Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học định lý tương giao cantor trong không gian metric nón và ứng dụng...

Tài liệu định lý tương giao cantor trong không gian metric nón và ứng dụng

.PDF
47
124
130

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM PHAN THỊ THẮM ĐỊNH LÝ TƯƠNG GIAO CANTOR TRONG KHÔNG GIAN METRIC NÓN VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM PHAN THỊ THẮM ĐỊNH LÝ TƯƠNG GIAO CANTOR TRONG KHÔNG GIAN METRIC NÓN VÀ ỨNG DỤNG Ngành: TOÁN GIẢI TÍCH Mã số: 8.46.01.02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học TS. BÙI THẾ HÙNG Thái Nguyên - 2018 Lời cam đoan Tôi xin cam đoan rằng nội dung trình bày trong luận văn này là trung thực và không trùng lặp với đề tài khác. Tôi cũng xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện luận văn này đã được cảm ơn và các thông tin trích dẫn trong luận văn đã được chỉ rõ nguồn gốc. Thái Nguyên, tháng 4 năm 2018 Người viết luận văn Phan Thị Thắm Xác nhận của trưởng khoa Toán Xác nhận của người hướng dẫn khoa học TS. Bùi Thế Hùng i Lời cảm ơn Trước khi trình bày nội dung chính của luận văn, tôi xin bày tỏ lòng biết ơn sâu sắc tới TS. Bùi Thế Hùng, người thầy tận tình hướng dẫn tôi trong suốt quá trình nghiên cứu để tôi có thể hoàn thành luận văn này. Tôi xin trân trọng cảm ơn Ban Giám hiệu, khoa Toán cùng toàn thể các thầy cô giáo trường ĐHSP Thái Nguyên đã truyền thụ cho tôi những kiến thức quan trọng, tạo điều kiện thuận lợi và cho tôi những ý kiến đóng góp quý báu trong suốt quá trình học tập và thực hiện luận văn. Bản luận văn chắc chắn sẽ không tránh khỏi những khiếm khuyết vì vậy rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo và các bạn học viên để luận văn này được hoàn chỉnh hơn. Cuối cùng xin cảm ơn gia đình và bạn bè đã động viên, khích lệ tôi trong thời gian học tập, nghiên cứu và hoàn thành luận văn. Tôi xin chân thành cảm ơn! Thái Nguyên, tháng 4 năm 2018 Tác giả Phan Thị Thắm ii Mục lục Lời cam đoan i Lời cảm ơn ii Mục lục iii Một số ký hiệu và viết tắt iv Mở đầu 1 1 Không gian metric nón 3 1.1 Nón trong không gian Banach . . . . . . . . . . . . . . . . 3 1.2 Không gian metric nón và sự hội tụ . . . . . . . . . . . . . 9 1.3 Một số định lý điểm bất động . . . . . . . . . . . . . . . . 14 2 Định lý tương giao Cantor trong không gian metric nón và ứng dụng 21 2.1 Khái niệm c-hội tụ đều trong không gian Banach . . . . . . 21 2.2 Định lý tương giao Cantor trong không gian metric nón . . 27 2.3 Ứng dụng . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Kết luận 39 Tài liệu tham khảo 40 iii Một số ký hiệu và viết tắt N∗ tập các số tự nhiên khác không R tập các số thực R+ tập số thực không âm R− tập số thực không dương {xn }n≥1 dãy số ∅ tập rỗng A := B A được định nghĩa bằng B A⊂B A là tập con của B A 6⊂ B A không là tập con của B A∪B hợp của hai tập hợp A và B A∩B giao của hai tập hợp A và B θ véctơ gốc trong không gian Banach E A\B hiệu của hai tập hợp A và B A×B tích Descartes của hai tập hợp A và B int A phần trong tôpô của tập hợp A 2 kết thúc chứng minh iv Mở đầu Năm 2007, Huang và Zhang [10] lần đầu giới thiệu không gian metric nón bằng cách thay tập số thực R trong định nghĩa metric thông thường bằng một nón định hướng trong không gian Banach. Định nghĩa: Giả sử X là tập khác rỗng và  là quan hệ thứ tự bộ phận trên không gian Banach E sinh bởi nón C xác định bởi: x, y ∈ E; x  y nếu y − x ∈ C . Ánh xạ d : X × X → E được gọi là metric nón trên X nếu (d1) θ  d(x, y) với mọi x, y ∈ X và d(x, y) = θ nếu và chỉ nếu x = y ; (d2) d(x, y) = d(y, x) với mọi x, y ∈ X ; (d3) d(x, y)  d(x, z) + d(z, y) với mọi x, y, z ∈ X. Khi đó (X, d) được gọi là không gian metric nón. Sau đó các tác giả đã chứng minh một số định lý điểm bất động của ánh xạ co trong không gian này với nón chuẩn tắc. Năm 2008, Rezapour và Hamlbarani [14] đã chứng minh lại các kết quả của Huang và Zhang mà không cần tính chuẩn tắc của nón. Từ sau các công trình này đã có khá nhiều bài báo viết về vấn đề liên quan đến không gian này. Ngoài việc nghiên cứu Nguyên lý điểm bất động của ánh xạ co Banach và các mở rộng của chúng cho các không gian metric nón, người ta còn quan tâm đến các vấn đề sau đây trong lớp không gian này: Nguyên lý thác triển liên tục, Nguyên lý tương giao Cantor, Nguyên lý Baire về phạm trù, bổ sung đủ và một số tính chất về tôpô của không gian metric nón. Năm 2011 các tác giả Alnafei, Radenovic và Shahzad [2] đã chứng minh Định lý tương giao Cantor trong không gian metric nón với nón đa diện có phần trong khác rỗng trong không gian Banach. Sau đó, năm 2016 bằng phương pháp hội tụ theo nón của dãy, 1 Jachymski và Klima [12] đã chứng minh Định lý tương giao Cantor trong không gian metric nón mà không cần tính đa diện của nón. Mục đích của luận văn là giới thiệu lại một số kết quả nghiên cứu của các tác giả Jachymski và Klima [12] về định lý tương giao Cantor trong không gian metric nón bằng phương pháp hội tụ theo nón của dãy và ứng dụng vào định lý điểm bất động. Luận văn gồm phần mở đầu, hai chương nội dung, phần kết luận và tài liệu tham khảo. Chương 1 chúng tôi trình bày một số vấn đề cơ bản về nón, không gian metric nón, sự hội tụ trong không gian metric nón và tính chất của lớp không gian này. Ngoài ra, trong chương này chúng tôi cũng trình bày nguyên lý điểm bất động của ánh xạ co trong không gian metric nón dưới giả thiết về tính chuẩn tắc cũng như không chuẩn tắc của nón K . Chương 2 dành cho việc trình bày khái niệm c- hội tụ đều, sự hội tụ theo nón của dãy trong không gian metric nón và mối quan hệ giữa sự hội tụ theo nghĩa của Huang- Zhang và sự hội tụ theo nón của dãy. Nội dung chính của chương này là trình bày định lý tương giao Cantor trong không gian metric nón và ứng dụng của nó vào định lý điểm bất động của ánh xạ co suy rộng với hằng số co là một toán tử tuyến tính dương với bán kính phổ nhỏ hơn 1. 2 Chương 1 Không gian metric nón Trong chương này, chúng tôi trình bày một số khái niệm và kết quả về nón trong không gian Banach, không gian metric nón và sự hội tụ trong không gian metric nón. Ngoài ra, chúng tôi còn trình bày một cách chi tiết định lý điểm bất động của ánh xạ co trong không gian metric nón dưới giả thiết nón chuẩn tắc và nón không chuẩn tắc. Một số ví dụ tính toán mô tả cho các kết quả cũng được trình bày. Các khái niệm và kết quả của chương này được chúng tôi trình bày dựa trên hai bài báo [10] và [14]. 1.1 Nón trong không gian Banach Định nghĩa 1.1.1. Cho X là không gian tuyến tính trên trường K với điểm gốc θ. Hàm k.k : X → R được gọi là chuẩn trên X nếu (i) kxk ≥ 0 với mọi x ∈ X và kxk = 0 ⇔ x = θ. (ii) kλxk = |λ|kxk với mọi x ∈ X và λ ∈ K. (iii) kx + yk ≤ kxk + kyk với mọi x, y ∈ X. Khi đó cặp (X, k.k) được gọi là không gian định chuẩn. Nhận xét. Mọi không gian định chuẩn là không gian metric với khoảng cách d(x, y) = kx − yk. Khoảng cách xác định như trên gọi là khoảng cách sinh bởi chuẩn. Định nghĩa 1.1.2. Không gian định chuẩn X đầy đủ đối với khoảng cách 3 sinh bởi chuẩn được gọi là không gian Banach. Định nghĩa 1.1.3. Giả sử E là không gian Banach. Tập con K của E được gọi là nón nếu (i) K là tập khác rỗng, đóng và K 6= {θ}. (ii) ax + by ∈ K với mọi x, y ∈ K và a, b ≥ 0. (iii) K ∩ (−K) = {θ}. Ví dụ 1.1.4. Giả sử E := R2 . Đặt K := {(x, y) ∈ E : x ≥ 0, y ≥ 0}. Khi đó K là nón trong E. Định nghĩa 1.1.5. Giả sử nón K ⊂ E với phần trong khác rỗng, ta định nghĩa quan hệ thứ tự bộ phận  trên E sinh bởi nón K như sau x, y ∈ E : x  y nếu y − x ∈ K. Nếu x  y và x 6= y thì ta viết x ≺ y . Nếu y − x ∈ int K thì ta viết x  y . Đôi khi ta viết y  x, y  x và y  x lần lượt thay cho x  y, x ≺ y và x  y. Tập con A ⊂ E được gọi là bị chặn trên nếu tồn tại y ∈ E sao cho x  y với mọi x ∈ A. Tập con A ⊂ E được gọi là bị chặn dưới nếu tồn tại z ∈ E sao cho z  x với mọi x ∈ A. Một véctơ a được gọi là cận trên đúng của tập A nếu (i) a là chặn trên của A, tức là x  a với mọi x ∈ A. (ii) a là chặn trên nhỏ nhất của A, tức là nếu tồn tại b ∈ E sao cho x  b với mọi x ∈ A thì a  b. Ta kí hiệu cận trên đúng của tập A là sup A. Định nghĩa 1.1.6. Cho K là nón trong không gian Banach E . Ta nói rằng (i) K là chuẩn tắc nếu tồn tại hằng số Λ > 0 sao cho θ  x  y kéo theo kxk ≤ Λkyk. 4 Hằng số Λ > 0 bé nhất thỏa mãn điều kiện trên được gọi là hằng số chuẩn tắc của K . (ii) K là nón chính quy nếu mỗi dãy đơn điệu tăng và bị chặn trên đều hội tụ. Tức là, nếu {xn }n≥1 là dãy thỏa mãn x1  x2  ...  xn  ...  y, với y ∈ E nào đó, thì tồn tại x ∈ E sao cho kxn − xk → 0 khi n → ∞. Điều này tương đương với nón K là chính quy nếu mỗi dãy đơn điệu giảm và bị chặn dưới đều hội tụ. (iii) K là nón đa diện nếu sup{x, y} tồn tại với mọi x, y ∈ E . (iv) K là nón đa diện mạnh nếu mọi tập con bị chặn trên của E đều có cận trên đúng. Mệnh đề 1.1.7. Không tồn tại nón chuẩn tắc với hằng số chuẩn tắc Λ < 1. Chứng minh. Giả sử (X, d) là không gian metric nón và K là nón chuẩn tắc với hằng số chuẩn tắc Λ < 1. Ta chọn 0 < ε < 1 sao cho Λ < 1 − ε. Khi đó (1 − ε)x  x với mọi x ∈ K\{θ}. Vì K là nón chuẩn tắc với hằng số chuẩn tắc Λ nên (1 − ε)kxk ≤ Λkxk với mọi x ∈ K\{θ}. Từ đó suy ra 1 − ε ≤ Λ. Điều này mâu thuẫn với Λ < 1 − ε. Vậy mệnh đề được chứng minh. Mệnh đề 1.1.8. Với mỗi k > 1, luôn tồn tại nón chuẩn tắc với hằng số chuẩn tắc Λ > k . Chứng minh. Giả sử k > 1. Xét không gian véctơ thực 1 E := {f : f (x) = ax + b với mọi x ∈ [1 − , 1] và a, b ∈ R}, k 5 với chuẩn kf k := sup x∈[1− 1 |f (x)| và nón ,1] k 1 K := {f : f (x) = ax + b với mọi x ∈ [1 − , 1] và a ≤ 0, b ≥ 0}. k Ta chứng minh K là nón chính quy. Thật vậy, giả sử {fn }n≥1 là một dãy tăng và bị chặn trên trong E , tức là tồn tại một phần tử g ∈ E sao cho f1  f2  ...  fn  ...  g. 1 Ta có thể giả sử fn (x) = an x + bn và g(x) = cx + d với mọi x ∈ [1 − , 1], k trong đó an , bn , c, d ∈ R. Khi đó a1 x + b1  a2 x + b2  ...  an x + bn  ...  cx + d, 1 với mọi x ∈ [1 − , 1]. Từ đó suy ra {an }n≥1 và {bn }n≥1 là hai dãy số thực k thỏa mãn b1 ≤ b2 ≤ ... ≤ d, a1 ≥ a2 ≥ ... ≥ c. Do đó, {an }n≥1 và {bn }n≥1 hội tụ. Giả sử lim an = a và lim bn = b. Ta n→∞ n→∞ 1 đặt f (x) = ax + b với mọi x ∈ [1 − , 1]. Khi đó f ∈ K và fn → f . Từ đó k suy ra K là nón chính quy. Theo Mệnh đề 1.1.7, tồn tại Λ ≥ 1 sao cho 0  g  f kéo theo kgk ≤ Λkf k, với mọi g, f ∈ E. (1.1) Bây giờ ta chỉ ra Λ > k . Thật vậy, vì f (x) = −kx + k ∈ K, g(x) = k ∈ K và f − g ∈ K nên 0  g  f . Từ đó suy ra k = kgk ≤ Λkf k = Λ. Mặt khác, nếu 1 f (x) = −(k + )x + k và g(x) = k k thì f ∈ K, g ∈ K và f − g ∈ K. Hơn nữa, ta lại có kgk = k và kf k = 1 − 6 1 1 + 2. k k Điều này kéo theo kgk > kkf k. (1.2) Từ (1.1) và (1.2) ta thu được Λ > k . Mệnh đề 1.1.9. Mọi nón chính quy đều là nón chuẩn tắc. Chứng minh. Giả sử K là nón chính quy trong E nhưng không phải là nón chuẩn tắc. Khi đó với mỗi n ≥ 1, tồn tại tn , sn ∈ K sao cho tn − sn ∈ K và n2 ktn k < ksn k. Từ đó suy ra tn 6= θ với mọi n ≥ 1. Với mỗi n ≥ 1, ta đặt yn := sn tn và xn := . ktn k ktn k Khi đó xn , yn , yn − xn ∈ K và kyn k = 1, kxnn2 k > 1 với mọi n ≥ 1. Do chuỗi P∞ 1 P∞ 1 là hội tụ nên chuỗi n=1 2 yn hội tụ tuyệt đối trong E . Vì E là n=1 2 n n P∞ 1 không gian Banach nên chuỗi n=1 2 yn hội tụ trong E . Từ K đóng nên n tồn tại y ∈ K sao cho ∞ X 1 y= y . 2 n n n=1 Chú ý rằng 1 1 1 x  x + x + x3  ...  y 2 1 2 22 22 32 P 1 và bởi K là nón chính quy nên chuỗi ∞ n=1 2 xn hội tụ. Do đó n θ  x1  x1 + 1 kxn k = 0. n→∞ n2 lim Điều này mâu thuẫn với kxn k n2 > 1 với mọi n ≥ 1. Vậy K là nón chuẩn tắc. Ví dụ sau đây chỉ ra một nón chuẩn tắc nhưng không chính quy. 7 Ví dụ 1.1.10. Giả sử E := CR ([0, 1]) với chuẩn kf k := supx∈[0,1] |f (x)|. Đặt K := {f ∈ E : f ≥ θ}. Khi đó K là nón chuẩn tắc với hằng số Λ = 1. Thật vậy, giả sử f, g ∈ E và θ  f  g . Khi đó, 0 ≤ f (x) ≤ g(x) với mọi x ∈ [0, 1]. Từ đó suy ra kf k = sup |f (x)| = sup f (x) ≤ sup g(x) = sup |g(x)| = kgk. x∈[0,1] x∈[0,1] x∈[0,1] x∈[0,1] Chứng tỏ K là nón chuẩn tắc với hằng số Λ = 1. Bây giờ ta chứng minh K không phải nón chính quy. Thật vậy, xét dãy {fn }n≥1 trong E cho bởi fn (x) = xn với mọi x ∈ [0, 1] và n ≥ 1. Khi đó f1  f2  f3  ...  θ. Vậy dãy {fn }n≥1 giảm, bị chặn dưới. Giả sử tồn tại f ∈ E sao cho fn → f . Từ đó suy ra lim fn (x) = f (x) với mọi x ∈ [0, 1]. n→∞ Điều này kéo theo  f (x) := 0, nếu x ∈ [0, 1), 1, nếu x = 1. Điều này mâu thuẫn với f ∈ E . Do đó dãy {fn }n≥1 không hội tụ trong E . Vậy K không phải là nón chính quy. Mệnh đề 1.1.11. Mọi nón đa diện mạnh chuẩn tắc đều chính quy. Chứng minh. Giả sử K là nón đa diện mạnh chuẩn tắc với hằng số Λ. Giả sử {xn }n≥1 là dãy đơn điệu tăng và bị chặn trên, tức là tồn tại y ∈ E sao cho x1  x2  ...  xn  ...  y. Vì K là nón đa diện nên tồn tại x := supn≥1 xn ∈ E . Ta chứng minh limn→∞ xn = x. Thật vậy, với  > 0 tùy ý, ta chọn c  θ sao cho Λkck ≤ . Theo định nghĩa của x, tồn tại n0 ≥ 1 sao cho x − c  xn0  x. 8 Vì {xn }n≥1 là dãy đơn điệu tăng nên θ  x − xn  x − xn0  c với mọi n ≥ n0 . Từ tính chuẩn tắc của nón K với hằng số Λ ta suy ra kx − xn k ≤ Λkck ≤  với mọi n ≥ n0 . Điều này chứng tỏ limn→∞ xn = x. Vậy K là chính quy. 1.2 Không gian metric nón và sự hội tụ Định nghĩa 1.2.1. Giả sử X là không gian Banach với thứ tự sinh bởi nón K . Ánh xạ d : X × X → E được gọi là metric nón trên X nếu (i) θ  d(x, y) với mọi x, y ∈ X và d(x, y) = θ nếu và chỉ nếu x = y . (ii) d(x, y) = d(y, x) với mọi x, y ∈ X . (iii) d(x, y)  d(x, z) + d(z, y) với mọi x, y, z ∈ X . Khi đó (X, d) được gọi là không gian metric nón. Nhận xét. Mọi không gian metric (X, d) đều là không gian metric nón với E = R, K = R+ . Tuy nhiên một không gian metric nón chưa chắc là không gian metric. Ví dụ sau minh họa cho điều đó. Ví dụ 1.2.2. Giả sử E := R2 , X := R. Xét nón K trong E xác định bởi K := {(x, y) ∈ E : x, y ≥ 0}. Với α > 0 cho trước, xét ánh xạ d : X × X → E được xác định bởi d(x, y) := (|x − y|, α|x − y|). Khi đó, (X, d) là một không gian metric nón nhưng không là không gian metric. 9 Định nghĩa 1.2.3. Giả sử (X, d) là không gian metric nón. Giả sử {xn }n≥1 là một dãy trong X và x ∈ X. Ta nói rằng dãy {xn }n≥1 hội tụ tới x nếu với mỗi c ∈ E, θ  c, tồn tại n0 ∈ N∗ sao cho d (xn , x)  c với mọi n ≥ n0 . d Ta kí hiệu limn→∞ xn = x hoặc xn → − x. Mệnh đề 1.2.4. Giả sử (X, d) là không gian metric nón và K là nón chuẩn tắc với hằng số Λ. Giả sử {xn }n≥1 là một dãy trong X. Khi đó dãy {xn }n≥1 hội tụ tới x ∈ X khi và chỉ khi lim d(xn , x) = θ. n→∞ Chứng minh. Giả sử lim xn = x. Với mỗi  > 0, ta chọn c ∈ E sao cho n→∞ θ  c và Λkck < . Bởi lim xn = x nên tồn tại n0 sao cho n→∞ d(xn , x)  c với mọi n ≥ n0 . Vì K là nón chuẩn tắc với hằng số Λ nên, kd(xn , x)k ≤ Λkck <  với mọi n ≥ n0 . Từ đó suy ra lim kd(xn , x)k = 0. Vậy lim d(xn , x) = θ. n→∞ n→∞ Ngược lại, giả sử lim d(xn , x) = θ. Lấy c ∈ E, θ  c tùy ý. Khi đó tồn tại n→∞ δ > 0 sao cho c − B(θ, δ) ⊂ int K. Từ lim d(xn , x) = θ, tồn tại n0 sao cho n→∞ d(xn , x) ∈ B(θ, δ) với mọi n ≥ n0 . Từ đó suy ra c − d(xn , x) ∈ int K với mọi n ≥ n0 . Điều này chứng tỏ d(xn , x)  c với mọi n ≥ n0 . Vậy lim xn = x. n→∞ Mệnh đề 1.2.5. Giả sử (X, d) là không gian metric nón và {xn }n≥1 là dãy trong X . Nếu {xn }n≥1 hội tụ tới x ∈ X và {xn }n≥1 hội tụ tới y ∈ X thì x = y. 10 Chứng minh. Với c ∈ E tùy ý, θ  c. Khi đó với mỗi k ≥ 1, tồn tại n0 (k) ∈ N∗ sao cho d(xn , x)  c c và d(xn , y)  với mọi n ≥ n0 (k). 2k 2k Từ đó suy ra c d(x, y)  d(xn0 (k) , x) + d(n0 (k), y)  . k Điều này chứng tỏ c − d(x, y) ∈ K với mọi k ≥ 1. k Cho k → ∞, bởi tính đóng của K , ta thu được −d(x, y) ∈ K . Từ đó suy ra d(x, y) ∈ K ∩ (−K) = {θ}. Điều này chứng tỏ d(x, y) = θ. Vậy x = y. Định nghĩa 1.2.6. Giả sử (X, d) là không gian metric nón và {xn }n≥1 là dãy trong X . Dãy {xn }n≥1 được gọi là dãy Cauchy trong X , nếu với mỗi c ∈ E, θ  c, tồn tại n0 sao cho d(xn , xm )  c với mọi n, m ≥ n0 . Định nghĩa 1.2.7. Không gian metric nón (X, d) được gọi là đầy đủ nếu mọi dãy Cauchy trong X đều hội tụ trong nó. Mệnh đề 1.2.8. Giả sử (X, d) là không gian metric nón và {xn }n≥1 là dãy trong X . Khi đó dãy {xn }n≥1 là dãy Cauchy nếu lim xn = x. n→∞ Chứng minh. Giả sử c ∈ E, θ  c tùy ý và lim xn = x. Khi đó tồn tại n0 n→∞ sao cho d(xn , x)  c c và d(xm , x)  với mọi n, m ≥ n0 . 2 2 Từ đó kéo theo d (xm , xn )  d (xn , x) + d (xm , x)  c với mọi n, m ≥ n0 . Vậy {xn }n≥1 là dãy Cauchy. Mệnh đề 1.2.9. Giả sử (X, d) là không gian metric nón, K là nón chuẩn tắc với hằng số Λ và dãy {xn }n≥1 trong X . Khi đó {xn }n≥1 là dãy Cauchy khi và chỉ khi lim d(xn , xm ) = θ. n,m→∞ 11 Chứng minh. Giả sử {xn }n≥1 là dãy Cauchy trong X . Với mỗi  > 0, ta chọn c ∈ E sao cho θ  c và Λkck < . Bởi {xn }n≥1 là dãy Cauchy trong X nên tồn tại n0 sao cho d(xn , xm ) ≤ c với mọi n, m ≥ n0 . Vì K là nón chuẩn tắc với hằng số Λ nên, kd(xn , xm )k ≤ Λkck <  với mọi n, m ≥ n0 . Từ đó suy ra lim kd(xn , xm )k = 0. Vậy lim d(xn , xm ) = θ. n,m→∞ n,m→∞ Ngược lại, giả sử lim d(xn , xm ) = θ. Lấy c ∈ E, θ  c tùy ý. Khi đó tồn n,m→∞ tại δ > 0 sao cho c − B(θ, δ) ⊂ int K. Từ lim d(xn , xm ) = θ, tồn tại n0 sao cho n,m→∞ d(xn , xm ) ∈ B(θ, δ) với mọi n, m ≥ n0 . Từ đó suy ra c − d(xn , xm ) ∈ int K với mọi n, m ≥ n0 . Điều này chứng tỏ d(xn , xm )  c với mọi n, m ≥ n0 . Vậy {xn }n≥1 là dãy Cauchy trong X. Mệnh đề 1.2.10. Giả sử (X, d) là không gian metric nón và K là nón chuẩn tắc với hằng số Λ. Giả sử {xn }n≥1 , {yn }n≥1 là hai dãy trong X và lim xn = x, lim yn = y. Khi đó n→∞ n→∞ lim d(xn , yn ) = d(x, y). n→∞ Chứng minh. Với mỗi ε > 0, ta chọn c ∈ E sao cho θ  c và kck < Từ lim xn = x, lim yn = y, tồn tại n0 sao cho n→∞ n→∞ d(xn , x)  c và d(yn , y)  c với mọi n ≥ n0 . 12 ε 4Λ+2 . Mặt khác, ta có d(xn , yn )  d(xn , x) + d(x, y) + d(yn , y)  d(x, y) + 2c với mọi n ≥ n0 , và d(x, y)  d(x, xn ) + d(xn , yn ) + d(yn , y)  d(xn , yn ) + 2c với mọi n ≥ n0 . Từ đó suy ra 0  d(x, y) + 2c − d(xn , yn )  4c với mọi n ≥ n0 . Vì K là nón chuẩn tắc với hằng số Λ nên kd(xn , yn ) − d(x, y)k ≤ kd(x, y) + 2c − d(xn , yn )k + k2ck ≤ (4Λ + 2)kck < ε với mọi n ≥ n0 . Từ đó suy ra lim kd(xn , yn ) − d(x, y)k = 0. Vậy lim d(xn , yn ) = d(x, y). n→∞ n→∞ Ví dụ sau khẳng định giả thiết về tính chuẩn tắc của nón K trong các Mệnh đề 1.2.4, Mệnh đề 1.2.9 và Mệnh đề 1.2.10 là không bỏ được. 1 Ví dụ 1.2.11. Giả sử E := C[0,1] với chuẩn kf k := kf k∞ + kf 0 k∞ , và xét nón K := {f ∈ E : f (t) ≥ 0 với mọi t ∈ [0, 1]}. Khi đó K không chuẩn tắc. Thật vậy, với mỗi k ≥ 1, ta đặt f (x) = x và g(x) = x2k với mọi x ∈ [0, 1]. Khi đó θ  g  f , ở đây θ là gốc E . Vì kkf k ≤ kgk nên k không là hằng số chuẩn tắc của nón K . Vậy K không chuẩn tắc. Đặt X := {0, n1 : n ≥ 1} và định nghĩa d : X × X → E bởi   θ, nếu x = y, d(x, y) := |fn − fm |, nếu x 6= y ∈ { n1 , m1 },  fn , nếu x 6= y ∈ { n1 , 0}, 13 trong đó fn (t) = tn n với mọi t ∈ [0, 1], n ≥ 1. Dễ thấy d là metric nón trên X và (X, d) là không gian metric nón. Hơn nữa ta có 1 IE d( , 0) = fn  với mọi n ≥ 1, n n ở đây IE ∈ E xác định bởi IE (t) = t với mọi t ∈ [0, 1]. Từ lim IE n→∞ n = θ, bởi Mệnh đề 1.4 trong [1], với mỗi e ∈ E, θ  e, tồn tại n0 sao cho IE  e với mọi n ≥ n0 . n Từ đó suy ra d( n1 , 0)  e với mọi n ≥ n0 . Vậy lim 1 n n→∞ = 0. Mặt khác ta lại có tn 1 1 kd( , 0) − θk = kfn − θk = max + max tn−1 = 1 + > 1 với mọi n ≥ 1. t∈[0,1] n t∈[0,1] n n Điều này chứng tỏ d( n1 , 0) 9 θ trong E . Vậy các Mệnh đề 1.2.4, Mệnh đề 1.2.9 và Mệnh đề 1.2.10 không xảy ra. 1.3 Một số định lý điểm bất động Năm 2007, Huang- Zhang [10] đã chứng minh nguyên lý điểm bất động của ánh xạ co trong không gian metric nón dưới giả thiết về tính chuẩn tắc của nón K. Định lý 1.3.1. Giả sử (X, d) là không gian metric nón đầy đủ và K là nón chuẩn tắc với hằng số Λ. Giả sử ánh xạ T : X → X thỏa mãn điều kiện co sau d(T x, T y)  λd(x, y) với mọi x, y ∈ X, trong đó λ ∈ [0, 1) là hằng số. Khi đó T có điểm bất động duy nhất x̄ ∈ X. Hơn nữa với mỗi x ∈ X, lim T n x = x̄. n→∞ Chứng minh. Với mỗi x0 ∈ X, ta xây dựng dãy {xn }n≥1 ⊂ X bởi công thức 14
- Xem thêm -

Tài liệu liên quan