Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Luận văn bài toán biên giá trị ban đầu cho phương trình parabolic tuyến tính cấp...

Tài liệu Luận văn bài toán biên giá trị ban đầu cho phương trình parabolic tuyến tính cấp hai

.PDF
39
119
91

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC PHẠM THỊ HUYỀN BÀI TOÁN BIÊN-GIÁ TRỊ BAN ĐẦU CHO PHƯƠNG TRÌNH PARABOLIC TUYẾN TÍNH CẤP HAI LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2015 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC PHẠM THỊ HUYỀN BÀI TOÁN BIÊN-GIÁ TRỊ BAN ĐẦU CHO PHƯƠNG TRÌNH PARABOLIC TUYẾN TÍNH CẤP HAI Chuyên ngành: Toán ứng dụng Mã số: 60 46 01 12 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. HÀ TIẾN NGOẠN Thái Nguyên - 2015 i Mục lục Mở đầu 1 1 Một số kiến thức liên quan 4 1.1 Không gian Sobolev . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Không gian L2 (Ω) . . . . . . . . . . . . . . . . . . 4 1.1.2 Không gian W2m (Ω) . . . . . . . . . . . . . . . . . . 4 1.1.3 Không gian W m,` (QT ) . . . . . . . . . . . . . . . . 5 Bất đẳng thức tích phân . . . . . . . . . . . . . . . . . . . . 6 1.2 2 Bài toán biên-giá trị ban đầu của phương trình parabolic 7 2.1 Phương trình truyền nhiệt . . . . . . . . . . . . . . . . . . . 7 2.1.1 Khái niệm phương trình parabolic . . . . . . . . . . 7 2.1.2 Dạng của phương trình truyền nhiệt . . . . . . . . . 9 2.1.3 ∆,1 Nghiệm suy rộng thuộc W2,0 (QT ) của bài toán biên- giá trị ban đầu thứ nhất . . . . . . . . . . . . . . . . 10 2.1.4 Nghiệm suy rộng thuộc L2 (QT ) của bài toán biêngiá trị ban đầu thứ nhất . . . . . . . . . . . . . . . . 14 2.1.5 Nghiệm suy rộng thuộc V21,0 (QT ) của bài toán biêngiá trị ban đầu thứ nhất . . . . . . . . . . . . . . . . 16 2.2 Phương trình parabolic dạng tổng quát . . . . . . . . . . . . 20 2.2.1 Phương trình parabolic tổng quát dạng bảo toàn . . . 20 ii 2.3 2.2.2 Sự tồn tại nghiệm suy rộng . . . . . . . . . . . . . . 23 2.2.3 Tính duy nhất của nghiệm suy rộng . . . . . . . . . 25 Bài toán biên-giá trị ban đầu thứ hai và thứ ba . . . . . . . . 26 2.3.1 Phát biểu bài toán . . . . . . . . . . . . . . . . . . . 27 2.3.2 Định nghĩa nghiệm suy rộng của bài toán biên-giá trị ban đầu thứ hai và thứ ba . . . . . . . . . . . . . 27 2.3.3 2.4 Sự tồn tại nghiệm suy rộng . . . . . . . . . . . . . . 27 Bất đẳng thức cơ bản thứ hai . . . . . . . . . . . . . . . . . 31 Kết luận 34 Tài liệu tham khảo 35 1 Mở đầu 1 Lý do chọn đề tài Trong chương trình của bậc đại học, bước đầu chúng ta đã được làm quen với môn phương trình đạo hàm riêng. Trong đó, ta đã biết được các vấn đề cơ bản liên quan đến phương trình Laplace, phương trình truyền sóng, phương trình truyền nhiệt. Đó là các phương trình đơn giản lần lượt đại diện cho ba lớp phương trình đạo hàm riêng là phương trình elliptic, hypebolic và parabolic. Khi học ta thấy rằng, điều kiện tồn tại nghiệm theo nghĩ thông thường đòi hỏi khá nhiều yếu tố khắt khe như tính trơn của phương trình, điều này gây khó khăn khi xét các bài toán đối với phương trình trên những miền bất kỳ hoặc đối với những bài toán của các phương trình tổng quát hơn. Để khắc phục điều này, thay vì đi tìm nghiệm cổ điển, người ta đi tìm nghiệm suy rộng, tức là nghiệm có độ khả vi không cao. Sau đó nhờ các công cụ của giải thích hàm, người ta nghiên cứu sự tồn tại, tính duy nhất và độ trơn của nghiệm suy rộng. Chính vì vậy, phương trình đạo hàm riêng còn là vấn đề rất mới mẻ và bí ẩn kích thích sự yêu thích của những sinh viên yêu thích nó. Nhằm góp phần giúp những bạn sinh viên và những độc giả yêu môn phương trình đạo hàm riêng nói chung và bản thân tác giả nói riêng hiểu sâu hơn về môn học này và tiếp tục tìm hiểu khám phá, tôi mạnh dạn nghiên cứu đề tài: “Bài toán biên giá trị ban đầu của phương trình parabolic cấp hai”. 2 2 2.1 Đối tượng - Phương pháp - Phạm vi nghiên cứu Đối tượng nghiên cứu Đối tượng nghiên cứu là bài toán biên-giá trị ban đầu thứ nhất đối với phương trình parabolic cấp hai 2.2 Phương pháp nghiên cứu Phương pháp nghiên cứu chủ yếu là sưu tầm tài liệu, đọc hiểu tài liệu trên cơ sở đó phân tích, tổng hợp, diễn giải, làm rõ và trình bày một hệ thống để giải quyết các vấn đề đặt ra của luận văn. 2.3 Phạm vi nghiên cứu Phạm vi nghiên cứu của luận văn là phương trình parabolic tuyến tính cấp hai. 3 3.1 Mục đích - nhiệm vụ và những đóng góp của luận văn Mục đích nghiên cứu Mục đích nghiên cứu của luận văn là tìm hiểu sâu hơn về môn phương trình đạo hàm riêng, cụ thể là phương trình parabolic cấp hai. Đóng góp thêm một tài liệu tham khảo cho giảng viên, sinh viên và tất cả những ai quan tâm đến môn phương trình đạo hàm riêng. 3.2 Nhiệm vụ của luận văn Với mục đích đặt ra, nhiệm vụ nghiên cứu của luận văn là nghiên cứu về bài toán biên-giá trị ban đầu đối với phương trình parabolic cấp hai. Luận văn gồm hai chương: 3 • Chương 1. Một số kiến thức liên quan mô tả một số không gian Sobolev thích hợp đối với nghiệm của phương trình parabolic. • Chương 2. Bài toán biên-giá trị ban đầu của phương trình parabolic trình bày khái niệm phương trình parabolic nói chung và phương trình truyền nhiệt nói riêng, phát biểu bài toán biên-giá trị ban đầu thứ nhất, đưa vào xét nghiệm suy rộng của bài toán biên-giá trị ban đầu thứ nhất đối với phương trình truyền nhiệt. Ngoài ra chương hai trình bày các định lý về sự tồn tại và duy nhất của nghiệm suy rộng bài toán biên-giá trị ban đầu thứ nhất đối với phương trình parabolic tổng quát dạng bảo toàn, nghiệm suy rộng của bài toán biên-giá trị ban đầu thứ hai và thứ ba. Tài liệu tham khảo chính của luận văn là tài liệu [1], trong đó trình bày các loại nghiệm suy rộng của phương trình parabolic. Khi các nghiệm suy rộng là các hàm trơn thì chúng là nghiệm cổ điển của các phương trình này mà được nghiên cứu trong [2]. 3.3 Những đóng góp của luận văn Đóng góp nổi bật của luận văn là cung cấp được các khái niệm và kết quả chuyên sâu về nghiệm suy rộng của phương trình parabolic cấp hai dạng bảo toàn. Đó là các khái niệm mới như: định nghĩa đạo hàm riêng suy rộng, các không gian Sobolev. Đặc biệt nó giúp ta có một phương pháp mới đi nghiên cứu bài toán biên-giá trị ban đầu đối với phương trình parabolic cấp hai. 4 Chương 1 Một số kiến thức liên quan Các kiến thức cơ sở trong chương này đều được lấy từ tài liệu [1]. 1.1 Không gian Sobolev 1.1.1 Không gian L2 (Ω) Giả sử Ω là miền bị chặn trong Rn , x = (x1 , x2 , . . . , xn ) ∈ Ω với tích vô hướng Z ( f (x), g(x))L2 (Ω) = f (x)g(x)dx. Ω và chuẩn tương ứng k f kL2 (Ω) = 1.1.2 Z 2 1/2 | f (x)| dx . Ω Không gian W2m (Ω) Giả sử m là các số tự nhiên ta kí hiệu W2m (Ω) là không gian Sobolev gồm tất cả các hàm u(x) ∈ L2 (Ω), sao cho tất cả các đạo hàm suy rộng theo x đến cấp m thuộc L2 (Ω). Không gian W2m (Ω) là không gian Banach với chuẩn sau 2 kukW m 2 (Ω) Z = ∑ |Dα u|2 dx |α|≤m Ω trong đó α = (α1 , α2 , . . . , αn ) ∈ Nn là đa chỉ số; (1.1) 5 Dα = Dα1 Dα2 . . . Dαn , D = (D1 , D2 , . . . , Dn ), Dj = ∂ . ∂xj Không khó khăn khi có thể kiểm tra W2m (Ω) là một không gian Hilbert với tích vô hướng Z (u, v)W2m (Ω) = 1.1.3 ∑ Dα uDα vdx. |α|≤m Ω Không gian W m,` (QT ) Giả sử Ω là một miền bị chặn trong Rn với biên ∂ Ω và T = const > 0. Kí hiệu QT = Ω × (0, T ) = {(x,t) : x ∈ Ω, t ∈ (0; T )} và được gọi là miền trụ đáy Ω. Giả sử m, ` là các số tự nhiên ta kí hiệu W m,` (QT ) là không gian Sobolev gồm tất cả các hàm u(x,t) ∈ L2 (QT ), sao cho tất cả các đạo hàm suy rộng theo x đến cấp m và theo t đến cấp ` thuộc L2 (QT ). Không gian W m,` (QT ) là không gian Banach với chuẩn 2 kukW m,` (Q ) = T k 2 ∂ u dxdt. k QT ∂t ` Z Z ∑ |α|≤m QT |Dα u|2 dxdt + ∑ k=1 (1.2) Trường hợp ` = 0 số hạng thứ hai trong vế phải của (1.2) coi như không có. Không khó khăn khi có thể kiểm tra W2m,` (QT ) là một không gian Hilbert với tích vô hướng Z (u, v)W m,` (Q ) = 2 T ∑ |α|≤m QT α α ` Z D uD vdxdt + ∑ k=1 QT ∂ ku ∂ kv dxdt. ∂t k ∂t k 6 1.2 Bất đẳng thức tích phân Giả sử y(t) là hàm không âm và hoàn toàn liên tục trên [0, T ] và với hầu hết t trong [0, T ] thỏa mãn bất đẳng thức dy(t) ≤ c1 (t)y(t) + c2 (t), dt (1.3) ở đó ci (t) là khả tích không âm trên [0, T ]. Khi đó với mọi t, 0 ≤ t ≤ T ta có đánh giá sau đây đối với y(t) Z t   Zξ   Z t y(t) ≤ exp c1 (t)dt y(0) + c1 (ξ ) exp − c1 (t)dt dξ 0 0 0 Z t   Z t ≤ exp c1 (t)dt y(0) + c2 (t)dt . (1.4) 0 0  R Thật vậy, nếu ta nhân (1.3) với exp − 0t c1 (t)dt , ta có thể viết kết quả dưới dạng    Zt   Zt d ≤ c2 (t) exp − c1 (t)dt . y(t) exp − c1 (t)dt dt 0 0 (1.5) và nếu ta tích phân hai vế của (1.5) từ 0 đến t thì sẽ suy ra (1.4). Nếu c1 (t) = c1 = const > 0 và c2 (·) là một hàm số không giảm trên t thì từ (1.2) và (1.4) ta có các bất đẳng thức sau y0 (t) ≤ ec11t [c1 y(0) + c2 (t)] c1 t y(t) ≤ ec11t y(0) + c−1 1 c2 (t)[e − 1]. (1.6) 7 Chương 2 Bài toán biên-giá trị ban đầu của phương trình parabolic 2.1 2.1.1 Phương trình truyền nhiệt Khái niệm phương trình parabolic Giả sử Ω là một miền bị chặn trong Rn+1 , x = (x1 , x2 , . . . , xn , xn + 1) ∈ Ω. Như chúng ta đã biết, phương trình n+1 Mu ≡ n+1 ai, j (x)uxi x j + ∑ i, j=1 ∑ ai(x)ux + a(x)u = f i (2.1) i=1 được gọi là parabolic tại điểm x0 nếu trong tọa độ mới n+1 yi = ∑ βi j x j , i = 1, 2, . . . , n, n + 1 j=1 mà trong đó βi j aki β` j = λk (x0 )δk` , nó đưa về dạng n+1 n+1 0 ∑ λk (x )uy y k k + k=1 ∑ bk (x0)uy k + b(x0 )u = f (x0 ), (2.2) k=1 tại điểm x0 mà ở đó một trong λk (x0 ) (chẳng hạn λn+1 (x0 )) bằng 0, trong khi các hệ số λk (x0 ) còn lại khác không có dấu giống nhau và bn+1 (x0 ) 6= 0. Nếu ta chia (2.2) cho bn+1 (x0 ), ta có phương trình dạng: n n uyn+1 + ∑ µk (x )uyk yk + ∑ bk (x0 )uyk + bu = f . k=1 0 k=1 (2.3) 8 Nếu µk (x0 ) < 0, k = 1, . . . , n) thì (2.3) được gọi là parabolic dạng chuẩn; nếu µk (x0 ) > 0, thì bằng cách đổi hướng của yn+1 và nhân (2.3) với (−1) ta lại được một phương trình parabolic dạng chuẩn. Nếu (2.1) là parabolic ở tất cả các điểm x ∈ Ω, thì ta nói rằng nó là parabolic trong miền này. Nếu các hệ số của M là hàm số trơn và nếu (2.1) là parabolic thì trong một miền (nói chung là một miền nhỏ) của một điểm bất kỳ của một điểm có thể đưa về dạng n n uyn+1 − ∑ bi j uyi yi + ∑ bi uyi + bu = f , j=1 (2.4) i=1 ở đó dạng ∑ni, j=1 bi j ξi ξ j là xác định dương. Biến số yn+1 đóng vai trò ngoại lệ trong miêu tả hiện tượng truyền nhiệt (và một số trường hợp khác) biến số này không là cái gì khác ngoài thời gian: theo đó chúng ta sẽ kí hiệu nó bởi t, những biến số còn lại y1 , . . . , yn miêu tả vị trí của điểm trong một miền trong bài toán vật lý. Chúng ta sẽ xét phương trình parabolic mà được đưa về thành (2.4). Trong luận văn ta xét phương trình parabolic tổng quát dạng bảo toàn sau n n ∂ Mu ≡ ut − ∑ [ai j (x,t)uxi + ai (x,t)u] + ∑ bi (x,t)uxi + a(x,t)u i, j=1 ∂ xi i=1 n ∂ fi (x,t). i=1 ∂ xi = f (x,t) + ∑ (2.5) Nếu các hàm ai j , ai và fi là khả vi thì (2.5) có thể được biến đổi thành phương trình dạng (2.4) và ngược lại nếu các hàm bi j là khả vi thì (2.4) có thể được viết dưới dạng (2.5). 9 2.1.2 Dạng của phương trình truyền nhiệt Giả sử Ω là miền giới nội trong Rn với biên S = ∂ Ω. Với T > 0 ta đặt QT = {(x,t) : x ∈ Ω, 0 ≤ t ≤ T }, ST = {(x,t) : x ∈ S, 0 ≤ t ≤ T }. Một trường hợp đặc biệt của (2.5) là phương trình truyền nhiệt n ∂ 2u ut − ∑ 2 = f (x,t). i=1 ∂ xi (2.6) Phương trình (2.6) khi xét dưới dạng bảo toàn (2.5) vì ta có thể viết lại nó dưới dạng n ∂ ut − ∑ i=1 ∂ xi  ∂ ∂ xi  = f (x,t). (2.7) trong đó ai j = δi j với δi j là kí hiệu Kronecker, ai = 0, bi = 0, a = 0, fi = 0, nó miêu tả quá trình truyền nhiệt trong một miền Ω trong Rn . Các bài toán sau đây là cơ bản đối với phương trình (2.5): (1) Bài toán Cauchy: Tìm hàm số u(x,t) thỏa mãn (2.5) với x ∈ Rn và t > 0 và thỏa mãn khi t = 0 điều kiện ban đầu u|t=0 = ϕ(x). (2.8) (2) Bài toán biên-giá trị ban đầu thứ nhất: Tìm hàm số u(x,t) thỏa mãn (2.5) trong QT với điều kiện ban đầu u|t=0 = ϕ(x), x∈Ω (2.9) và đối với tất cả t ∈ [0, T ], điều kiện biên u|ST = ψ(x,t). (2.10) Miền QT được gọi một cách tự nhiên là hình trụ, mặt xung quanh của nó ST = S × [0, T ] và đáy dưới của nó là tập hợp {(x,t) : x ∈ Ω, t = 0}. 10 Bài toán biên-giá trị ban đầu thứ nhất bao gồm xác định nghiệm của (2.5) trong hình trụ QT và sao cho trùng với các hàm số đã cho ϕ và ψ trên đáy dưới của QT và trên mặt bên ST . 2.1.3 ∆,1 Nghiệm suy rộng thuộc W2,0 (QT ) của bài toán biên-giá trị ban đầu thứ nhất Với kí hiệu ∆u ≡ ∑nj=1 ux j xi , ta xét phương trình truyền nhiệt n ∂ fi . i=1 ∂ xi (2.11) M0 u ≡ ut − ∆u = f + ∑ Bài toán biên-giá trị ban đầu bao gồm tìm nghiệm u(x,t) trong miền bị chặn QT = Ω × (0, T ) thỏa mãn điều kiện ban đầu u|t=0 = ϕ(x) (2.12) u|ST = 0. (2.13) và điều kiện biên: Dựa vào tài liệu [1] luận văn sẽ trình bày ba loại nghiệm suy rộng cho bài toán (2.11)-(2.13). Ta bắt đầu với nghiệm suy rộng thuộc không gian ∆,1 W2,0 (QT ). Ta đưa vào không gian Hilbert W2∆,1 (QT ) mà các phần tử u(x,t) của nó thuộc L2 (QT ) cùng với ut và ux , và có trong QT các đạo hàm suy rộng uxx và chuẩn hữu hạn Z QT [ut2 + u2x + (∆u)2 ]dxdt 1/2 . (2.14) Tích vô hướng trong W2∆,1 (QT ) được xác định bởi Z QT (uv + ut vt + ux vx + ∆u∆v)dxdt. (2.15) 11 Ta ký hiệu ∆,1 (QT ) = W2,0 o n ∆,1 u ∈ W2 (QT ) : u|ST = 0 . ∂ fi ≡ F ở trong L2 (QT ). Nghiệm suy rộng ∂ xi ∆,1 (QT ) của bài toán (2.11)-(2.13) trong W2∆,1 (QT ) là hàm số u(x,t) thuộc W2,0 Trước hết ta viết số hạng tự do f + sao cho thỏa mãn (2.11) hầu khắp nơi trong QT và bằng ϕ(x) đối với t = 0, trong đó điều kiện sau có thể được hiểu là ku(·,t) − ϕ(·)k2,Ω → 0 khi t → 0. ∆,1 Điều này có nghĩa đối với các hàm của W2,0 (QT ) khi chúng được xác định đối với tất cả t ∈ [0, T ], thì sẽ thuộc L2 (QT ) (và thậm chí cũng thuộc W21 (QT ) chúng ta sẽ xem xét dưới đây) và liên tục cùng với t trong chuẩn của L2 (Ω) (và thậm chí trong chuẩn của W21 (QT )). Chúng ta phát biểu lại bài toán (2.11)-(2.13) với f + toán tìm nghiệm của phương trình toán tử ∂ fi ≡ F khi xét bài ∂ xi Au = {F; ϕ} (2.16) Au = {M0 u; u(·, 0)} . (2.17) ở đó A là toán tử sau đây Ta xét A như một toán tử không bị chặn tác động từ không gian L2 (QT ) đến không gian Hilbert W mà là tích của L2 (QT ) và W21 (Ω). Các phần tử của W là các cặp { f , ψ} với f ∈ L2 (QT ) và ψ ∈ W21 (Ω) và tích vô hướng được xác định bởi  Z  00 00  f ;ψ , f ;ψ = W 0 0 QT 0 00 Z f f dxdt + Ω ψ 0 x ψ 00 x dx. (2.18) Đối với miền xác định D(A) của A, ta lấy các phần tử của dạng ψ(x) + Rt 0 X(x,t)dt, ở đó ψ ∈ D(∆), X(·,t) ∈ D(∆) đối với hầu hết tất cả t trong [0, T ] và ∆X ∈ L2 (QT ). Ở đây, bởi D(∆) ta muốn nói tập hợp các nghiệm suy 12 rộng trong W21 (Ω) của bài toán ∆u = f (x), (2.19) u|S = 0. Nếu f (x) = fˆ(x,t), fˆ ∈ L2 (QT ), thì nghiệm û(x,t) của (2.19) là ở trong L2 (QT ) đi cùng với ûx , đạo hàm ûxx tồn tại và là bình phương khả tích trên 0 Q0T = Q0 .(0, T ) đối với tất cả Ω ⊂ Ω, đối với û và tất cả v ∈ W21,0 (QT ) ta có Z ∆b uvdxdt = − Z QT QT (2.20) ubvx dxdt, và phương trình ∆b u = ∑nn=1 ubx j x j = fb thỏa mãn với tất cả (x,t) ∈ QT . Hơn nữa nếu f = Rt b(x,t)dt, 0u Rt 0 fb(x,t)dt thì lời giải u(x,t) của (2.19) là tương đương với do vậy: Z t ∆u(x,t) = ∆ 0 Z t ub(x,t)dt = Z t ∆b u(x,t)dt = 0 0 fb(x,t)dt, và u(·,t) sẽ là một phần tử của W21 (QT ) mà liên tục trong t (trong chuẩn của không gian này). Trên quan điểm này các phần tử v(x,t) = ψ(x) + D(∆) đối với tất cả t ∈ [0, T ], ∆v = ∆ψ + Rt 0 Xx dt R1 0 X(x,t)dt là ở trong là các phần tử của không gian C([0, T ], L2 (Ω)), và vxt ∈ L2 (QT ). Toán tử A trên v(x,t) có thể được viết là:   Z t Av = X − ∆ψ − ∆Xdt; ψ . 0 (2.21) Rất dễ để thấy rằng tập D(A) trù mật trong L2 (QT ). Ta sẽ chứng minh A là mở rộng được. Đối với điều này ta phải chỉ ra rằng nó được thực hiện từ một định lý có sẵn trong lý thuyết toán tử không bị chặn và toán tử mở rộng A∗ của A được xác định trên tập hợp trù mật, hoặc kiểm tra trực tiếp khẳng định sau: Nếu vm ≡ D(A), m = 1, 2, . . .. Nếu vm → 0 trong chuẩn của L2 (QT ) và nếu Avm ≡ { fm , ϕm } → { f , ϕ} trong chuẩn của W , thì f ≡ ϕ ≡ 0. Ta sẽ chứng minh lời khẳng định đó. Đối với điều này, ta lấy hàm 13 số phẳng đầy đủ của bất kỳ η(x,t) mà bằng 0 trên ST , với η(x,t) = 0, và xét tích phân tương ứng R QT M0 (vm )ηdxdt. Ta tính tích phân từng phần và có Z QT Z M0 (vm )ηdxdt = QT vm µ0∗ (η)dxdt − Z vm ηdx|t=0 . Ω Ta có thể có được giới hạn khi m → ∞ để có Z f ηdxdt = − QT Z ϕη(x, 0)dx Ω đối với η(x,t) bất kỳ với các đặc tính đã được chỉ ra ở trên. Vì vậy, với phương pháp nổi tiếng, ta có thể kết luận rằng f và ϕ là rõ ràng bằng 0, do đó toán tử A được mở rộng thành A. Để miêu tả miền xác định D(A) và để tính A trên các phần tử của D(A) ta sẽ chứng minh đối với M0 đẳng thức: kvx (·,t)k22,Ω + Z QT (vt2 + (∆v)2 )2 dxdt = kvx (·, 0)k22,Ω + Z QT (M0 v)2 dxdt (2.22) là đúng. Ở đây v(x,t) là một phần tử bất kỳ của D(A) và t là số nào đó trong [0, T ]. Đẳng thức (2.24) được suy ra từ hệ thức sau Z Z  2 ∂ v (M0 v)2 dxdt = vt2 + (∆v)2 + x dxdt ∂t QT QT Z = QT [vt2 + (∆v)2 ]dxdt + Z Ω v2x dx|t=t t=0 . Từ (2.22) suy ra là sự hội tụ của Avm , vm ∈ D(A) trong W kéo theo sự hội tụ (1) của vn trong chuẩn của W2∆,1 (QT ) và trong chuẩn sup0≤t≤T k · k2,Ω . Điều này chứng minh các phần tử của miền xác định mới không xấu hơn nhiều các ∆,1 phần tử xác định cũ thuộc W2,0 (QT ) và phụ thuộc liên tục vào t trong chuẩn ◦ của W12 (Ω). Định lí 2.1. Giả sử Ω là miền bị chặn. Khi đó bài toán (2.11)-(2.13) có duy ∆,1 nhất nghiệm u(x,t) trong W2,0 (QT ) nếu F = f + ∂∂ xfii ∈ L2 (QT ) và ϕ(x) ∈ 14 ◦ W12 (Ω). Hơn nữa, nghiệm u(x,t) là phụ thuộc liên tục vào t theo chuẩn của ◦ W12 (Ω). Chứng minh. Ta sẽ chứng minh R(A) không có phần bù trực giao trong W , tức là từ đồng nhất thức: Z QT w(vt − ∆v)dxdt + Z QT (2.23) ψx vx (x, 0)dx = 0, suy ra w ≡ 0 và ψ ≡ 0, ở đó v bất kỳ, v ∈ D(A) và {w; ψ} ∈ W . Lấy Z t v(x,t) = ∆−1 (x,t)dxdt, t ∈ [0, T ]. t1 Thay vào Z TZ t1 ∆−1 vt (vt − ∆v)dxdt = 0 Ω ta có Z TZ 1 v2xx dxdt − Z t=T = 0. (∆v) dx 2 (2.24) 2 Ω t=t1 Khi ∆v|t=t1 = 0 và t1 bất kỳ, vxt = 0 trong QT . Vì vậy đồng nhất thức có dạng − t1 Ω Z ψx vx (x, 0)dx = 0, với mọi v(x, 0) trong D(∆). (2.25) Ω Vì ψ ∈ W21 (Ω) và D(∆)|t=0 là trù mật trong W21 (Ω) nên suy ra ψ ≡ 0 và R(A) = W . Định lí được chứng minh. Ví dụ 2.1. Giả sử Ω là hình cầu đơn vị. Để thỏa mãn các điều kiện của Định lý 2.1 ta có thể chọn các hàm như sau r 1 4 |x| , f2 (x) = . . . = fn (x) = 0, f (x) = p , f (x) = 1 4 t |x| 2.1.4 ϕ(x) = 0. Nghiệm suy rộng thuộc L2 (QT ) của bài toán biên-giá trị ban đầu thứ nhất Trong mục này, luận văn trình bày loại nghiệm suy rộng thứ hai của bài toán (2.11)-(2.13). 15 Định nghĩa 2.1. Nghiệm suy rộng thuộc L2 (QT ) của bài toán (2.11)-(2.13) là hàm số u(x,t) ∈ L2 (QT ) thỏa mãn đồng nhất thức Z QT Z u(ηt + ∆η)dxdt + Z ϕη(x, 0)dx = QT Ω (− f η + fi ηxi )dxdt (2.26) ∆,1 với mọi η ∈ W2,0 (QT ) thỏa mãn η(x, T ) = 0. Từ đây về sau nếu trong một biểu thức ta gặp chỉ số lặp thì cần lấy tổng theo chỉ số lặp đó từ 1 đến n. Nếu u là một nghiệm suy rộng trong L2 (QT ) của bài toán (2.11)-(2.13) với f = fi = ϕ = 0, nghĩa là nếu (2.26) chứa u với f = fi = ϕ = 0 sau đó từ đồng nhất thức này suy ra u ≡ 0. Thật vậy, khi t được thay thế bởi −t, đồng nhất thức này được chuyển thành một đồng nhất thức dạng (2.25) với ϕ ≡ 0. Ở đấy u đóng vai trò của w và η của v, ở đó tập hợp của η trong (2.21) thậm chí lớn hơn số của v trong (2.25). Trên quan điểm này và kết hợp từ (2.25), mà w triệt tiêu nó cho phép u ≡ 0 nếu ϕ, f và fi bằng 0 trong (2.26). Vì vậy chúng ta đã chứng minh được. Định lí 2.2. Bài toán (2.11)-(2.13) không thể có hơn một nghiệm suy rộng trong L2 (QT ). ∆,1 Nhận xét 2.1. Mọi phần tử u của W2,0 (QT ) với mọi t đều thuộc về W21 (Ω). Hơn nữa, u(x,t) là một hàm liên tục tuyệt đối theo t trong chuẩn của W21 (QT ), đồng thời ta có kux (·,t)k22,Ω = kux (·, 0)k22,Ω − 2 Z ∗ 0 (ut (·,t), ∆u(·,t))dt. ∆,1 Trên cơ sở lập luận những thuộc tính này giữ các phần tử u của W2,0 (QT ) mà có đạo hàm utx ∈ L2 (QT ) và toàn bộ M của tất cả đạo hàm như vậy là trù ∆,1 mật trong W2,0 (QT ). Những thuộc tính này vẫn còn được giữ dưới kết luận 16 của M trong không gian Banach. " sup kux (·,t)k22,Ω + kukWT ≡ 0≤t≤T Z tZ 0 #1/2 (ut2 + (∆u)2 )dxdt Ω (∆,1) Các chuẩn này tương đương trên M với chuẩn k · k2,QT khi đối với tất cả u ∈ M và đối với bất kỳ hàm số trơn nào trên ζ (t) 2 2 kux (·,t)ζ (t)k2,Ω − kux (·,t)ζ (t1 )k2,Ω Z t d = kux (·,t)ζ (t)k22,Ω dt dt tZ1 1 Z 2 2 0 0 = 2 (−∆u.ut ζ + ux ζ ζ )dxdt  t1 Ω  Z tZ ≤ c max |ζ |2 + max |ζ 0 |2 [ut2 + (∆u)2 dxdt. t1 Ω Do đó ta suy ra (∆,1) sup kux (·,t)k22,Ω ≤ ckuk2,QT . 0≤t≤T 2.1.5 Nghiệm suy rộng thuộc V21,0 (QT ) của bài toán biên-giá trị ban đầu thứ nhất Trong mục này chúng tôi sẽ trình bày loại nghiệm suy rộng thứ ba. Bây giờ chúng ta xét bài toán (2.11) - (2.13) với ϕ ∈ L2 (Ω), fi ∈ L2 (QT ) và f ∈ L2,1 (QT ). Trong đó, không gian Lq,r (QT ) bao gồm các hàm thuộc L2 (QT ) với chuẩn xác định kukq,r,QT = Z T Z 0 |u|q dx !1/r r/q dt . Ω Chúng ta sẽ chỉ ra rằng trong trường hợp này nghiệm thuộc W21,0 (QT ) và thỏa mãn quan hệ năng lượng (phương trình cân bằng năng lượng) sau đây 1 ku(·,t)k22,Ω + kux k22,QT = 2 1 ( f u − fi uxi )dxdt + ku(x, 0)k22,Ω . 2 QT Z (2.27)
- Xem thêm -

Tài liệu liên quan