Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Luận văn bài toán calderón trong hình tròn đơn vị...

Tài liệu Luận văn bài toán calderón trong hình tròn đơn vị

.PDF
57
133
106

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THU HIỀN BÀI TOÁN CALDERÓN TRONG HÌNH TRÒN ĐƠN VỊ LUẬN VĂN THẠC SĨ TOÁN HỌC Hà Nội - 2019 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THU HIỀN BÀI TOÁN CALDERÓN TRONG HÌNH TRÒN ĐƠN VỊ Chuyên ngành: Toán giải tích Mã số: 8 46 01 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: TS. ĐẶNG ANH TUẤN Hà Nội - 2019 Lời cảm ơn Tôi xin chân thành cảm ơn Ban giám hiệu, Ban chủ nhiệm Khoa Toán - Cơ - Tin học, Phòng Sau Đại Học, Phòng Đào tạo, Phòng CTCT - SV, trường Đại học Khoa học Tự nhiên, ĐHQGHN đã tạo điều kiện thuận lời và giúp đỡ tôi trong quá trình học tập cũng như nghiên cứu. Tôi xin được gửi lời cảm ơn tới các thầy cô trong Khoa Toán - Cơ - Tin học, trường ĐHKHTN - ĐHQGHN về sự động viên khích lệ, giúp đỡ trong suốt quá trình học tập. Đặc biệt, tôi xin bày tỏ lòng biết ơn sâu sắc tới TS.Đặng Anh Tuấn, người đã luôn hướng dẫn, chỉ bảo tận tình, sát sao tôi trong quá trình thực hiện luận văn. Tôi cũng xin gửi lời cảm ơn tới em Mai Thị Kim Dung, người đã giúp tôi trong việc sử dụng Latex và hoàn thiện trình bày luận văn. Cuối cùng, tôi xin được gửi lời cảm ơn tới người thân, bạn bè những người đã giúp đỡ, động viên tôi trong suốt quá trình thực hiện luận văn. Hà Nội, ngày 24 tháng 11 năm 2019. Học viên Nguyễn Thu Hiền 1 Mục lục Lời cảm ơn 1 Danh mục kí hiệu 3 Mở đầu 4 1 Chuẩn bị 6 1.1 Một số kiến thức giải tích . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Không gian Sobolev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Không gian Sobolev trên xuyến . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Không gian Sobolev trên B . . . . . . . . . . . . . . . . . . . . . . 17 2 Bài toán biên elliptic 26 2.1 Phương trình elliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2 Ánh xạ Dirichlet - Neumann . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Bài toán Calderón 35 3.1 Ví dụ Alessandrini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Mở rộng ví dụ Alessandrini 3.3 Một số ví dụ khác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Kết luận 52 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2 Danh mục kí hiệu • N : Tập hợp số tự nhiên. • Z+ : Tập hợp số nguyên không âm. • Zn+ : Tập hợp số nguyên không âm n chiều. • α : đa chỉ số, α ∈ Zn+ , α = (α1 , α2 , ..., αn ). • |α| = α1 + α2 + ... + αn . • Dα u : được định nghĩa Dα u = ∂ |α| u . ∂x1 α1 ∂x2 α2 ...∂xn αn • B = {(x1 , x2 ) ∈ R2 |x21 + x22 < 1}, hình tròn đơn vị tâm tại gốc. • Tn là xuyến n chiều, Tn = Rn /2πZn . • S1 = {eiθ |θ ∈ R} ⊂ R2 . • Với A có thể là S1 , B, Tn ta định nghĩa: đđ L (A) = {u : A −−−−−−−→ C| Lebesgue p Z |u(x)|p dx < ∞}, 1 ≤ p < ∞. A • C(S1 ): Không gian các hàm liên tục trên R, tuần hoàn chu kì 2π. • C m (B): Không gian các hàm có đạo hàm tới cấp m liên tục trên B, với ∀|α| ≤ m. • C ∞ (B): Không gian các hàm khả vi vô hạn trên B, C ∞ (B) = ∞ T C m (B). m=0 • C0 (B) = {u ∈ C(B), supp u là tập compact trong B}, supp u = {x ∈ B : u(x) 6= 0}. • C0m (B) = {u ∈ C m (B), supp u là tập compact trong B}. • C0∞ (B) = ∞ T C0m (B). m=0 • C m (B) : Không gian các hàm u có đạo hàm Dα u liên tục đều trên B, ∀|α| ≤ m. • C ∞ (B) = ∞ T C m (B). m=0 • ∇u = (ux1 , ux2 ) , uxj , j = 1, 2 là đạo hàm riêng của u theo xj . 3 Mở đầu Xét vật thể dẫn điện là một bản mỏng, có thể xem là hình tròn B với tính dẫn γ(x). Giả thiết trên miền B vật thể không có nguồn hoặc tụ. Đặt một điện áp f lên S1 sẽ sinh ra một điện thế u trong B, thỏa mãn bài toán biên Dirichlet   ∇ · (γ∇u) = 0 trong B,   (1) 1 u = f trên S . 1 Bài toán biên Dirichlet (1) có duy nhất nghiệm u ∈ H 1 (B) với mỗi f ∈ H 2 (S1 ). Khi đó 1 1 ta có thể định nghĩa ánh xạ Dirichlet-Neumann Λγ : H 2 (S1 ) → H − 2 (S1 ) được xác định bởi Λγ f = γ∂ν u|S1 . Λγ f biểu thị dòng điện đi ra theo hướng pháp tuyến trên S1 . Ánh xạ Dirichlet-Neumann hoàn toàn được xác định bằng phép đo đạc trên biên. Bài toán Calderón đặt ra là nếu như ta hiểu ánh xạ Dirichlet-Neumann thì ta biết được gì về tính dẫn của vật thể dẫn điện. Trong luận văn này, công việc của người viết là trình bày ví dụ mở rộng của Alessandrini về bài toán Calderón như xét được tính ổn định và khôi phục lại tính dẫn của vật. Ngoài ra người viết quan tâm đến các kết quả về tính ổn định C α , 0 < α < 1, của T.Barcelo và đồng nghiệp trong bài báo [11], tính ổn định H α , 0 < α < 1, của A. Clop và đồng nghiệp trong bài báo [5]. Bố cục của luận văn gồm 3 chương: • Chương 1: Trình bày những kiến thức về giải tích, không gian Sobolev trên xuyến và không gian Sobolev trên hình tròn để sử dụng cho các chương sau. • Chương 2: Trình bày các kết quả về tính trơn của nghiệm trong phương trình elliptic. Sau đó, từ định lý về sự tồn tại duy nhất nghiệm của bài toán biên Dirichlet cho phương trình elliptic, người viết trình bày định nghĩa và một số tính chất của ánh xạ Dirichlet-Neumann. Trong trường hợp hệ số của phương trình elliptic đặc biệt, người viết nhắc lại các kết quả giúp cho việc viết được tường minh ánh xạ DirichletNeumann. 4 • Chương 3: Xuất phát từ ví dụ của Alessandrini, người viết quan tâm đến lớp tính dẫn γα (x) =   α0 + α1 (a − r) nếu 0 < r < a, r = |x| ,  α0 nếu a < r < 1, (2) Đối với lớp tính dẫn này, người viết thu được các kết quả: (+) Viết tường minh ánh xạ Dirichlet - Neumann (D-N). (+) Tính ổn định Lipschitz. (+) Khôi phục được tính dẫn từ ánh xạ D-N. Về tính ổn định của các tính dẫn trong C α trong bài báo [11], T.Barcelo và đồng nghiệp thu được  kγ1 − γ2 kL∞ (Ω) ≤ V kΛγ1 − Λγ2 k∗ . Bằng nội suy dẫn đến C β ổn định, 0 < β < α. Trong luận văn, người viết dùng dãy các tính dẫn α γa (r) = 1 + a ρ r a , a > 0, trong đó ρ (r) =  1  e r2 −1 |r| < 1,  0 |r| ≥ 1, để chỉ ra rằng β không thể bằng α. Về tính ổn định của các tính dẫn trong H α trong bài báo [5], A.Clop và đồng nghiệp thu được  kγ1 − γ2 kL2 (Ω) ≤ V kΛγ1 − Λγ2 k∗ . Bằng nội suy dẫn đến H β ổn định, 0 < β < α. Để chỉ ra β không bằng α ta cần đến dãy các tính dẫn phức tạp hơn. Trong trường hợp C β ổn định ta cần một hình tròn con còn trong trường hợp này ta cần đến nhiều hình tròn con. Khi số hình tròn con tăng ra vô hạn ta sẽ thấy không H α ổn định. 5 Chương 1 Chuẩn bị 1.1 Một số kiến thức giải tích Ký hiệu Tn là xuyến n chiều, Tn = Rn /2πZn . Hàm f : Tn → C được hiểu f : Rn → C, tuần hoàn với chu kỳ 2πZn . Định nghĩa 1.1. Cho p ∈ [1; +∞), không gian Lp (Tn ) được định nghĩa như sau   Z   p n n p L (T ) := f : R → C : |f (x)| dx < +∞ ,   Tn trong đó R là tích phân Lebesgue trên [0; 2π]n , với chuẩn Tn  p1  kf kLp (Tn ) :=  1 (2π)n Z |f (x)|p dx . Tn Nhận xét 1.1. (1) L2 (Tn ) là một không gian Hilbert trên C, với tích vô hướng Z 1 (f, g)L2 (Tn ) := f (x)g(x)dx, f, g ∈ L2 (Tn ). (2π)n Tn (2) Với n = 1 , T = R/2πZ = S1 , hàm f : T = S1 → C được hiểu f : R → C, tuần hoàn với chu kỳ 2π. (3) Với n = 2, T2 = R2 /2πZ2 6= S2 , hàm f : T2 → C được hiểu f : R2 → C thỏa mãn f (x1 + k1 2π, x2 + k2 2π) = f (x1 , x2 ), ∀k1 , k2 ∈ Z, ∀(x1 , x2 ) ∈ R2 . Khi đó  L2 (T) = L2 S1 = L2 (0, 2π) ; L2 (Tn ) = L2 ((0, 2π)n ) . 6 Định nghĩa 1.2. ([8]) Với f ∈ L1 (Tn ), ta định nghĩa hệ số Fourier thứ k của f như sau: Z 1 b f (k) = f (x) e−ikx dx, (2π)n (0,2π)n trong đó k ∈ Zn , k = (k1 , k2 , ..., kn ), kx = k1 x1 + k2 x2 + ... + kn xn . Chuỗi Fourier của f là: X fb(k) ek với ek (x) = eikx . k∈Zn Định lý 1.1. ([8])(Tính duy nhất ) Cho f ∈ L1 (Tn ). Nếu fb(k) = 0 với mọi k ∈ Zn thì f = 0 hầu khắp nơi. Chứng minh. Xem chứng minh chi tiết trong [8], Định lý 3.2.4 . Định lý 1.2. ([8]) (i) Với mọi f ∈ L2 (Tn ), tổng riêng Sn,R f (x) = P fb(k)ek (x) hội tụ đến f trong k∈Zn ,|kj |≤R L2 (Tn ), khi R → ∞. |ak |2 < +∞. Khi đó tồn tại f ∈ L2 (Tn ) thỏa mãn P fb(k) = ak . Cụ thể f là giới hạn trong L2 (Tn ) của ak ek khi R → ∞. (ii) Với {ak }k∈Zn thỏa mãn P k∈Zn k∈Zn ,|kj |≤R Chứng minh. Xem chứng minh chi tiết trong [8], Định lý 3.2.7 . Định lý 1.3. ([8]) Cho f, g ∈ L2 (Tn ), ta có các đẳng thức sau: (1) Đẳng thức Parseval (f, g)L2 (Tn ) = X fb(k)b g (k). k∈Zn (2) Đẳng thức Plancherel kf k2L2 (Tn ) = 2 X fb(k) . k∈Zn Chứng minh. Xem chứng minh chi tiết trong [8], Định lý 3.2.7 . Phần tiếp theo, ta sẽ quan tâm đến tích chập. Định nghĩa 1.3. Cho f, g là hàm đo được trên Rn , tích chập của hai hàm đo được f, g được định nghĩa hình thức như sau Z (f ∗ g)(x) = f (x − y)g(y)dy, x ∈ Rn . Rn 7 Định nghĩa 1.4. (1) Cho hàm ρ ∈ C0∞ (Rn ) được xác định bởi   Ce |x|21−1 nếu |x| < 1, ρ(x) =  0 nếu |x| ≥ 1, R trong đó C là hằng số sao cho ρ(x)dx = 1. Rn (2) Với mỗi ε > 0, ta định nghĩa 1 x ρ( ). εn ε Nhận xét 1.2. (1) ρ ≥ 0 và ρ ∈ C0∞ (Rn ), supp ρ = B(0, 1). ρε (x) = (2) ρε ∈ C0∞ (Rn ) thỏa mãn Z ρε (x)dx = 1, Rn và supp ρε ⊆ B(0, ε). Mệnh đề 1.1. Với R > 0, ε > 0 và x0 ∈ Rn . Ta xây dựng được một hàm cắt η = χBR+ ε (x0 ) ∗ ρ 2ε , 2 thỏa mãn (1) η ∈ C0∞ (Rn ) và 0 ≤ η ≤ 1 trong Rn . (2) η = 1 trong BR (x0 ) và η = 0 ngoài BR+ε (x0 ). (3) | 5 η| ≤ C , ε trong Rn với C là một hằng số dương. Chứng minh. Tính toán tương tự trong chứng minh Mệnh đề 1.2 trong [3]. Ta có thể xem u ∈ Lp (B) như một hàm u ∈ Lp (Rn ) bằng cách cho u = 0 ngoài B. Khi đó sử dụng Mệnh đề 1.2 trong [1] ta có kết quả sau. Mệnh đề 1.2. Cho 1 ≤ p < ∞. Khi đó với mọi u ∈ Lp (B), ta có ρε ∗ u hội tụ đến u trong Lp (B), khi ε → 0+ . Định lý 1.4. ([8])(Bất đẳng thức Young) Cho 1 ≤ p, q ≤ ∞ và r ≥ 1 thỏa mãn 1 1 1 1 + = + . Nếu f ∈ Lp (Rn ), g ∈ Lq (Rn ), thì r p q kf ∗ gkLr (Rn ) ≤ kf kLp (Rn ) kgkLq (Rn ) . (1.1) Chứng minh. Xem chứng minh chi tiết trong [8], Định lý 1.2.12. Nhận xét 1.3. Với 1 ≤ p, q ≤ ∞ và r ≥ 1 thỏa mãn 1 + 8 1 1 1 1 1 = + thì 1 ≤ + ≤ 2. r p q p q 1.2 1.2.1 Không gian Sobolev Không gian Sobolev trên xuyến Định nghĩa 1.5. Cho s > 0, không gian Sobolev trên xuyến được định nghĩa như sau: ( ) 2 X  s H s (Tn ) = f ∈ L2 (Tn ) : 1 + |k|2 fb(k) < +∞ . k∈Zn Chuẩn của H s (Tn ) xác định bởi kf kH s (Tn ) = 2 2 s b 1 + |k| f (k) X k∈Zn ! 21 . Mệnh đề 1.3. Với 0 < s < 1. Khi đó, với f ∈ H s (Tn ), ta có Z Z Z |f (x + z) − f (x)|2 2 kf kH s (Tn ) ∼ dx dz + |z|n+2s (0,2π)n (0,2π)n |f (x)|2 dx. (0,2π)n dz |z|n+2s Z |f (x + z) − f (x)|2 dx. (1.4) (0,2π)n Áp dụng đẳng thức Parseval cho hàm g (x) = f (z + x) − f (x) có Z X 1 2 |b g (k)|2 . |f (z + x) − f (x)| dx = n (2π) k∈Zn (0,2π)n Trong đó 1 gb (k) = (2π)n Z −ikx g (x) e Z 1 dx = (2π)n (0,2π)n [f (z + x) − f (x)] e−ikx dx (0,2π)n  = 1   (2π)n  Z Z f (z + x) e−ikx dx − (0,2π)n  f (x)e−ikx dx (0,2π)n = fb(k)eikz − fb(k) = fb(k)(eikz − 1). Khi đó 2 Z X (1.5) = fb(k) k∈Zn (1.3) (0,2π)n Chứng minh. Xét Z Z Z |f (z + x) − f (x)|2 dxdz = |z|n+2s (0,2π)n (0,2π)n (1.2) (0,2π)n 9 ikz e − 1 2 |z|n+2s dz. (1.5) Đặt w = |k| z, suy ra dw = |k|n dz. Ta xét ikz e − 1 2 Z n+2s (0,2π)n |z| ikω 2 |k| e − 1 Z 2s dz = |k| n+2s |ω| (0,2π|k||)n 2s Z dω = |k| (0,2π|k|)n Tích phân Ak không phụ thuộc vào hướng của sin2 kw |k| n+2s dω 4 |ω| = |k|2s Ak . k . Ta thấy rằng có các hằng số dương |k| C1 , C2 sao cho 0 < C2 < Ak < C1 . Khi đó ikz e − 1 2 Z n+2s (0,2π)n |z| dz = |k|2s Ak ∼ |k|2s . Vậy kf k2H s (Tn ) ∼ X k∈Zn 2 X b 2 f (k) |k|2s fb(k) + . k∈Zn Định nghĩa 1.6. Cho f ∈ L2 (Tn ) và α ∈ Zn+ . Ta nói g ∈ L2 (Tn ) là đạo hàm riêng yếu cấp α của f , viết Dα f = g nếu (f, Dα ϕ)L2 (Tn ) = (−1)|α| (g, ϕ)L2 (Tn ) , ∀ϕ(x) ∈ C ∞ (Tn ). Mệnh đề 1.4. Cho s ∈ Z+ . (i) Giả sử f ∈ L2 (Tn ) có các đạo hàm riêng yếu Dα f ∈ L2 (Tn ), ∀|α| ≤ s. Khi đó f ∈ H s (Tn ). (ii) Giả sử f ∈ H s (Tn ). Khi đó f ∈ L2 (Tn ) và có các đạo hàm riêng yếu Dα f ∈ L2 (Tn ), ∀|α| ≤ s. Hơn nữa kf k2H s (Tn ) ' X kDα f k2L2 (Tn ) . |α|≤s   Ví dụ 1.1. Với s ∈ Z+ , ta có C0s (−π, π)2 ⊂ C s (T2 ) ⊂ H s (T2 ). 10 Chứng minh. (i) Giả sử rằng f ∈ L2 (Tn ), Dα f ∈ L2 (Tn ) với mọi |α| ≤ s. Theo định nghĩa đạo hàm riêng yếu, hệ số Fourier của Dα f xác định như sau Z 1 α \ [Dα f (x)] e−ikx dx D f (k) = (2π)n Tn Z   1 |α| = f (x) Dα e−ikx dx (−1) n (2π) Tn = (ik)α fb(k). Áp dụng đẳng thức Parseval ta được 2 X X d kDα f k2L2 (Tn ) = Dα f |α|≤s L2 (Tn ) |α|≤s  = X X |k α fb(k)|2 = X X  k∈Zn |α|≤s k∈Zn  |k α |2  |fb(k)|2 . |α|≤s Ta thấy rằng có các hằng số dương C1 , C2 sao cho C1 (1 + |k|2 )s ≤ X |k α |2 ≤ C2 (1 + |k|2 )s , ∀k ∈ Zn , |α|≤s hay X |k|2α ' (1 + |k|2 )s . |α|≤s Khi đó f ∈ H s (Tn ) và X kDα f k2L2 (Tn ) ' kf k2H s (Tn ) . |α|≤s (ii) Nếu f ∈ H s (Tn ), suy ra P (1 + |k|2 )s |fb(k)|2 < +∞. Ta sẽ chứng minh rằng, với k∈Zn mọi α, |α| ≤ s , tồn tại gα ∈ L2 (Tn ) sao cho (gα , ϕ)L2 (Tn ) = (−1)α (f, Dα ϕ)L2 (Tn ) , ∀ϕ ∈ C ∞ (Tn ). Thật vậy, lấy gbα (k) = (ik)α fb(k), ta có 2 2 X X X s |gbα (k)|2 = |k α |2 fb(k) ≤ 1 + |k 2 | fb(k) , ∀|α| ≤ s. k∈Zn k∈Zn k∈Zn Áp dụng Định lý 1.2 ta có X L2 (Tn ) gbα (k) −→ gα (x), gα (x) ∈ L2 (Tn ). k∈Zn 11 kgα k2L2 (Tn ) = X |gbα (k)|2 ≤ kf k2H s (Tn ) . k∈Zn Khi đó (gα , ϕ)L2 (Tn ) = X b gbα (k)ϕ(k) k∈Zn = X X b = (ik)α fb(k)ϕ(k) k∈Zn = X b (−1)|α| fb(k)(ik)α ϕ(k) k∈Zn α ϕ(k) [ (−1)|α| fb(k)D k∈Zn = (−1)|α| (f, Dα ϕ)L2 (Tn ) . Ta suy ra gα = Dα f, ∀|α| ≤ s. Hơn nữa X kDα f k2L2 (Tn ) ≤ C kf k2H s (Tn ) . |α|≤s Định nghĩa 1.7. Với s > 0, ta định nghĩa H −s (Tn ) = (H s (Tn ))0 là không gian đối ngẫu của không gian H s (Tn ).  H −s (Tn ) = f : H s (Tn ) → C tuyến tính liên tục . Theo định nghĩa chuẩn của phiếm hàm tuyến tính liên tục f ∈ H −s (Tn ) được xác định như sau: kf kH −s (Tn ) = |(f, g)| . 06=g∈H s (Tn ) kgkH s (Tn ) sup Mệnh đề 1.5. Với f ∈ H −s (Tn ) , ta có kf kH −s (Tn ) = X k∈Zn 2 −s 1 + |k|2 fb(k) ! 21 , trong đó fb(k) = (f, ek ) là hệ số Fourier thứ k của f . Chứng minh. Lấy g ∈ H s (Tn ), g = P k∈Zn gb(k)eikx . Với f ∈ H −s (Tn ), ta có: ! (f, g) = f, X gb(k)eikx k∈Zn = X k∈Zn 12 fb(k)b g (k), (1.6) và  kgkH s (Tn ) = 2 s P 1 + |k| 2 |b g (k)|  21 . k∈Zn Áp dụng bất đẳng thức Cauchy - Schwarz, ta được X X −s s   fb(k)b 1 + |k|2 2 gb (k) 1 + |k|2 2 fb(k) |(f, g)| = g (k) = n n k∈Z k∈Z !1 ! 12 2 2 X X   s −s 6 1 + |k|2 |b g (k)|2 × 1 + |k|2 fb(k) k∈Zn k∈Zn 2 −s 1 + |k|2 fb(k) X 6 kgkH s (Tn ) × k∈Zn ! 21 . Ta suy ra 2 −s 1 + |k|2 fb(k) X kf kH −s (Tn ) 6 k∈Zn ! 12 . Mặt khác, ta xét gN ∈ H s (Tn ), xác định bởi X gN (x) = (1 + |k|2 )−s fb(k)eikx . k∈Zn ,|kj |≤N Theo định nghĩa kgN k2H s (Tn ) = (1 + |k|2 )s |c gN (k)|2 . P k∈Z n Khi đó X kgN k2H s (Tn ) = (1 + |k|2 )s (1 + |k|2 )−2s |fb(k)|2 k∈Zn ,|kj |≤N X = (1 + |k|2 )−s |fb(k)|2 . k∈Zn ,|kj |≤N Ta có (f, gN )L2 (Tn ) = X fb(k)b gN (k) k∈Zn = X fb(k)(1 + |k|2 )−s fb(k) k∈Zn ,|kj |≤N = X (1 + |k|2 )−s |fb(k)|2 = kgN k2H s (Tn ) . k∈Zn ,|kj |≤N Ta lại có (f, gN )L2 (Tn ) ≤ kf kH −s (Tn ) . kgN kH s (Tn ) . 13 (1.7) Cho nên kgN k2H s (Tn ) ≤ kf kH −s (Tn ) . kgN kH s (Tn ) . Từ đó suy ra kgN kH s (Tn ) ≤ kf kH −s (Tn ) , hay X (1 + |k|2 )−s |fb(k)|2 ≤ kf kH −s (Tn ) . k∈Zn ,|kj |≤N Cho N → +∞, thì X (1 + |k|2 )−s |fb(k)|2 ≤ kf kH −s (Tn ) . (1.8) k∈Zn Vậy từ (1.7) và (1.8), ta được (1.6). (i) Nếu s ≥ t > 0 thì H s (Tn ) ,→ H t (Tn ) . Mệnh đề 1.6. (ii) Nếu s ≥ |α| > 0, α ∈ Zn+ và f ∈ H s (Tn ) thì Dα f ∈ H s−|α| (Tn ). Chứng minh. (i) Với s ≥ t > 0 và f ∈ H s (Tn ), X (1 + |k|2 )s |fb(k)|2 kf k2H s (Tn ) = k∈Zn ≥ X (1 + |k|2 )t |fb(k)|2 = kf k2H t (Tn ) . k∈Zn Suy ra f ∈ H t (Tn ) và kf kH t (Tn ) ≤ kf kH s (Tn ) , ∀f ∈ H s (Tn ). (ii) Do f ∈ H s (Tn ) nên theo ý (i) f ∈ H [s] (Tn ). Từ Mệnh đề 1.4 ta có Dα f ∈ L2 (Tn ), ∀|α| ≤ [s] ≤ s. Với s ≥ |α| > 0, ta có 2 2 X X 2 s−|α| d 2 s−|α| 2|α| b α (1 + |k| ) (1 + |k| ) |k| f (k) D f (k) = k∈Zn k∈Zn ≤ X 2 s−|α| (1 + |k| ) 1 + |k| k∈Zn = X k∈Zn b 2 (1 + |k| ) f (k) . 2 s 2 P s n 2 s b Do f ∈ H (T ) nên (1 + |k| ) f (k) < +∞. k∈Zn Suy ra X k∈Zn 2 d α f (k) < +∞. (1 + |k|2 )s−|α| D 14  2 |α| b 2 f (k) Khi đó Dα f ∈ H s−|α| (Tn ). Định lý 1.5. (i) Với s > n2 , ta có H s (Tn ) ,→ C (Tn ) . (ii) Với s > m + n2 , m ∈ Z+ , ta có H s (Tn ) ,→ C m (Tn ) . Chứng minh. P b P b f (k)eikx hội f (k)eikx . Ta sẽ chỉ ra (i) Với f ∈ H s (Tn ) , f (x) = k∈Zn k∈Zn n tụ đến f trong C(T ). Thật vậy áp dụng bất đẳng thức Cauchy- Schwarz, ta có X X |fb(k)| = 1 + |k|2  −s 2 1 + |k|2  2s |fb(k)| k∈Zn k∈Zn ! 12 ≤ X −s 1 + |k|2 ! 21 . k∈Zn X s 1 + |k|2 |fb(k)|2 . k∈Zn Do s > n2 , sử dụng dấu hiệu so sánh, ta có P −s (1 + |k|2 ) < +∞. k∈Zn Mặt khác X 1 + |k|2 s |fb(k)|2 hội tụ do f ∈ H s (Tn ). k∈Zn Khi đó X fb(k)eikx hội tụ đến f (x) trong C(Tn ). k∈Zn Vậy f ∈ C(Tn ). (ii) Với s > m + n , f ∈ H s (Tn ). Theo Mệnh đề 1.6 ta có 2 Dα f ∈ H s−|α| (Tn ) ,→ H m (Tn ). Bằng phương pháp quy nạp, ta sẽ chứng minh rằng với mọi α ∈ Zn+ , α = (α1 , α2 , ..., αn ), |α| ≤ m, đạo hàm riêng yếu Dα f chính là đạo hàm thông thường. n Với m = 1, ta sẽ chứng minh H s (Tn ) ,→ C 1 (Tn ) , ∀s > 1 + . 2 Do f ∈ H s (Tn ), nên f có đạo hàm riêng yếu Dα f, với |α| = 1. 15 Theo Mệnh đề 1.6, ta có H s (Tn ) ,→ H 1 (Tn ) và Dα f ∈ H s−1 (Tn ). n Theo ý (i), với s > , ta có 2 X fb(k)eikx hội tụ đến f trong C(Tn ). k∈Zn Với s − 1 > n , khi |α| = 1, ta có 2 X (ik)α fb(k)eikx hội tụ đều đến Dα f trên Tn . |α|≤m Khi đó f có đạo hàm riêng thông thường Dα f trong C(Tn ) với |α| = 1. Vậy f ∈ C 1 (Tn ). Giả sử điều ta cần chứng minh đúng với m, tức là H s (Tn ) ,→ C m (Tn ) , ∀s > m + n (giả thiết quy nạp) . 2 Ta sẽ chứng minh H s (Tn ) ,→ C m+1 (Tn ) , ∀s > m + 1 + n . 2 Do f ∈ H s (Tn ), nên f có đạo hàm riêng yếu Dα f, với |α| = m + 1. Theo Mệnh đề 1.6 ta có H s (Tn ) ,→ H m+1 (Tn ) và Dα f ∈ H s−(m+1) (Tn ). Với α = (α1 , α2 , ...., αn ) ∈ Zn+ , |α| = m + 1 , ∃αj > 0, trong đó 1 ≤ j ≤ n. Không mất tính tổng quát, giả sử α1 > 0, ta xét β = (α1 − 1, α2 , ...., αn ) ∈ Zn+ , |β| = m. Khi đó ∂ ∂ |α| f = D f= α α ∂x1 1 ...∂xn n ∂x1 α  ∂ |β| f ∂x1 α1 −1 ...∂xn αn  = ∂ β D f. ∂x1 Do từ giả thiết quy nạp Dβ f là đạo hàm riêng thông thường của f trong C m (Tn ), n với |β| = m. Do đó với s > m + , ta có 2 X (ik)β fb(k)eikx hội tụ đến Dβ f trong C(Tn ). |β|≤m Với s − 1 > m + n , 2 X (ik)α fb(k)eikx hội tụ đều đến Dα f trên Tn . |α|≤m Khi đó f có đạo hàm riêng cấp α theo nghĩa thông thường Dα f, với |α| = m + 1. Vậy f ∈ C m+1 (Tn ). 16 1.2.2 Không gian Sobolev trên B Sau đây ta định nghĩa không gian Sobolev trên hình tròn B khi 0 < s < 1. Định nghĩa 1.8. Cho 0 < s < 1, không gian Sobolev H s (B) bao gồm các hàm u ∈ L2 (B) giá trị thực thỏa mãn ZZ ZZ dy1 dy2 B |u(x) − u(y)|2 dx1 dx2 < ∞. |x − y|2+2s B Chuẩn của u ∈ H s (B) được xác định như sau :  ZZ kukH s (B) =  ZZ dy1 dy2 B 2 |u(x) − u(y)| dx1 dx2 + |x − y|2+2s  21 ZZ |u(x)|2 dx1 dx2  . (1.9) B B Định nghĩa 1.9. Cho u ∈ L2 (B) và α = (α1 , α2 ) ∈ Z2+ . Ta nói v ∈ L2 (B) là đạo hàm riêng yếu cấp α của u, viết Dα u = v nếu ZZ ZZ |α| α uD ϕdx1 dx2 = (−1) vϕdx1 dx2 , ∀ϕ ∈ C0∞ (B). B B Mệnh đề 1.7. ([2]) Cho u ∈ L2 (B), α, β ∈ Z2+ . Giả sử u có đạo hàm riêng yếu Dα u ∈ L2 (B) và Dα u có đạo hàm riêng yếu Dβ (Dα u) ∈ L2 (B) thì u có đạo hàm riêng yếu Dα+β u và Dα+β u = Dβ (Dα u). Chứng minh. Xem chứng minh chi tiết trong [2], Mệnh đề 2.2. Định nghĩa 1.10. Không gian Sobolev H m (B), m ∈ Z+ bao gồm các hàm u ∈ L2 (B) giá trị thực sao cho các đạo hàm riêng yếu cấp α của u với |α| ≤ m đều tồn tại và Dα u ∈ L2 (B),  H m (B) = u ∈ L2 (B)|Dα u ∈ L2 (B), |α| ≤ m . H m (B) là không gian Hilbert thực với tích vô hướng được xác định như sau X ZZ (u, v)H m (B) = Dα uDα vdx1 dx2 u, v ∈ H m (B). |α|≤m B Chuẩn của u ∈ H m (B) được xác định như sau  21  kukH m (B) =  X ZZ |α|≤m B Định lý 1.6. C m (B) trù mật trong H m (B). 17 |Dα u|2 dx1 dx2  . (1.10) Chứng minh. Với u ∈ H m (B), ta định nghĩa uτ (x) = u(τ x), 0 < τ < 1. Xét uτ : τ −1 B → B, uτ ∈ H m (τ −1 B). Do ϕ ∈ C0∞ (τ −1 B) nên ϕ(τ −1 B) ∈ C0∞ (B). Ta có ZZ ZZ α u(y)(Dα ϕ)(τ −1 y)τ −2 dy1 dy2 u(τ x)D ϕ(x)dx1 dx2 = τ −1 B B = (−1) ZZ |α| ZBZ = (−1)|α| (Dα u) (y).ϕ(τ −1 y).τ |α|−2 dy1 dy2 (Dα u) (τ x).ϕ(x).τ |α| dx1 dx2 . B Do đó Dα uτ = τ |α| (Dα u)τ . Từ đó suy ra τ →1− uτ ∈ H m (τ −1 B) và uτ −→ u trong H m (B). τ −1 − 1 , ta thác triển uτ = 0 ngoài τ −1 B. 2   Ta có (ρε ∗ uτ )(x) ∈ C0∞ (R2 ) và supp (uτ ∗ ρε ) ⊂ τ −1 B + εB . Lấy 0 < ε < Với x ∈ B, theo định nghĩa của hàm ρ ta có ρε (x − y) 6= 0 ⇔ |x − y| ≤ ε ⇔ y ∈ x + εB. Khi đó với x ∈ B, x cố định, 0 < ε < τ −1 − 1 , supp ρε (x − .) ⊂ x + εB ⊂ B + εB ⊂ τ −1 B. 2 Với |α| ≤ m, ta sẽ chứng minh Dα (ρε ∗ uτ )(x) = (Dα uτ ∗ ρε )(x) trong B. Thật vậy, với |α| ≤ m, Z α D (ρε ∗ uτ )(x) = uτ (y)Dxα ρε (x − y)dy Rn |α| Z = (−1) uτ (y)Dyα ρε (x − y)dy τ −1 B Z = Dα uτ (y).ρε (x − y)dy τ −1 B = (Dα ρε ∗ uτ ) (x). 18
- Xem thêm -

Tài liệu liên quan