu ứng trƣờng trên cơ sở mạng lƣới ống nano carbon cực cổng dƣới. ...........................................................................................................77 Hình 3.2 Hình dạng các mask đƣợc thiết kế chế tạo CNTFETs cực cổng dƣới. ......78 Hình 3.3 Hình dạng phóng to các mask đƣợc thiết kế chế tạo CNTFETs cực cổng dƣới. ..........................................................................................................................78 Hình 3.4 Các thông số của CNTFETs cực cổng dƣới . .............................................79 Hình 3.5 Các thông số chiều dài kênh khác nhau của CNTFETs. ............................80 Hình 3.6 Hình các mask đã đƣợc chế tạo. .................................................................80 Hình 3.7 Mạch in thiết kế cho CNTFETs cực cổng dƣới. ........................................81 Hình 3.8 Quy trình chế tạo CNTFETs cực cổng dƣới. .............................................83 Hình 3.9 Sơ đồ cấu tạo hệ ôxi hóa nhiệt khô. ...........................................................85 Hình 3.10 Lò ôxi hóa nhiệt khô. ...............................................................................85 Hình 3.11 Tạo nhóm OH lên bề mặt phiến. ..............................................................86 Hình 3.12 Quá trình xử lý nhiệt bề mặt phiến ..........................................................86 Hình 3.13 Cấu trúc phân tử APTS. ...........................................................................87 Hình 3.14 Hệ quang khắc. .........................................................................................89 Hình 3.15 Phiến CNTFETs cực cổng dƣới chế tạo với cùng độ rộng kênh W = 700 m, độ dài kênh khác nhau 5, 10, 15 m ..................................................................92 Hình 3.16 Bản mạch in với cấu hình phù hợp linh kiện CNTFETs từ khâu thiết kế đến cắt phiến để đóng vỏ. ..........................................................................................93 Hình 3.17 Máy hàn dây 7400C, Westbond Inc., USA. .............................................93 Hình 3.18 CNTFETs cực cổng dƣới sau khi đóng gói..............................................94 13 Hình 3.19 Hình ảnh hệ đo của máy HP 4155C để đo đặc trƣng I D - VGS và ID - VDS của CNTFETs............................................................................................................95 Hình 3.20 Sơ đồ phân cực cho CNTFETs. ...............................................................96 Hình 3.21 Màn hình giao diện để cài đặt các thông số trong quá trình đo đƣờng đặc trƣng ID -VDS và ID -VGS. .........................................................................................96 Hình 3.22 Ảnh hiển vi điện tử quét FE - SEM của CNTFETs cho cả 3 kênh. .........97 Hình 3.23 Đƣờng đặc trƣng ID -VDS của CNTFETs trong miền tuyến tính . ............99 Hình 3.24 Đƣờng đặc tuyến ra ID -VDS của CNTFETs trong miền bão hoà………99 Hình 3.25 Đƣờng đặc tuyến truyền đạt ID -VGS của CNTFETs với VGS từ 10 V đến -10 V bƣớc 0.1 V, VDS từ -0.5 V đến -1.5 V bƣớc -0.5 V cho cả 3 mẫu. ..............100 Hình 3.26 Đặc tuyến truyền đạt ID -VGS thang tuyến tính của CNTFETs ............101 Hình 3.27 Đặc tuyến truyền đạt ID -VGS thang lôgarit của CNTFETs……………102 Hình 3.28 Đƣờng đặc tuyến gm-VGS tại VDS = - 0.5 V của CNTFETs…………...103 Hình 3.29 Đặc tuyến gd – VDS của CNTFETs…………………………………….104 Hình 3.30 Hiện tƣợng trễ điện của CNTFETs. .......................................................106 Hình 3.31 Các đặc trƣng phụ thuộc chiều dài kênh của CNTFETs. .......................107 Hình 4.1 Transistor hiệu ứng trƣờng sử dụng mạng lƣới ống nano carbon làm kênh dẫn, có kích thƣớc chiều dài kênh là 15 µm, chiều rộng kênh 700 µm. .................111 Hình 4.2 Cố định chuỗi ADN dò của vi khuẩn E.Coli lên bề mặt ống nano carbon của CNTFETs..........................................................................................................113 Hình 4.3 Sơ đồ mô tả chuỗi ADN dò của vi khuẩn E.Coli hấp phụ lên bề mặt ống nano carbon……………………………………………………………………….113 Hình 4.4 Hệ đo sử dụng thiết bị phân tích tham số bán dẫn HP 4155C. ................114 Hình 4.5 Màn hình giao diện để cài đặt các thông số trong quá trình đo đƣờng đặc tính điện ID -VGS của cảm biến CNTFETs. .............................................................115 Hình 4.6 Ảnh hiển vi điện tử quét FE - SEM của CNTs và ADN /CNTs . ............116 Hình 4.7 Phổ FTIR ống nano carbon, ống nano carbon đƣợc cố định ADN. ........117 Hình 4.8 Ảnh hiển vi huỳnh quang của CNTs và ADN /CNTs. .............................118 14 Hình 4.9 Phổ Raman ống nano carbon đƣợc cố định ADN và ống nano carbon không đƣợc cố định ADN. ......................................................................................119 Hình 4.10 Đặc tuyến truyền đạt ID -VGS của cảm biến CNTFETs trƣớc và sau khi cố định ADN. ...............................................................................................................121 Hình 4.11 Đặc tuyến truyền đạt ID -VGS của cảm biến CNTFETs trƣớc và sau khi lai hóa ADN. ................................................................................................................122 Hình 4.12 Đặc tuyến truyền đạt ID -VGS của cảm biến CNTFETs khi chƣa cố định ADN dò, khi đƣợc cố định chuỗi ADN dò lên trên bề mặt ống nano carbon và sau khi lai hóa ADN. .....................................................................................................122 Hình 4.13 Đáp ứng của cảm biến CNTFETs với nồng độ ADN đích khác nhau, nồng độ ADN dò của vi khuẩn E.Coli là 10 μM, nhiệt độ 300C.............................123 Hình 4.14 Đặc tuyến truyền đạt ID -VGS của cảm biến CNTFETs khi lai hóa ADN của vi khuẩn E.Coli ở các nồng độ khác nhau. .......................................................125 Hình 4.15 Ảnh hƣởng của nồng độ ADN dò của vi khuẩn E.Coli đối với tín hiệu ra của cảm biến sinh học CNTFETs. ..........................................................................127 Hình 4.16 Ảnh hƣởng của thời gian cố định ADN dò của vi khuẩn E.Coli đến tín hiệu ra của cảm biến sinh học CNTFETs. ..............................................................128 Hình 4.17 Ảnh hƣởng của giá trị pH đối với tín hiệu ra của cảm biến sinh học CNTFETs. ...............................................................................................................129 Hình 4.18 Ảnh hƣởng của màng BSA đối với tín hiệu ra của cảm biến sinh học CNTFETs. ...............................................................................................................130 Hình 4.19 Ảnh hƣởng của nhiệt độ lai hoá tới tín hiệu ra của cảm biến sinh học CNTFETs. ...............................................................................................................131 Hình 4.20 Đặc trƣng ID-VGS của cảm biến sinh học CNTFETs thay đổi theo thời gian, ADN dò = 10 M, ADN đích = 1 pM, T = 300C. ..........................................133 Hình 4.21 Tín hiệu ra của cảm biến sau hai lần lai hoá ADN của vi khuẩn E.Coli. .................................................................................................................................134 15 DANH MỤC CÁC BẢNG BIỂU Bảng 2.1 Trình tự ADN đặc hiệu của vi khuẩn E.Coli sử dụng trong luận án…….53 Bảng 3.1 Các thông số của CNTFETs cực cổng dƣới ..............................................79 Bảng 3.2 Tóm tắt quy trình xử lý bề mặt ..................................................................84 Bảng 3.3 Các thông số của quá trình ôxi hóa khô.....................................................85 Bảng 3.4 Các thông số quang khắc………………………………………………...89 Bảng 3.5 Các thông số của quá trình phún xạ Cr ......................................................90 Bảng 3.6 Các thông số của quá trình phún xạ Pt ......................................................90 Bảng 3.7 Thông số ủ phiến ......................................................................................91 Bảng 3.8 Các thông số của quá trình bốc bay nhôm .................................................92 Bảng 3.9 Các thông số hàn dây .................................................................................94 Bảng 3.10 Điện áp ngƣỡng của các CNTFETs .......................................................102 Bảng 3.11 Giá trị dòng điện mở, dòng điện dò, tỷ số dòng điện bật - tắt của các CNTFETs…………………………………………………………………………103 Bảng 3.12 Độ hỗ dẫn cực đại của các CNTFETs. ..................................................104 Bảng 3.13 Độ dẫn cực đại và điện trở của các CNTFETs ở trạng thái bật .............105 Bảng 3.14 Độ linh động lỗ trống trong CNTs của các CNTFETs. ........................105 Bảng 4.1 Trình tự ADN đặc hiệu của vi khuẩn E.coli sử dụng trong luận án ........110 Bảng 4.2 So sánh kết quả phát hiện lai hoá ADN của vi khuẩn E.Coli gây bệnh của một số loại cảm biến sinh học .................................................................................126 16 MỞ ĐẦU Ngày nay, cùng với sự phát triển về kinh tế, gia tăng dân số, hội nhập toàn cầu là sự phát sinh các dịch bệnh nguy hiểm nhƣ: viêm đƣờng hô hấp cấp tính (SARS), cúm A/H5N1, sốt phát ban, sốt xuất huyết Dengue, viêm não Nhật Bản, tiêu chảy cấp đe dọa đến sức khoẻ cộng đồng [14]. Phát hiện, khống chế và ngăn chặn kịp thời các tác nhân gây bệnh truyền nhiễm là yêu cầu cấp thiết nhằm giảm thiểu nguy cơ tác hại đến sức khoẻ và những thiệt hại về mặt kinh tế, xã hội. Chính vì vậy, phát hiện nhanh, nhạy và sàng lọc mầm bệnh truyền nhiễm là mấu chốt để ngăn chặn quá trình lây lan của tác nhân gây bệnh bằng biện pháp cách ly hay điều trị kịp thời [50]. Hiện nay chúng ta đã có một số phƣơng pháp phát hiện vi rút, vi khuẩn gây bệnh nhƣ: phƣơng pháp phản ứng chuỗi polyme  PCR (Polymerase Chain Reaction) [27, 42, 132], phƣơng pháp  ELISA (Enzyme  Linked ImmunoSorbent Assay) [61], phƣơng pháp nuôi cấy tế bào [5]. Phƣơng pháp PCR là một phƣơng pháp đã đƣợc sử dụng thƣờng xuyên trong y sinh học và công nghệ thực phẩm. Nguyên lý cơ bản của phƣơng pháp này là dựa vào sự thay đổi nhiệt độ bắt cặp của chuỗi ADN để xác định lai hóa. Phƣơng pháp ELISA là phƣơng pháp dựa trên phản ứng sự miễn dịch có sử dụng kháng thể gắn enzyme chuyển hóa các cơ chất không màu thành có màu, sau đó, máy quang phổ kế đƣợc sử dụng để đo mức độ phản ứng thông qua quá trình đo mức độ hấp phụ ánh sáng đơn sắc của dịch màu. Phƣơng pháp nuôi cấy tế bào có kết quả thu đƣợc trong vòng từ 2 ngày đến 10 ngày. Những phƣơng pháp này thƣờng có độ nhạy cao, có thể phát hiện ADN ngay ở khối lƣợng rất nhỏ, rất đặc hiệu, kết quả phân tích định lƣợng. Tuy nhiên, tất cả các phƣơng pháp này đều có một đặc điểm thời gian phân tích dài từ vài giờ đến vài ngày để biết kết quả, chỉ tập trung ở các thành phố lớn. Hơn nữa, những kỹ thuật này còn đòi hỏi trang thiết bị, sinh phẩm và hóa chất đắt tiền, ngƣời thao tác phải đƣợc đào tạo chuyên nghiệp và xét nghiệm phải đƣợc thực hiện tại các phòng thí nghiệm chẩn đoán đạt tiêu chuẩn an toàn sinh học, không kiểm tra đƣợc ngoài thực địa, dẫn đến những hạn chế trong ứng dụng. Một phƣơng pháp khác có thể bổ sung cho các phƣơng pháp nói trên, để nhận biết vi rút, vi khuẩn là dựa vào sự phát hiện lai hóa chuỗi ADN của vi rút, vi khuẩn đó là sử dụng các cảm biến sinh học. Đây là loại cảm biến cho độ nhạy cao, thời gian phân tích nhanh, quy trình chế tạo đơn giản, dễ dàng sử dụng, và đặc biệt nhờ kích thƣớc nhỏ gọn ngƣời ta có thể sử dụng những loại cảm biến này tại những vùng xa xôi, hẻo lánh, phục vụ cho việc ngăn ngừa dịch bệnh bảo vệ sức khỏe cộng đồng. Cấu tạo của cảm biến sinh học gồm hai phần, 17 phần cảm nhận sinh học (Biological sensing element/ Bio-receptor) và bộ chuyển đổi tín hiệu (Transducer) [75]. Các phân tử sinh học có thể là các enzyme, ADN, kháng nguyên- kháng thể. Bộ chuyển đổi có nhiệm vụ chuyển các phản ứng sinh hóa thành các tính hiệu điện có thể đo đạc đƣợc. Hoạt động của cảm biến dựa trên sự tƣơng tác của các thành phần sinh học đƣợc cố định trên bề mặt bộ chuyển đổi với thành phần sinh học cần phân tích sẽ làm thay đổi các tín hiệu sinh hóa ở lân cận bề mặt chuyển đổi. Sự thay đổi các tín hiệu này sẽ đƣợc nhận biết bằng bộ chuyển đổi tín hiệu điện và đƣợc hiển thị bằng các tín hiệu điện, quang, cơ ở đầu ra của cảm biến. Hiện nay trên thế giới việc nghiên cứu chế tạo, sử dụng cảm biến sinh học để phát hiện vi khuẩn gây bệnh trong môi trƣờng đã có những thành công trên một số đối tƣợng vi khuẩn thƣờng gặp ví dụ nhƣ: Cảm biến sinh học dựa trên cơ chế của phản ứng miễn dịch để phát hiện vi khuẩn Samonella với độ nhạy cao, thời gian đáp ứng nhanh với nồng độ phát hiện là 100 CFU.mL-1 [114]. Một nghiên cứu khác của cảm biến miễn dịch có thể phát hiện vi khuẩn Candida albicans với nồng độ phát hiện là 50 CFU.mL-1 chỉ trong vòng 60 phút [115]. Ngoài ra còn một số loại cảm biến khác nhƣ cảm biến ADN nhằm phát hiện vi khuẩn Escherichia coli O157 dựa trên sự lai hoá giữa các chuỗi ADN với giới hạn phát hiện nồng độ chuỗi ADN bổ sung là 1pg.L-1 [127]. Ở Việt Nam hƣớng nghiên cứu cảm biến sinh học nói chung và cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng sử dụng ống nano cacbon là hƣớng mới rất quan trọng và cần thiết, mới đƣợc tiếp cận ở nƣớc ta trong thời gian gần đây. Một vài công trình nghiên cứu của nhóm Biosensor tại Viện ITIMS trƣờng Đại học Bách khoa Hà Nội đã triển khai các nghiên cứu nhƣ: Chế tạo cảm biến sinh học trên cơ sở transistor hiệu ứng nhạy ion (ISFET) phát hiện thuốc trừ sâu trong nƣớc [105], cảm biến ADN trên cơ sở vi điện cực để phát hiện vi rút H5N1 [6], phát hiện biến đổi gen của đậu tƣơng [101], cảm biến miễn dịch để phát hiện vi rút viêm não Nhật Bản [7]. Để góp phần phát triển các cảm biến sinh học ở Việt Nam nhằm phát hiện nhanh, trực tiếp vi khuẩn gây bệnh, đề tài nghiên cứu với tiêu đề: “Cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng (FET) sử dụng ống nano carbon” đã đƣợc đề xuất cho luận án tiến sĩ. Đây là nghiên cứu đầu tiên ở Việt Nam về sự kết hợp ống nano carbon với thành phần sinh học để chế tạo transistor hiệu ứng trƣờng ống nano carbon (CNTFETs) nhƣ một cảm biến sinh học. Đề tài đƣợc thực hiện với 02 mục tiêu chính: (1) nghiên cứu chế tạo transistor hiệu ứng trƣờng trên cơ sở mạng lƣới ống nano carbon; (2) ứng dụng của transistor hiệu ứng trƣờng trên cơ sở mạng lƣới ống nano carbon trong cảm biến sinh học để phát hiện vi khuẩn E.Coli. Đối tƣợng nghiên cứu gồm: Công nghệ biến tính và phân tán ống nano carbon, chế tạo transistor hiệu ứng trƣờng trên cơ sở ống nano carbon, 18 cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng ống nano carbon. Nội dung nghiên cứu đƣợc chia thành ba phần: (1) nghiên cứu công nghệ biến tính và phân tán ống nano carbon định hƣớng ứng dụng trong cảm biến sinh học và trong chế tạo CNTFETs; (2) nghiên cứu, thiết kế, chế tạo transistor hiệu ứng trƣờng trên cơ sở ống nano carbon; (3) phát triển cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng ống nano carbon để phát hiện vi khuẩn E.Coli. Đề tài đƣợc thực hiện tại Viện đào tạo quốc tế về khoa học vật liệu (ITIMS), Trƣờng Đại học Bách khoa Hà Nội và Viện Vệ sinh Dịch tễ Trung ƣơng và một số cơ sở khác có liên quan. Thành công của đề tài sẽ mở ra một hƣớng nghiên cứu mới nhằm phát triển cảm biến sinh học dựa trên các vật liệu nano có chế độ hoạt động đơn giản, phát hiện nhanh, chính xác, thân thiện với ngƣời sử dụng. Kết quả nghiên cứu về lý thuyết và thực nghiệm đƣợc trình bày trong 4 chƣơng của luận án: Chƣơng 1: Cảm biến sinh học trên cơ sở transistor hiệu ứng trường ống nano carbon (CNTFETs) Chƣơng 1 trình bày tổng quan những kiến thức cơ bản liên quan đến cảm biến sinh học trên cơ sở transistor hiệu ứng trƣờng ống nano carbon nhƣ: cấu tạo, nguyên lý hoạt động, công nghệ chế tạo của transistor hiệu ứng trƣờng ống nano carbon, các phƣơng pháp cố định ADN lên bề mặt ống nano carbon. Một số khái niệm cơ bản cũng đƣợc đề cập nhƣ: vật liệu ống nano carbon, vi khuẩn E.Coli, các khái niệm về ADN. Chƣơng này cũng trình bày cơ chế phát hiện lai hoá ADN của cảm biến sinh học trên cơ sở CNTFETs. Trên cơ sở đó lựa chọn công nghệ chế tạo transistor hiệu ứng trƣờng ống nano carbon thích hợp với yêu cầu đặt ra, phù hợp với điều kiện công nghệ hiện có ở trong nƣớc. Chƣơng 2: Nghiên cứu công nghệ biến tính và phân tán ống nano carbon định hướng ứng dụng trong cảm biến sinh học và chế tạo CNTFETs Chƣơng 2 trình bày công nghệ biến tính ống nano carbon và những kết quả nghiên cứu phân tán ống nano carbon trong dung dịch Dimethylformamide (DMF). Thông qua các phép phân tích phổ hấp thụ UV-Vis, hiển vi điện tử quét, phổ Raman, phổ hồng ngoại FITR nhằm tìm ra các thông số phù hợp nhất cho mục đích chế tạo transistor hiệu ứng trƣờng trên cơ sở mạng lƣới ống nano carbon từ đó có thể mở ra các ứng dụng trong cảm biến sinh học. Chƣơng 3: Nghiên cứu, thiết kế, chế tạo transistor hiệu ứng trường trên cơ sở ống nano carbon (CNTFETs) 19 Chƣơng 3 trình bày những kết quả nghiên cứu chế tạo transistor hiệu ứng trƣờng sử dụng mạng lƣới ống nano carbon làm kênh dẫn từ việc thiết kế mặt nạ, nghiên cứu công nghệ, chế tạo CNTFETs đến hàn dây và đóng gói linh kiện. Chƣơng này nghiên cứu thử nghiệm ba loại CNTFETs với kích thƣớc kênh dẫn khác nhau. Cụ thể với ba chiều dài kênh khác nhau là 5 m, 10 m, 15 m cùng chiều rộng 700 m. Trên cơ sở đó tác giả lựa chọn cảm biến phù hợp với điều kiện nghiên cứu trong nƣớc và phù hợp với đối tƣợng nghiên cứu. Chƣơng 4: Phát triển cảm biến sinh học trên cơ sở transistor hiệu ứng trường ống nano carbon để phát hiện lai hóa ADN của vi khuẩn E.Coli Chƣơng 4 trình bày những kết quả nghiên cứu phát triển cảm biến sinh học trên cơ sở sở transistor hiệu ứng trƣờng ống nano carbon sử dụng chuỗi ADN của vi khuẩn E.Coli làm phần tử dò. Các yếu tố của quá trình cố định ảnh hƣởng đến tín hiệu ra của cảm biến nhƣ: thời gian cố định, nồng độ ADN dò và giá trị pH của dung dịch cố định, ảnh hƣởng nhiệt độ lai hoá đƣợc bàn luận ở đây. Ngoài ra, độ ổn định và khả năng tái sử dụng cảm biến cũng đã đƣợc nghiên cứu. Cuối cùng là phần kết luận chung của toàn bộ luận án. 20
- Xem thêm -

Tài liệu liên quan