Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Chế tạo và nghiên cứu tính chất của vật liệu màu nhạy quang dựa trên phức chất c...

Tài liệu Chế tạo và nghiên cứu tính chất của vật liệu màu nhạy quang dựa trên phức chất của cu+

.PDF
132
99
111

Mô tả:

MỤC LỤC LỜI CAM ĐOAN ...................................................................................... 1 LỜI CẢM ƠN ........................................................................................... 2 DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ...................................... 6 DANH MỤC CÁC BẢNG ......................................................................... 8 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ...................................................... 9 MỞ ĐẦU ............................................................................................... 13 Chương 1. 1.1. TỔNG QUAN .................................................................... 19 Pin mặt trời sử dụng chất màu nhạy quang ............................. 19 1.1.1. Cấu trúc và nguyên lý hoạt động của DSSC ............................ 20 1.1.2. Các thành phần của DSSC ...................................................... 22 1.2. Phức chất Ru(II) và Cu(I) .......................................................... 37 1.3. Các đặc trưng của pin mặt trời ................................................. 43 1.4. Các phương pháp nghiên cứu và khảo sát pin mặt trời ............ 48 1.4.1. Các phương pháp khảo sát tính chất của vật liệu chế tạo DSSC ................................................................................................ 48 1.4.2. Khảo sát lý thuyết .................................................................... 53 1.5. Kết luận chương 1 ..................................................................... 54 Chương 2. NGHIÊN CỨU CHẾ TẠO CHẤT MÀU NHẠY QUANG DỰA TRÊN PHỨC CHẤT CỦA Cu (I) ............................................................ 56 2.1. Mô phỏng cấu trúc và tính toán phổ hấp thụ UV-Vis của Cu(I)bipyridine ............................................................................................. 57 2.1.1. Cấu trúc................................................................................... 57 2.1.2. Phổ hấp thụ UV-Vis ................................................................. 58 2.2. Chế tạo phức chất Cu(I)-bipyridine cấu trúc tam giác phẳng ... 61 2.2.1. Quy trình và hóa chất .............................................................. 61 2.2.2. Chế tạo phức chất Cu(I)-bipyridine ......................................... 61 2.2.3. Xác định cấu trúc phân tử của chất màu nhạy quang ............ 64 2.3. Tính chất quang của phức chất Cu(I)-bipyridine/tam giác phẳng. .................................................................................................. 67 2.3.1. Phổ hấp thụ UV-VIS ................................................................ 67 3 2.3.2. Độ rộng vùng cấm quang......................................................... 69 2.4. Tính chất điện hóa của phức chất Cu(I)-bipyridine/tam giác phẳng .................................................................................................. 71 2.4.1. Phổ quét thế vòng .................................................................... 71 2.4.2. Mức năng lượng HOMO và LUMO ........................................... 73 2.5. Kết luận chương 2 ..................................................................... 75 Chương 3. NGHIÊN CỨU CHẾ TẠO MÀNG TiO₂ CHO A-NỐT QUANG TRONG DSSC ...................................................................................... 76 3.1. Xây dựng hệ phun phủ nhiệt phân ........................................... 77 3.1.1. Phương pháp phun phủ nhiệt phân ........................................ 77 3.1.2. Nguyên lý hoạt động và thông số kỹ thuật đặc trưng .............. 77 3.1.3. Thiết kế hệ phun phủ nhiệt phân TST1303 ........................... 79 3.1.4. Hệ phun phủ nhiệt phân hoàn chỉnh và thông số kỹ thuật..... 82 3.2. Chế tạo màng TiO₂ bằng hệ phun phủ nhiệt phân ................... 83 3.2.1. Hóa chất và quy trình tổng hợp sol TiO₂ ................................. 84 3.2.2. Quy trình chế tạo màng TiO₂ ................................................... 85 3.3. Cấu trúc, hình thái học và tính chất quang của màng TiO₂ ..... 85 3.3.1. Cấu trúc................................................................................... 85 3.3.2. Hình thái học ........................................................................... 86 3.3.3. Tính chất quang ...................................................................... 88 3.4. Kết luận chương 3 ..................................................................... 92 Chương 4. NGHIÊN CỨU CHẾ TẠO THỬ NGHIỆM DSSC DỰA TRÊN PHỨC Cu(I)/DẪN XUẤT BIPYRIDINE ................................................... 93 4.1. Nghiên cứu chế tạo thử nghiệm DSSC dựa trên chất màu nhạy quang phức Cu(I)/bipyridine và điện cực đối FTO/Carbon graphit ...... 94 4.1.1. Chế tạo DSSC .......................................................................... 94 4.1.2. Đặc trưng quang điện của DSSC ............................................. 96 4.2. Nghiên cứu chế tạo thử nghiệm DSSC dựa trên chất màu nhạy quang phức Cu(I)/bipyridine và điện cực đối Mo ............................... 100 4.2.1. Nghiên cứu chế tạo màng mỏng Mo bằng phương pháp phún xạ .............................................................................................. 101 4.2.2. Chế tạo thử nghiệm DSSC sử dụng điện cực đối màng mỏng Mo . .............................................................................................. 108 4.3. Kết luận chương 4 ................................................................... 112 KẾT LUẬN VÀ KIẾN NGHỊ ................................................................. 113 4 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ......... 115 TÀI LIỆU THAM KHẢO ...................................................................... 116 PHỤ LỤC ............................................................................................ 126 5 DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT AM (Air Mass): Khối không khí AO (Atomic Orbital): Obitan nguyên tử APCE (Absorbed Photon to Current Efficiency): hiệu suất chuyển đổi quang điện tính trên dòng photon bị hấp thụ Black dye: Tên chất màu nhạy quang CE (Counter Electrode): Điện cực đối CIS (Configuration Interaction Singles): đơn tương tác cấu hình CV (Cyclic Voltammetry): Quét thế vòng CVD (Chemical Vapor Deposition): Lắng đọng hơi hóa học DFT (Density Functional Theory): Lý thuyết phiếm hàm mật độ DSSC (Dye-Sensitized Solar cell): Pin mặt trời sử dụng chất màu nhạy quang FF (Fill Factor): Thừa số lấp đầy FTIR (Fourier Transform Infrared Spectroscopy): phổ hồng ngoại chuyển đổi Fourier FTO (Fluorine-doped Tin Oxide): Oxit thiếc chứa Flo GGA (Generalized Gradient Approximation): Gần đúng gradient suy rộng DZP (Double Zeta Polarization): hệ cơ sở. HOMO (highest occupied molecular orbital): Obitan phân tử bị chiếm có mức năng lượng cao nhất HSQC (Heteronuclear Single Quantum Coherence spectroscopy): Phổ cộng hưởng từ hạt nhân hai chiều tương tác C-H trực tiếp. HMBC (Heteronuclear Multiple Bond Correlation spectroscopy): Phổ cộng hưởng từ hạt nhân hai chiều tương tác C-H gián tiếp. ISC: Dòng ngắn mạch IPCE (Incident Photon to Current Conversion Efficiency): Hiệu suất chuyển hóa quang điện toàn phần ITO (Indium Tin Oxide): Oxit thiếc chứa indium 6 JSC: Mật độ dòng ngắn mạch K19: Tên chất màu nhạy quang LHE (Light-Harvesting Efficiency): Hiệu suất hấp thụ ánh sáng LUMO (Lowest Unoccupied Molecular Orbital): Obitan phân tử không bị chiếm có mức năng lượng thấp nhất MLCT (Metal to Ligand Charge Transfer): Chuyển mức điện tử từ kim loại đến phối tử MO (Molecular Orbital): Orbital phân tử Mo (molybdenum): Tên nguyên tố. N3: Tên chất màu nhạy quang NHE (normal hydrogen electrode): Điện cực hidro tiêu chuẩn NMR (Nuclear magnetic resonance): Phương pháp phổ cộng hưởng từ hạt nhân Os (Osmium): tên kim loại PBE: Perdew, Burke, Ernzerhof: Tên hàm tương quan trao đổi PCE (Power Conversion Efficiency): Hiệu suất chuyển đổi công suất quang điện PID (Proportional Integral Derivative): Vi tích phân tỉ lệ PV (Photo-Voltaic): Quang điện RE (Reference Electrode): Điện cực so sánh Ru (Ruthenium): Nguyên tố đất hiếm SEM (Scanning Electron Microscope): Hiển vi điện tử quét SLG (soda-lime glass): Thủy tinh thông thường TBAHFP (Tetrabutylammonium): Hexafluorophosphate TCO (Transparent Conducting Oxide): Oxit dẫn điện trong suốt TLC (Thin Layer Chromatography): Lớp sắc ký mỏng UV-Vis (Ultraviolet–visible spectroscopy): Phổ hấp thụ vùng tử ngoại khả kiến VOC: Thế hở mạch WE (Working Electrode): Điện cực làm việc XRD (X-ray diffraction): Nhiễu xạ tia X 7 DANH MỤC CÁC BẢNG Bảng 2.1. Bảng tóm tắt phản ứng tổng hợp phối tử ............................. 63 Bảng 2.2. Kết quả thu được từ NMR của hai phối tử ........................... 65 Bảng 2.3. Độ rộng vùng cấm của chất màu nhạy quang tính bằng phương pháp ASF................................................................................. 69 Bảng 2.4. Thông số tính chất điện hóa của phức Cu-L1 ...................... 71 Bảng 3.1 Các thông số đặc trưng của đầu phun .................................. 81 Bảng 3.2. Thông số kỹ thuật của hệ phun phủ nhiệt phân TST1303 ............................................................................................................. 82 Bảng 3.3. Tần số Raman của màng TiO₂ ủ tại 400oC đối với các pha anatase, rutile, brookite ................................................................ 90 Bảng 4.1. Kết quả đo đặc tuyến của DSSC dựa trên chất màu nhạy quang Cu-L1 ......................................................................................... 97 Bảng 4.2. Thông số đặc trưng I-V khảo sát tại công suất bức xạ khác nhau............................................................................................. 99 Bảng 4.3. Thông số của chế tạo màng Mo ......................................... 102 Bảng 4.4. Tính chất điện của màng mỏng được đo bởi bốn mũi dò ........................................................................................................... 107 Bảng 4.5. Thông số của DSSC sử dụng hai loại điện cực đối khác nhau ................................................................................................... 110 8 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1. Cấu tạo của DSSC ................................................................ 21 Hình 1.2. Nguyên lý hoạt động của DSSC ............................................ 21 Hình 1.3. Ảnh SEM của lớp TiO₂ có cấu trúc tấm nano (a) và cấu trúc hạt nano (b) [40] ........................................................................... 24 Hình 1.4. Sự cạnh tranh động lực học của các quá trình trong DSSC [45]............................................................................................. 25 Hình 1.5. Quang phổ mặt trời được xác định bằng chương trình SMARTS [51]. Các mode quang phổ tiêu chuẩn: AM0 đo các bức xạ trong không gian ngoài Trái Đất, AM1.5 Global và AM1.5 Direct đo bức xạ trên mặt đất [52].................................................................. 26 Hình 1.6. Cấu trúc hóa học của phức chất Ru trong (a) N3 [53] và (b) “black dye” [54] được sử dụng làm chất màu nhạy quang trong DSSC .................................................................................................... 28 Hình 1.7. Phổ hiệu suất chuyển hóa quang điện toàn phần của N3 và “black dye” so với TiO₂ [57]. ............................................................ 29 Hình 1.8. Chất nhạy quang Ru Z907 và K19 chứa nhóm kỵ nước. ..... 29 Hình 1.9. Giản đồ orbital phân tử (MO) của phức chất Ru(II) với các phối tử bipyridine [62] ................................................................... 31 Hình 1.10. So sánh thứ tự orbital trạng thái kích thích của các phức chất Fe(II), Ru(III) và Os(II) với polypyridine [61]. ...................... 31 Hình 1.11. Dẫn xuất của comarin trong ứng dụng chất màu nhạy quang cho DSSC .................................................................................. 32 Hình 1.12. Tóm tắt các quá trình làm suy giảm hiệu suất của DSSC [73]............................................................................................. 37 Hình 1.13. Mô hình cấu trúc (a) tứ diện, (b) tam giác phẳng của Cu⁺ và (c) cấu trúc bát diện của Ru(II) ................................................. 38 9 Hình 1.14. Giản đồ so sánh định tính các orbital và sự chuyển mức năng lượng giữa phức chất kim loại cấu hình điện tử d10 (phức Cu⁺) và cấu hình điện tử d6 (phức Ru(II)) [69]. .................................... 39 Hình 1.15. Cấu trúc của[Cu(1)2]+ và[Cu(2)2]+ ...................................... 40 Hình 1.16. Sơ đồ miêu tả cơ chế phản ứng Sonogashira ..................... 42 Hình 1.17. Phổ IPCE của pin mặt trời ................................................. 44 Hình 1.18. Đáp ứng phổ của pin mặt trời silic .................................... 44 Hình 1.19. Tính toán khối không khí .................................................. 45 Hình 1.20. Đặc trưng I-V mô tả dòng ngắn mạch. ............................... 46 Hình 1.21. Sự phụ thuộc của dòng điện (đường màu đỏ) và công suất (đường màu xanh) vào điện áp pin mặt trời và các xác định dòng ngắn mạch (Isc), điện áp hở mạch (Voc) và điểm công suất cực đại (Vmp, Imp). ........................................................................................ 47 Hình 1.22. Nhiễu xạ tinh thể ................................................................ 49 Hình 2.1. Kết quả tính toán lý thuyết hai cấu trúc phức Cu(I): (a) Cấu trúc phức với phối tử L1, (b) Cấu trúc phức với phối tử L2 ......... 58 Hình 2.2. Công thức cấu tạo của hai phức chứa Cu(I) ......................... 58 Hình 2.3. Phổ hấp thụ UV-VIS tính toán của hai phức chất CuL1 và CuL2 ................................................................................................ 59 Hình 2.4. Sơ đồ tổng hợp phối tử bipyridine ....................................... 62 Hình 2.5. Sơ đồ phản ứng Sonogashira tổng hợp phối tử ................... 63 Hình 2.6. Sơ đồ phản ứng tạo phức Cu-L1 và Cu-L2 ........................... 64 Hình 2.7. Cấu trúc phân tử của phức Cu(I) với phối tử L1 .................. 66 Hình 2.8. So sánh cấu trúc phức Cu-L1 (a) của luận án với phức cấu trúc tứ diện (b) [29]. ...................................................................... 67 Hình 2.9. Phổ hấp thụ UV-VIS theo mô phỏng lý thuyết (a) và thực nghiệm (b) ............................................................................................ 67 Hình 2.10. So sánh cấu trúc hóa học của phức Cu-L1 và Cu-L2 ......... 68 Hình 2.11. Đồ thị biểu diễn phép ngoại suy tính độ rộng vùng cấm quang của Cu-L1(a) và Cu-L2(b) .......................................................... 69 10 Hình 2.12. Phổ quét thế vòng của phức Cu-L1 với điện cực so sánh Ag/AgCl (KCl 3M) .................................................................................. 71 Hình 2.13. (a) Sự chuyển mức điện tử và (b) phổ hấp thụ của phức Cu-L1.................................................................................................... 74 Hình 3.1. Sơ đồ hệ phun phủ nhiệt phân ............................................ 78 Hình 3.2. Đế gia nhiệt hoàn chỉnh ....................................................... 80 Hình 3.3. Đầu phun gắn trên giá di động............................................. 80 Hình 3.4. Mặt trước của bộ điều khiển trung tâm ............................... 82 Hình 3.5. Hệ phun phủ nhiệt phân TST1303 ...................................... 83 Hình 3.6. Quy trình chế tạo sol TiO₂ bằng phương pháp sol-gel .......... 84 Hình 3.7. Giản đồ nhiễu xạ tia X của (a) các mẫu màng TiO₂ ủ tại các nhiệt độ khác nhau và (b) mẫu màng T400 so với phổ chuẩn của TiO₂ ................................................................................................ 86 Hình 3.8. Ảnh SEM của màng nano xốp TiO₂ T400 ............................ 87 Hình 3.9. Độ dày của màng TiO₂ .......................................................... 87 Hình 3.10. Phổ hấp thụ UV-VIS của màng TiO₂ ................................... 88 Hình 3.11. Xác định bề rộng vùng cấm của màng TiO₂ từ độ dày màng và phổ hấp thụ ........................................................................... 89 Hình 3.12. Phổ Raman của màng TiO₂ ủ tại 400oC ............................. 90 Hình 3.13. Giản đồ năng lượng của DSSC ........................................... 91 Hình 4.1. Quy trình chế tạo thử nghiệm DSSC .................................... 94 Hình 4.2. Tạo điện cực làm việc của DSSC ......................................... 95 Hình 4.3. Tạo điện cực đối của DSSC ................................................. 95 Hình 4.4. Ghép hai điện cực và bơm chất điện ly ................................ 96 Hình 4.5. Đặc trưng I-V của DSSC ....................................................... 97 Hình 4.6. Đặc trưng I-V của pin khảo sát tại công suất bức xạ 100%, 50% và 10% sun. ....................................................................... 98 Hình 4.7. Sự tuyến tính giữa mật độ dòng ngắn mạch và công suất bức xạ ................................................................................................... 99 11 Hình 4.8. Các lớp Mo chế tạo bằng kỹ thuật phún xạ DC với thời gian phún xạ khác nhau (a, b, c, d lần lượt là 9, 18, 36, 44 phút) .... 103 Hình 4.9. Độ dày màng Mo tương ứng với các công suất phún xạ khác nhau (bao gồm 35 nm của lớp lót Cr) a) P=100 W; b) P=150 W; c)=200 W và d) = 250 W. ............................................................. 104 Hình 4.10. Ảnh SEM của màng mỏng Mo được hình thành ở các công suất phún xạ khác nhau a) 100 W; b) 150 W; c) 200 W và d) 250 W. ................................................................................................ 105 Hình 4.11. Độ dày và độ nhám bề mặt của các mẫu màng Mo được phún xạ ở các lưu lượng khí argon khác nhau a) 18 sccm; b) 22 sccm; c) 26 sccm và d) 30 sccm. ....................................................... 106 Hình 4.12. Giản đồ nhiễu xạ tia X của màng Mo. Áp suất làm việc ở 18 sccm, công suất phún xạ 150 W, độ dày tổng cộng 400 nm ...... 106 Hình 4.13. Hệ số phản xạ ánh sáng của màng Mo (bao gồm lớp Cr 35 nm) phụ thuộc vào a) công suất phún xạ và b) lưu lượng khí argon .................................................................................................. 108 Hình 4.14. Cấu trúc DSSC sử dụng màng mỏng Mo làm điện cực đối ...................................................................................................... 109 Hình 4.15. Đặc tuyến I-V của DSSC sử dụng màng Mo làm điện cực đối ................................................................................................ 110 12 MỞ ĐẦU Theo báo cáo của Cơ quan Thông tin Năng lượng Mỹ năm 2017, mức tiêu thụ năng lượng thế giới sẽ tăng 28% trong giai đoạn 2015-2040, từ 19.2 đến 24.6 TWy [1]. Sự gia tăng này dẫn đến các nguồn nhiên liệu hóa thạch bị cạn kiệt nhanh chóng và gây ảnh hưởng nghiêm trọng đến môi trường do khai thác và sử dụng chúng. Bối cảnh này đã thúc đẩy sự phát triển của các công nghệ sản xuất năng lượng từ các nguồn năng lượng sạch và có thể tái tạo, trong đó năng lượng mặt trời là sự lựa chọn tối ưu. Một năm mặt trời cung cấp khoảng 120000 terawatts (TW) năng lượng cho bề mặt Trái đất [1], nghĩa là năng lượng cần cho tất cả các hoạt động của con người trong 1 năm chỉ cần nhận từ mặt trời trong 1,5h chiếu sáng. Do đó, thị trường pin quang điện (PV) thế giới đã tăng trưởng nhanh chóng. Theo báo cáo của Fraunhofer PV năm 2017, trong giai đoạn 2010-2016 tốc độ tăng trưởng hàng năm của các nhà máy PV là 40% [3]. Pin mặt trời Silic (Si) hiện nay đang chiếm lĩnh thị trường PV, chiếm 93% tổng số nhà máy PV [4]. Các tấm pin mặt trời Si thế hệ đầu tiên cho hiệu suất chuyển đổi khá cao, gần 20%, tuy nhiên giá thành của chúng vẫn còn cao, nhất là đối với các nước đang hoặc chậm phát triển. Chính vì thế, cho tới nay pin mặt trời vẫn chưa được lắp đặt phổ biến. Hiện nay, các thiết bị PV dựa trên Silic tinh thể đã đạt được hiệu suất 26,7% [4] gần với mức hiệu suất lý thuyết tối đa được xác định bởi Shockley là 31% [5]. Ngoài ra, pin mặt trời Si được chế tạo bởi các công nghệ phức tạp, đắt tiền, đồng thời quá trình sản xuất gây ảnh hưởng không nhỏ đến môi trường. Vì những lý do đó, các nhà khoa học, một mặt, đang tìm cách cải thiện hiệu suất và năng suất của pin mặt trời để giảm giá thành, mặt khác, tìm kiếm vật liệu mới thay thế và phát triển các thế hệ pin mặt trời tiếp theo. Những hạn chế của pin mặt trời Si đã thúc đẩy sự phát triển của các công nghệ PV mới dựa trên những vật liệu giá thành thấp hơn và công nghệ sản xuất đơn giản hơn, trong đó có là pin mặt trời sử dụng chất màu nhạy quang (DSSC: Dye Sensitized Solar Cells). Hiện nay, DSSC là một trong những công nghệ PV hứa hẹn nhất có thể thay thế pin mặt trời Si truyền thống. DSSC dễ dàng được chế tạo và cho ứng dụng khá linh hoạt: có thể được chế tạo với nhiều chất nền có diện tích lớn với chi phí thấp (như lụa, giấy…) [6–8]; có thể uốn, cuộn tròn [9,10], thuận lợi trong các ứng dụng trong các thiết bị điện tử đeo/cầm tay; có bề mặt bán trong suốt, có nhiều màu phù hợp với các yêu cầu kiến trúc khi sử dụng trong 13 xây dựng đối với các công trình tích hợp điện mặt trời [11]. Ưu điểm lớn nhất của DSSC là cho hiệu suất cao trong điều kiện chiếu sáng thấp, kể cả với nguồn sáng nhân tạo [12], tức là chúng có khả năng hoạt động hiệu quả trong ngày ít/không có nắng, thậm chí ở những mức chiếu sáng thấp mà pin mặt trời Si tinh thể đã ngừng phát ra dòng điện. Mặc dù hiện nay hiệu suất của DSSC mới đạt được 13% [13,14] nhưng những ưu việt trên đã thúc đẩy sự nghiên cứu và phát triển của DSSC. Hiệu suất này được dự đoán sẽ tăng gấp đôi trong 15 năm nữa khi những chất màu mới được chế tạo. Trong pin mặt trời truyền thống, khi một chất bán dẫn loại n được chiếu sáng bởi bức xạ có năng lượng lớn hơn hoặc bằng độ rộng vùng cấm, electron trong vùng hóa trị được kích thích sang vùng dẫn để tạo thành dòng điện. Hầu hết các chất bán dẫn cho pin mặt trời Si đều có độ rộng vùng cấm rộng, phù hợp với bức xạ kích thích UV, nên phần lớn không tận dụng được năng lượng mặt trời bởi năng lượng bức xạ mặt trời chủ yếu tập trung ở vùng khả kiến và hồng ngoại gần. DSSC đã khắc phục hạn chế này bằng cách biến đổi bề mặt chất bán dẫn bằng chất màu nhạy quang có khả năng hấp thụ bức xạ mặt trời ở vùng bước sóng mang nhiều năng lượng nhất. Dưới tác dụng của mặt trời, chất màu nhạy quang hấp thụ ánh sáng khả kiến chuyển từ trạng thái cơ bản (S) lên trạng thái kích thích (S*), trong đó S có năng lượng thấp hơn đáy vùng dẫn và S* có năng lượng cao hơn đáy vùng dẫn của chất bán dẫn. Ở trạng thái kích thích (S*), chất màu nhạy quang phóng điện tử vào vùng dẫn của chất bán dẫn trên a-nốt quang và điện tử được dẫn ra ngoài tạo thành dòng điện. Chất màu được hoàn nguyên nhờ hệ điện ly là một cặp oxy hóa khử (Ví dụ I  / I 3 ). Kể từ khi được Grätzel phát hiện ra vào năm 1991, DSSC đã thu hút được nhiều sự quan tâm nghiên cứu. Các nghiên cứu về DSSC chủ yếu tập trung cho chất màu nhạy quang, trong đó các chất màu mới luôn được tìm kiếm và nghiên cứu nhằm ứng dụng và tăng hiệu suất cho DSSC. Chất màu nhạy quang được sử dụng nhiều nhất và cho hiệu suất chuyển đổi quang điện cao nhất đối với DSSC là các phức chất dựa trên Ruthenium (II) (Ru(II)) [15–18], điển hình là N719, N3, Black dye… Tuy nhiên, Ru là một trong những nguyên tố hiếm, đắt tiền (~1500 USD/kg, 2015) và có độc tính [2, 19] nên các nghiên cứu về chất màu nhạy quang thương tập trung tổng hợp các chất màu mới, trong đó Ru được thay thế bằng các kim loại khác bền vững, phổ biến hơn và giá thành thấp hơn. Nhiều kim loại đã được nghiên cứu để thay thế Ru như sắt (Fe(II)), Osmium (Os(II)), platin (Pt(II)) và đồng (Cu(I)/Cu⁺) [20–23], trong đó Cu là kim loại thu hút được nhiều sự chú ý bởi giá thành thấp hơn Ru 14 (~6USD/kg, 2015) [24] và khả năng tạo được nhiều các phức chất hữu cơ chứa hai nhóm chức có liên kết đôi C=N với tính chất quang hóa tương tự với phức Ru(II) [2, 25, 26]. Đánh giá về khả năng ứng dụng của nguyên tố này, nghiên cứu lý thuyết [27] đã đưa ra các tính chất tương đồng của Cu với Ru như: - Cu là kim loại chuyển tiếp đa hóa trị có quá trình oxi hóa khử thuận nghịch: Cu⁺ - e  Cu²⁺ - Ion Cu⁺ tạo thành các phức chất bền thích hợp với nhiều phối tử - Phức chất Cu(I) hấp thụ mạnh bức xạ mặt trời với dải phổ rộng - Mức HOMO của phức chất Cu(I) được tạo thành chủ yếu từ các orbital nguyên tử của Cu(I) - Sự chuyển tiếp HOMO-LUMO đặc trưng bởi sự chuyển tiếp điện tử từ kim loại đếnphối tử (chuyển tiếp MLCT). Về mặt thực nghiệm, nghiên cứu của Sauvage [22] đã chứng minh cấu trúc phức Cu⁺ với phối tử hữu cơ 2,2’-bipyridine (bpy) và 1,10phenanthroline (phen) có cấu trúc phân tử bền vững và tính chất quang, hóa, điện hóa thích hợp làm chất màu nhạy quang. Nghiên cứu của Lavie-Cambot cho thấy hiệu suất chuyển đổi năng lượng của DSSC sử dung chất màu nhạy quang là phức Cu(I)-bpy khoảng 2% [28]. Gần đây, một số công bố chủ yếu tập trung vào các phối tử khác nhau dựa trên bộ khung 2,2’-bipyridine [29, 30]. Tuy nhiên, trong các nghiên cứu về phức Cu(I) gần đây cho thấy đa phần các cấu trúc phức Cu(I) ở dạng tứ diện [30–32], chưa có nhiều cấu trúc phối tử mới. Tại Việt Nam, từ những năm 1990, đã có những nghiên cứu cơ bản và ứng dụng dành cho DSSC. Các nghiên cứu chủ yếu tập trung vào việc tổng hợp và sử dụng các loại vật liệu mới, đưa ra các cấu trúc mới hoặc thay đổi quy trình chế tạo để nâng cao hiệu suất của DSSC. Gần đây, đã có những nghiên cứu chế tạo pin mặt trời trên cơ sở chất hữu cơ như diệp lục [33]; tổng hợp vật liệu và phát triển quy trình công nghệ cho DSSC. Do đó, với mong muốn tổng hợp thêm các phức mới, trong đó sử dụng Cu thay cho Ru, tác giả đã lựa chọn đề tài: “Chế tạo và nghiên cứu tính chất của vật liệu màu nhạy quang dựa trên phức chất của Cu⁺ ứng dụng trong chế tạo pin mặt trời màng mỏng”. Mục tiêu cuả luận án Nghiên cứu và chế tạo phức chất có chứa kim loại Cu⁺ làm chất màu nhạy quang định hướng ứng dụng trong DSSC. Nội dung nghiên cứu (i) Sử dụng lý thuyết phiếm hàm mật độ (DFT), dựa trên cấu trúc của phức Ru, tính toán mô phỏng để đưa ra cấu trúc phức trong đó Cu thay 15 cho Ru. Phức Cu⁺ có vùng cấm hẹp và thuận lợi cho việc chuyển điện tử từ phức Cu⁺ đến vùng dẫn của TiO2 trên a-nốt quang. (ii) Dựa vào cấu trúc mô phỏng, tổng hợp các phức của Cu⁺ với độ tinh khiết cao để làm chất màu nhạy quang trong DSSC. Khảo sát các đặc trưng cấu trúc, hình thái học và giản đồ năng lượng của phức Cu⁺ và đánh giá khả năng ứng dụng cho DSSC. (iii) Chế tạo hệ phun phủ nhiệt phân để tạo màng TiO₂ cho a-nốt quang trong DSSC. Khảo sát tính chất của màng TiO₂ chế tạo được. (iV) Chế tạo điện cực ca-tốt, trong đó màng molybdenum (Mo) được tạo bằng phương pháp phún xạ thay cho FTO và Pt. (iii) Chế tạo thử nghiệm DSSC, trong đó sử dụng phức Cu⁺ và các điện cực đã chế tạo được nhằm đánh giá khả năng ứng dụng của phức Cu⁺. Các phương pháp nghiên cứu Phương pháp nghiên cứu được sử dụng là thực nghiệm và lý thuyết. Thực nghiệm: - - Việc tổng hợp phức của Cu sẽ được tiến hành dựa vào phản ứng thế và dựa vào phản ứng oxi hóa khử, sau đó sử dụng phương pháp kết tinh để tách sản phẩm ra khỏi hỗn hợp phản ứng và tinh chế sản phẩm. Các phương pháp khảo sát các tính chất vật lý, hóa học của các vật liệu: Cộng hưởng từ hạt nhân (NMR), nhiễu xạ tia X đơn tinh thể, hiển vi điện tử quét (SEM), phổ hấp thụ UV-Vis, đo độ dày màng, đo điện trở 4 mũi dò, đo quét thế vòng, đặc trưng I-V. Lý thuyết: - - Phương pháp phiếm hàm mật độ không phụ thuộc thời gian (Density Functional Theory: DFT) sử dụng phiếm hàm tương quan trao đổi tổng quát GGA/PBE được sử dụng để tối ưu cấu trúc, tính toán các tính chất điện tử của vật liệu. Phương pháp phiếm hàm mật độ phụ thuộc thời gian (Time Dependent DFT: TDDFT) với phiếm hàm tương quan trao đổi mật độ địa phương ALDA và phương pháp Casida được sử dụng để tính phổ hấp thụ UV-Vis, các kích thích được phép,… Tính mới của luận án - Chế tạo thành công vật liệu màu nhạy quang dựa trên một số phức Cu(I) với dẫn xuất của 2,2-bipyridine có cấu trúc như dự đoán từ mô phỏng lý thuyết. Phức Cu(I) có cấu trúc tam giác phẳng lần đầu được tổng hợp với phương pháp phản ứng Sonogashira cho các đặc trưng có thể ứng dụng được trong DSSC, cụ thể là: hấp thụ mạnh ánh sáng trong vùng khả kiến và hồng ngoại gần; tồn tại mức năng lượng đặc trưng cho sự chuyển mức MLCT; trạng thái khử Cu⁺ bền trong chất 16 - - điện ly, thể hiện tính chất oxi hóa-khử thuận nghịch của cặp Cu⁺/Cu²⁺. Chế tạo thành công hệ phun phủ nhiệt phân TST1303 với các tính năng kỹ thuật có thể chế tạo màng oxit bán dẫn (TiO₂) cho a-nốt quang của DSSC. Các màng chế tạo được có cấu trúc, hình thái học, độ rộng vùng cấm, độ dày đáp ứng được yêu cầu đối với vật liệu làm a-nốt quang. Hệ TST1303 không chỉ tạo màng TiO₂ đạt yêu cầu mà còn có thể ứng dụng hiệu quả cho nhiều loại vật liệu khác. Màng Mo được chế tạo cho điện cực đối có điện trở thấp có thể thay thế được FTO và Pt. Các phức Cu(I) với dẫn xuất của 2,2-bipyridine đã được nghiên cứu đồng thời bằng hai phương pháp lý thuyết và thực nghiệm. Sự phù hợp của nghiên cứu lý thuyết và thực nghiệm cho thấy các kết quả thu được có độ tin cậy cao và có thể áp dụng phương pháp nghiên cứu này cho các các chất màu nhạy quang tương tự. Ý nghĩa khoa học và thực tiễn - - - Việc tổng hợp thành công phức chất Cu⁺ có cấu trúc mới đã cho thấy khả năng phát triển ứng dụng phức này trong công nghệ chế tạo DSSC. Phức chế tạo được có cấu trúc và tính chất quang đáp ứng yêu cầu đối với một chất màu nhạy quang và cho hiệu ứng tốt trong DSSC. Kết quả này mang nhiều ý nghĩa trong nghiên cứu và phát triển chất màu nhạy quang cũng như DSSC. Phức Cu⁺ được tổng hợp theo phản ứng Sonogashira có cấu trúc tam giác phẳng, một cấu trúc khó đạt được so với cấu trúc tứ diện (đã được nhiều nhóm nghiên cứu công bố). Kết quả này đã đưa ra quy trình tổng hợp mới để nghiên cứu phát triển các chất màu mới dựa trên phức của các kim loại chuyển tiếp tương tự. Việc tự thiết kế, chế tạo hệ phun phủ nhiệt phân TST1303 chế tạo được màng TiO₂ trong điện cực a-nốt quang; việc tự đóng gói một DSSC và các đặc trưng đo đạc được cho thấy khả năng phát triển công nghệ chế tạo DSSC hoàn chỉnh. Hệ TST1303 có thể sử dụng để chế tạo nhiều loại màng mỏng với thành phần khác. Bố cục của luận án Ngoài phần mở đầu, kết luận, tài liệu tham khảo và phụ lục, luận án gồm các chương sau: Chương 1. TỔNG QUAN Tổng quan về pin mặt trời được trình bày trong chương 1 bao gồm cấu tạo, nguyên lý hoạt động và các đặc trưng của pin mặt trời. Với DSSC các thành phần cấu thành quan trọng như chất màu nhạy quang, trong đó có phức chất thay thế Ru(II) là Cu⁺ được trình bày chi tiết. 17 Chương 2. NGHIÊN CỨU CHẾ TẠO CHẤT MÀU NHẠY QUANG DỰA TRÊN PHỨC CHẤT CỦA Cu⁺ Chương này trình bày kết quả nghiên cứu lý thuyết và thực nghiệm chế tạo phức Cu⁺ với phối tử bipyridine. Các đặc trưng vật lý, hóa học của phức chế tạo được được khảo sát và đánh giá cụ thể nhằm ứng dụng làm chất màu nhạy quang trong DSSC. Chương 3. NGHIÊN CỨU CHẾ TẠO MÀNG TiO₂ CHO A-NỐT QUANG TRONG DSSC Chương này nghiên cứu và chế tạo màng TiO₂ bằng hệ phun phủ nhiệt phân TST1303, được tác giả và nhóm nghiên cứu tự thiết kế và chế tạo với các tính năng kỹ thuật đáp ứng được yêu cầu chất lượng của màng TiO₂. Các đặc trưng vật lý của màng TiO₂ được chứng minh phù hợp để làm a-nốt quang trong DSSC. Chương 4. NGHIÊN CỨU CHẾ TẠO THỬ NGHIỆM DSSC DỰA TRÊN PHỨC Cu⁺/DẪN XUẤT BIPYRIDINE Chương 4 trình bày kết quả nghiên cứu chế tạo màng mỏng Mo điện trở thấp hướng đến ứng dụng làm điện cực đối của DSSC. Sử dụng ba thành phần đã được chế tạo kết hợp với chất điện li 3I-/I3-, đế thủy tinh dẫn và một số thành phần khác, các DSSC hoàn chỉnh được chế tạo thử nghiệm. Các DSSC thử nghiệm sẽ được khảo sát và đánh giá các đặc trưng của pin mặt trời như thế hở mạch, dòng ngắn mạch, hệ số điền đầy, hiệu suất chuyển đổi năng lượng… 18 Chương 1. TỔNG QUAN Chương này sẽ giới thiệu sơ lược pin mặt trời, cấu tạo và nguyên lý hoạt động của DSSC, trong đó mỗi thành phần của DSSC sẽ được phân tích chi tiết. Các chất màu nhạy quang dựa trên Ru đã sử dụng trong DSSC và xu hướng thay thế Ru bằng Cu⁺ cũng được trình bày. Ngoài ra, phương pháp khảo sát đặc trưng vật lý, hóa học các vật liệu chế tạo DSSC và DSSC hoàn chỉnh được trình bày chi tiết. 1.1. Pin mặt trời sử dụng chất màu nhạy quang Năm 1893, nhà vật lý người Pháp Edmond Becquerel lần đầu tiên quan sát được hiệu ứng quang điện khi ông quan sát được sự phụ thuộc của ánh sáng với điện áp giữa các điện cực được nhúng trong một chất điện ly [34]. Hiệu ứng này tiếp tục được quan sát thấy trong các hệ chất rắn selen vào năm 1883 bởi Charles Fritts. Pin mặt trời silic hoạt động trên cơ sở hiệu ứng quang điện được công bố bởi Chapin, Fuller và Pearson vào những năm 1950 [35]. Các pin mặt trời này đã được chứng minh là nguồn năng lượng hiệu quả cho hoạt động của các thiết bị ngoài Trái đất và đã có hơn 1000 vệ tinh sử dụng pin mặt trời trong những năm 1960-1970. Từ những năm 1970, pin mặt trời đã được đề xuất cho các ứng dụng trên mặt đất. Trong gần nửa thế kỷ qua, các công nghệ mới trong chế tạo pin mặt trời đã cho phép giảm giá thành sản phẩm và tạo một tiềm năng cho các ứng dụng thương mại. Đến nay, pin mặt trời đã phát triển trải qua năm thế hệ [36]. Thế hệ pin mặt trời đầu tiên bao gồm các phiến silic đơn tinh thể (c-Si) và silic đa tinh thể (poly-Si). Thế hệ thứ hai bao gồm các pin mặt trời trên nền silic vô định hình (a-Si), các hợp kim cadmium telluride (CdTe) và đồng indium gallium diselenide (CIGS). Sau đó, trong thế hệ thứ ba, pin mặt trời được phát triển gồm có các pin cấu trúc nano, các pin quang hóa (PEC) và các pin của Grätzel (pin polymer và DSSC). Thế hệ pin mặt trời thứ tư được biết đến là các pin dựa trên các tinh thể vô cơ kết hợp với mạng nền polymer. Ngày nay, pin mặt trời màng mỏng Cu2ZnSnS4 (CZTS) là thế hệ thứ năm trong sự phát triển của các pin quang điện. Các pin mặt trời trên nền silic đã phát triển gần như bão hòa và các kết quả nghiên cứu cho thấy hầu như hiệu suất chuyển đổi của pin không cải thiện thêm. Pin mặt trời thế hệ thứ hai CdTe có công nghệ chế tạo và vật liệu đơn giản hơn pin mặt trời silic nhưng lại tạo ra các hóa chất gây 19 độc hại, ảnh hưởng rất nhiều đến môi trường. Pin mặt trời sử dụng chất màu nhạy quang là loại pin mặt trời có tiềm năng phát triển nhất hiện nay bởi tính “sạch”, giá thành rẻ, có tiềm năng sản suất công nghiệp và ứng dụng rộng rãi trong thực tế. Vì vậy nghiên cứu DSSC được lựa chọn là hướng nghiên cứu của luận án. Năm 1991, giáo sư Michael Grätzel cùng các cộng sự tại trường Đại học Bách khoa Liên bang Thụy Sỹ - Lausanne (EPFL) đã tạo ra DSSC đầu tiên với hiệu suất chuyển đổi quang điện hơn 7% [37]. Đây được coi là một phát minh đột phá trong công nghệ năng lượng của thế giới. DSSC được chế tạo từ các vật liệu có giá thành khá rẻ và kỹ thuật chế tạo khá đơn giản. Với công trình về DSSC giáo sư Grätzel đã nhận được giải thưởng công nghệ thiên niên kỷ 2010. Từ những nghiên cứu ban đầu về DSSC của giáo sư Grätzel, đến nay các công trình nghiên cứu về DSSC đã phát triển mạnh mẽ với nhiều cải tiến trong công nghệ. Mặc dù kế thừa được nhiều thành quả của các nghiên cứu của vật lý chất rắn, song việc nghiên cứu chế tạo pin mặt trời Si tại Việt Nam đang gặp rất nhiều khó khăn do đòi hỏi cơ sở vật chất đồng bộ và tốn kém... Pin mặt trời màng mỏng nói chung có quy trình chế tạo đơn giản, giá thành rẻ, phù hợp với điều kiện Việt Nam. Mặc dù hiệu suất của pin mặt trời màng mỏng còn thấp hơn song nó lại có một ưu thế là hoạt động hiệu quả ở mức chiếu sáng thấp, thậm chí phát điện ngay khi pin mặt trời Silic không thể phát điện. Ưu điểm này cũng phù hợp với khí hậu ở Việt Nam nên pin mặt trời màng mỏng được coi là có tương lai ở Việt Nam. Việc tổng hợp phức chất Cu⁺ đã đưa đến khả năng phát triển ứng dụng vật liệu này trong công nghệ chế tạo DSSC. 1.1.1. Cấu trúc và nguyên lý hoạt động của DSSC 1.1.1.1. Cấu trúc Cấu trúc của một DSSC được mô tả trong Hình 1.1, bao gồm: điện cực a-nốt quang (điện cực làm việc), chất điện ly và điện cực ca-tốt (điện cực đối). Điện cực a-nốt quang được chế tạo bằng cách lắng đọng một lớp vật liệu bán dẫn nano tinh thể xốp (TiO₂ hoặc ZnO) trên một đế thủy tinh dẫn điện (kính phủ FTO/ITO), sau đó hấp phụ chất màu nhạy quang vào lớp bán dẫn xốp này. Chất điện phân thường là một chất lỏng có chứa cặp oxi hóa khử (I3- /I- hoặc S2-/Sx2-), choán đầy giữa các điện cực để vận chuyển các hạt tải điện. Điện cực ca-tốt thường là một kính dẫn điện được phủ một lớp chất xúc tác (thường là Pt) để trao đổi điện tích giữa điện cực ca-tốt và chất điện ly. 20 Hình 1.1. Cấu tạo của DSSC 1.1.1.2. Nguyên lý hoạt động DSSC hoạt động dựa trên hiệu ứng quang điện được mô tả trên Hình 1.2, gồm các quá trình theo thứ tự sau: Hình 1.2. Nguyên lý hoạt động của DSSC  Quá trình ①: Hấp thụ bức xạ mặt trời chuyển chất màu nhạy quang từ trạng thái năng lượng cơ bản lên trạng thái bị kích thích 21  Quá trình ②: Bơm điện tử từ trạng thái bị kích thích của chất màu nhạy quang vào vùng dẫn của vật liệu bán dẫn và truyền điện tử từ a-nốt quang ra mạch ngoài  Quá trình ③: Hoàn nguyên (hồi phục) chất màu nhạy quang dưới tác dụng của hệ điện ly  Quá trình ④: Oxy khử cặp chất oxy hóa khử trong hệ điện ly gần điện cực ca-tốt. Đầu tiên, chất màu nhạy quang hấp thụ bức xạ dẫn đến sự chuyển mức năng lượng của điện tử từ trạng thái cơ bản S lên trạng thái kích S*. Về bản chất, đây là quá trình chuyển mức của điện tử từ mức HOMO lên LUMO của chất màu nhạy quang dưới tác dụng của photon. Ngay sau đó, quá trình bơm điện tử xảy ra: điện tử từ mức S* được bơm vào vùng dẫn của vật liệu oxit bán dẫn, khi đó chất màu nhạy quang mất điện tử chuyển thành trạng thái oxy hóa S+. Quá trình bơm điện tử xảy ra khi mức năng lượng đáy vùng dẫn của oxit bán dẫn thấp hơn so với mức kích thích S* của chất màu nhạy quang. Điện tử được hình thành sau quá trình bơm sẽ truyền qua vật liệu bán dẫn đến lớp oxit dẫn điện TCO (quá trình tích góp điện tử) và dẫn ra mạch ngoài của pin rồi đến điện cực ca-tốt. Tại điện cực ca-tốt, dưới tác dụng hoạt hóa của lớp xúc tác, quá trình khử chất oxy hóa diễn ra tạo thành chất khử trong hệ điện ly. Bằng quá trình khuếch tán, các ion chất khử trong hệ điện ly di chuyển đến gần chất màu nhạy quang, thực hiện quá trình hoàn nguyên chất màu nhạy quang. Đây là quá trình khử chất màu nhạy quang ở trạng thái oxy hóa về trạng thái cơ bản. Để quá trình hoàn nguyên hoạt động tốt, thế oxy hóa khử của cặp oxy hóa khử trong hệ điện ly cần phù hợp với sự chênh lệch năng lượng giữa mức HOMO và mức LUMO của chất màu nhạy quang. Sau quá trình này, mạch điện được khép kín và chất màu nhạy quang tiếp tục thực hiện chu trình chuyển hóa năng lượng tiếp theo. Trong hoạt động của DSSC, các quá trình ⑤ và ⑥ trên Hình 1.2 là quá trình tái hợp điện tử không mong muốn, gây ảnh hưởng đến hiệu suất chuyển đổi quang điện. 1.1.2. Các thành phần của DSSC 1.1.2.1. Điện cực a-nốt quang Trong a-nốt quang, ngoài đế thủy tinh phủ lớp oxit dẫn điện, lớp oxit 22
- Xem thêm -

Tài liệu liên quan