Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu ảnh hưởng của phụ gia nhiên liệu sinh học e10 và d5 đến các chỉ tiêu ...

Tài liệu Nghiên cứu ảnh hưởng của phụ gia nhiên liệu sinh học e10 và d5 đến các chỉ tiêu kinh tế kỹ thuật của động cơ.

.PDF
152
371
135

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan đây là đề tài nghiên cứu của riêng tôi. Các số liệu kết quả nêu trong luận án là trung thực và chưa từng được ai công bố trong bất kỳ đề tài nghiên cứu nào khác. Hà Nội, tháng 01 năm 2014 Nghiên cứu sinh Lê Danh Quang i LỜI CẢM ƠN Tôi xin chân thành cảm ơn Trường Đại học Bách khoa Hà Nội, Viện Đào tạo sau đại học, Viện Cơ khí Động lực và Bộ môn Động cơ đốt trong đã cho phép tôi thực hiện luận án tại Trường Đại học Bách khoa Hà Nội. Xin cảm ơn Viện Đào tạo sau đại học và Viện Cơ khí Động lực về sự hỗ trợ và giúp đỡ trong suốt quá trình tôi làm luận án. Tôi xin chân thành cảm ơn GS.TS Phạm Minh Tuấn và PGS.TS Lê Anh Tuấn đã hướng dẫn tôi hết sức tận tình và chu đáo về mặt chuyên môn để tôi có thể thực hiện và hoàn thành luận án. Tôi xin chân thành biết ơn Quý thầy, cô Bộ môn và Phòng thí nghiệm Động cơ đốt trong – Trường Đại học Bách khoa Hà Nội luôn giúp đỡ tôi và tạo điều kiện một cách thuận lợi nhất để hoàn thành luận án này. Tôi xin chân thành cảm ơn Viện Dầu khí Việt Nam đã tạo điều kiện giúp đỡ để tôi được tham gia thực hiện đề tài nghiên cứu qua đó hoàn thành luận án này. Tôi xin cảm ơn Ban giám hiệu Trường Đại học Thành Đô, Ban chủ nhiệm khoa Công nghệ kỹ thuật ô tô cùng các thầy cô trong khoa đã hậu thuẫn và động viên tôi trong suốt quá trình học tập, nghiên cứu. Tôi xin bày tỏ biết ơn sâu sắc tới thầy phản biện, các thầy trong hội đồng chấm luận án đã đồng ý đọc duyệt và đóng góp ý kiến để tôi có thể hoàn chỉnh luận án này và định hướng nghiên cứu trong tương lai. Cuối cùng tôi xin gửi lời cảm ơn chân thành đến gia đình, bạn bè và đồng nghiệp những người đã luôn động viên, khuyến khích tôi trong suốt thời gian nghiên cứu và thực hiện công trình này. Nghiên cứu sinh Lê Danh Quang ii MỤC LỤC Danh mục các kí hiệu, các chữ viết tắt Danh mục các hình vẽ, các bảng MỞ ĐẦU ............................................................................................................................... 1 CHƢƠNG 1. TỔNG QUAN VỀ NHIÊN LIỆU SINH HỌC VÀ PHỤ GIA CHO NHIÊN LIỆU ĐỘNG CƠ ĐỐT TRONG ........................................................................... 5 1.1 Nhiên liệu sinh học và vai trò ........................................................................ 5 1.1.1. Các dạng nhiên liệu sinh học ................................................................ 5 1.1.1.1. Cồn ................................................................................................. 5 1.1.1.2. Dầu thực vật ................................................................................... 6 1.1.1.3. Metyl este ....................................................................................... 6 1.1.1.4. Hợp chất chứa oxy ......................................................................... 7 1.1.1.5. Dimetyl ether................................................................................... 7 1.1.1.6. Dimetyl cacbonate (DMC) ............................................................... 7 1.1.2. Nhiên liệu bio- diesel ............................................................................ 8 1.1.2.1. Khái niệm và nguồn nguyên liệu để sản xuất ................................. 8 1.1.2.2. Tình hình sản xuất và sử dụng bio-diesel trên thế giới và Việt Nam .................................................................................................................. 10 1.1.2.3. Tính chất vật lý ............................................................................. 12 1.1.2.4. Tính chất hóa học ......................................................................... 12 1.1.2.5. Các đặc điểm khác của biodiesel ................................................. 13 1.1.3. Xăng sinh học ..................................................................................... 14 1.1.3.1. Khái niệm và nguồn nguyên liệu để sản xuất ............................... 14 1.1.3.2. Tình hình sản xuất và sử dụng ethanol trên thế giới và Việt Nam 14 1.1.3.3. Tính chất vật lý ............................................................................. 15 1.1.3.4. Tính chất hóa học ......................................................................... 16 1.1.3.5. Các đặc điểm khác của ethanol .................................................... 17 1.2. Phụ gia cho nhiên liệu động cơ đốt trong .................................................. 17 1.2.1. Phụ gia cho nhiên liệu hóa thạch ........................................................ 17 1.2.1.1. Phụ gia cho nhiên liệu xăng ........................................................... 18 1.2.1.2. Phụ gia cho nhiên liệu diesel ......................................................... 18 1.2.1.3. Phụ gia nano ................................................................................. 19 1.2.1.4. Một số phụ gia điển hình ................................................................ 20 1.2.2. Phụ gia cho nhiên liệu sinh học ........................................................... 22 1.2.2.1. Đặc điểm của phụ gia cho nhiên liệu sinh học .............................. 22 1.2.2.2. Một số phụ gia sinh học điển hình ................................................ 23 1.3. Các công trình nghiên cứu trên thế giới và Việt Nam về phụ gia cho nhiên liệu sinh học ............................................................................................ 25 1.3.1 Các nghiên cứu trên thế giới về phụ gia cho nhiên liệu sinh học ......... 25 1.3.2 Các nghiên cứu trong nước ................................................................. 29 ..................................................................................... 30 CHƢƠNG 2. CƠ SỞ LÝ THUYẾT VỀ PHỤ GIA CHO HỖN HỢP ETHANOL SINH HỌC VỚI NHIÊN LIỆU HÓA THẠCH ................................................................ 32 2.1. Nhiên liệu khoáng pha trộn với nhiên liệu sinh học.................................... 32 2.1.1. Ethanol nhiên liệu biến tính ................................................................. 32 2.1.2. Chỉ tiêu chất lượng xăng và diesel thông dụng ................................... 33 2.1.2.1.Các đặc tính và chỉ tiêu chất lượng của xăng thông dụng ............. 34 2.1.2.2. Chỉ tiêu chất lượng của diesel thông dụng .................................. 35 2.1.3. Xăng pha ethanol ................................................................................ 36 iii 2.1.4. Diesel pha ethanol............................................................................... 37 2.1.5. Khả năng thích ứng của nhiên liệu khoáng pha trộn với ethanol ........ 37 2.2. Tính chất lý hoá của hỗn hợp ethanol và nhiên liệu hoá thạch E10 và D5 38 2.2.1. Tính chất lý hoá của nhiên liệu E10 .................................................... 38 2.2.2. Tính chất lý hoá của diesel D5 ............................................................ 42 2.3. Phụ gia cho hỗn hợp ethanol sinh học với nhiên liệu hóa thạch ................ 48 2.3.1. Phụ gia cho nhiên liệu xăng pha ethanol............................................. 48 2.3.1.1. Phụ gia tăng trị số octan ............................................................... 48 2.3.1.2. Nhóm phụ gia trợ tan và chống phân tách pha ............................. 49 2.3.1.3. Nhóm phụ gia chống ăn mòn kim loại ........................................... 51 2.3.1.4. Nhóm phụ gia chống oxy hóa ....................................................... 52 2.3.1.5. Nhóm các phụ gia khác ................................................................ 52 2.3.2. Phụ gia cho diesel pha ethanol ........................................................... 53 2.3.2.1. Nhóm phụ gia cải thiện trị số xetan ............................................... 54 2.3.2.2. Nhóm phụ gia trợ tan và chống phân tách pha ............................. 55 2.3.2.3. Nhóm phụ gia tăng độ nhớt .......................................................... 55 2.3.2.4. Nhóm phụ gia chống ăn mòn, mài mòn, chống đóng cặn ............. 56 2.4. Quy trình phát triển và thử nghiệm phụ gia cho hỗn hợp nhiên liệu sinh học và nhiên liệu hóa thạch .............................................................................. 56 ..................................................................................... 58 CHƢƠNG 3. PHÁT TRIỂN PHỤ GIA CHO NHIÊN LIỆU SINH HỌC E10 VÀ D5 60 ...... 60 3.1.1. Cơ sở tối ưu hóa ................................................................................. 60 ...................................................................... 63 3.1.3. Ứng dụng .... 68 3.2. Lựa chọn thành phần phụ gia cho nhiên liệu E10 và D5 bằng phương pháp quy hoạch thực nghiệm ........................................................................... 72 3.2.1.Tối ưu hóa thành phần phụ gia cho nhiên liệu E10 .............................. 72 3.2.2.Tối ưu hóa thành phần phụ gia cho nhiên liệu D5 ................................ 78 3.3. Đánh giá tính chất và chất lượng của nhiên liệu E10 và D5 khi có phụ gia. .......................................................................................................................... 82 3.3.1. Đánh giá tính chất và chất lượng nhiên liệu E10 khi có phụ gia ......... 82 3.3.2. Đánh giá tính chất và chất lượng diesel D5 khi có phụ gia ................. 87 3.4. Nhận xét về việc khảo sát nhiên liệu E10 và D5 không và có phụ gia ....... 95 3.4.1. Nhận xét về việc khảo sát nhiên liệu E10 không và có phụ gia ........... 95 3.4.2. Nhận xét về việc khảo sát nhiên liệu D5 không và có phụ gia ............ 95 ..................................................................................... 96 CHƢƠNG 4. THỬ NGHIỆM PHỤ GIA VỚI NHIÊN LIỆU D5 VÀ E10 TRÊN ĐỘNG CƠ .......................................................................................................................... 97 ............................................................ 97 4.1.1. Động cơ D243 trên băng thử động lực cao ......................................... 97 4.1.2. Động cơ Dayhan 97 trên băng thử T101D ........................................ 97 4.1.3. Động cơ ô tô Ford Laser BPD-N 1.8 L trên băng thử động lực cao ETB ............................................................................................................... 98 4.1.4. Xe máy Honda Wave 110 ................................................................... 98 4.1.5. Mục tiêu thử nghiệm ......................................................................... 99 ...................................................... 99 ............................ 99 ............................................. 100 ......................................................................... 100 iv ô tô Ford Laser BPD-N 1.8L ....................................................................................... 100 4.3.2. Băng thử Didacta T101D dùng thử nghiệm động cơ Dayhan 97 và Honda 110................................................................................................... 102 4.3.3. Hệ thống thử nghiệm công suất và khí thải xe máy .......................... 102 ử nghiệm phụ gia VPI-D cho nhiên liệu D5 ............................. 103 4.4.1. ............................................................. 103 -D ................. 105 ử nghiệm phụ gia VPI-G cho nhiên liệu E10 ........................... 109 .................................... 109 g cơ Dayhan 97, 110............................................. 109 ............................................... 111 -N 1.8 L .......................... 112 VPI-G .......................................................................................................... 114 liệu có phụ gia VPI-G trên động cơ Dayhan 97 ............................................................................................... 114 4.5.2.2. Thử nghiệm đối chứng đánh giá tác động của phụ gia sau chạy ổn định 100 giờ trên xe Honda Wave 110 ............................................... 118 -D........................................................................ 120 4.5.3.1. Phụ gia VPI-D cho nhiên liệu D5 ................................................ 120 4.5.3.2. Phụ gia VPI-G cho nhiên liệu E10 .............................................. 121 ................................................................................... 121 KẾT LUẬN VÀ KIẾN NGHỊ .......................................................................................... 123 Kết luận........................................................................................................... 123 Hướng nghiên cứu tiếp theo ........................................................................... 123 TÀI LIỆU THAM KHẢO ................................................................................................. 125 Tiếng việt ........................................................................................................ 125 Tiếng Anh ....................................................................................................... 126 PHỤ LỤC 1: MỘT SỐ BẢNG KẾT QUẢ NGHIÊN CỨU ......................................... 130 1. Một số bảng kết quả đánh giá tính chất và chất lượng của nhiên liệu E10 và D5 khi có phụ gia ....................................................................................... 130 2. Kết quả thử nghiệm các mẫu nhiên liệu D5 trên động cơ diesel D243 ....... 132 3. Kết quả thử nghiệm trên động cơ Dayhan 97 ............................................. 134 4. Kết quả thử nghiệm trên động cơ ô tô Ford laser BPD-N 1.8L ................... 135 5. Kết quả thử nghiệm trên xe Wave 110 ....................................................... 136 PHỤ LỤC 2: MỘT SỐ HÌNH ẢNH VỀ TRANG THIẾT BỊ VÀ QUÁ TRÌNH NGHIÊN CỨU THỰC NGHIỆM .................................................................................... 138 1. Một số thiết bị phân tích tính chất lý hóa của nhiên liệu ................................... 138 2. Trang thiết bị và quá trình nghiên cứu thực nghiệm NLSH với phụ gia ........ 139 v DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu viết tắt ASTM B10 B15 B20 BHT CEB CmHn và HC CO CO2 D5 DCI DTBP E10 E15 E20 E5 E85 EHN ETB ETBE FFA H2 HĐBM HFRR MMT MON MTBE N2 NLBT NLSH NOX PG P-M ppm QHTN RON SO2 TBA TCVN TEL Chú giải của ký hiệu viết tắt American Society for Testing and Metarials (hệ thống tiêu chuẩn) Nhiªn liÖu pha 90% diesel vµ 10% biodiesel Nhiªn liÖu pha 85% diesel vµ 15% biodiesel Nhiªn liÖu pha 80% diesel vµ 20% biodiesel Butylated hydroxytoluene Combustion Emission Bench/ Tủ phân tích khí xả Hyđôcácbon Mônôxít cácbon Cácbonđiôxít Nhiªn liÖu pha 95% diesel vµ 5% ethanol Darex corrosion inhibitor (chất ức chế ăn mòn Darex) Di-tertiary butyl peroxide Nhiªn liÖu pha 90% x¨ng vµ 10% ethanol Nhiªn liÖu pha 85% x¨ng vµ 15% ethanol Nhiªn liÖu pha 80% x¨ng vµ 20% ethanol Nhiªn liÖu pha 95% x¨ng vµ 5% ethanol Nhiªn liÖu pha 15% x¨ng vµ 85% ethanol 2-Ethylhexyl nitrate High Dynamic Engine Testbed/ Băng thử động lực cao Ethyl Tertiary Buthyl Ether Free fatty acids (thµnh phÇn axit bÐo tù do) Nhiên liệu khí hydrô Chất hoạt động bề mặt High-frequency receiprocating rig (khả năng bôi trơn) Methylcyclopentadenyl manganese tricarbonyl Motor Octane Number - chỉ số Octan động cơ Methyl Tertiary Buthyl Ether Nitơ Nhiên liệu biến tính Nhiên liệu sinh học Các loại ôxítnitơ Phụ gia Chất thải dạng hạt Part per million (mét phÇn triÖu) Quy hoạch thực nghiệm Research Octane Number - chỉ số Octan nghiên cứu Sunfua dioxit Tertiary-butylalcohol HÖ thèng tiªu chuÈn ®o l-êng ViÖt Nam Tetraethyl lead vi DANH MỤC CÁC BẢNG Trang Bảng 1.1. Tính chất của ethanol .......................................................................................... 16 Bảng 2.1. Yêu cầu kỹ thuật đối với ethanol NLBT ............................................................ 33 Bảng 2.2. Đặc tính cơ bản của ethanol NLBT .................................................................... 33 Bảng 2.3. Các chỉ tiêu chất lượng của xăng thông dụng ..................................................... 34 Bảng 2.4. Đặc tính của xăng thông dụng ............................................................................ 35 Bảng 2.5. Chỉ tiêu chất lượng của diesel thông dụng ......................................................... 35 Bảng 2.6. Đặc tính nhiên liệu của xăng thông dụng và ethanol NLBT .............................. 36 Bảng 2.7. Độ ổn định oxy hóa của xăng-ethanol ................................................................ 38 Bảng 2.8. Trị số octan của xăng và xăng-ethanol ............................................................... 38 Bảng 2.9. Thành phần chưng cất phân đoạn của xăng A90 và xăng E10 .......................... 39 Bảng 2.10. Áp suất hơi bão hòa của nhiên liệu E10 ........................................................... 39 Bảng 2.11. Sự phân tách pha của xăng A90 và nhiên liệu E10 theo nhiệt độ .................... 40 Bảng 2.12. Sự phân tách pha của nhiên liệu E10 theo thời gian ở nhiệt độ thường .......... 40 Bảng 2.13. Sự phân tách pha của nhiên liệu E10 theo hàm lượng nước............................. 40 Bảng 2.14. Ăn mòn mảnh đồng của xăng A90 và nhiên liệu E10 ..................................... 41 Bảng 2.15. Tính chất và chất lượng nhiên liệu E10 ............................................................ 41 Bảng 2.16. Tính chất và chất lượng nhiên liệu diesel ......................................................... 42 Bảng 2.17. Diesel pha trộn với ethanol NLBT ................................................................... 43 Bảng 2.18. Trị số xetan của nhiên liệu diesel-ethanol ........................................................ 44 Bảng 2.19. Thành phần cất phân đoạn của nhiên liệu diesel-ethanol ................................. 44 Bảng 2.20. Nhiệt độ chớp cháy cốc kín của diesel-ethanol ................................................ 45 Bảng 2.21. Độ bôi trơn và độ nhớt động học của diesel-ethanol ........................................ 45 Bảng 2.22. Điểm vẩn đục của nhiên liệu diesel-ethanol ..................................................... 45 Bảng 2.23. Sự phân tách pha của nhiên liệu D5 theo hàm lượng nước .............................. 46 Bảng 2.24. Ăn mòn mảnh đồng trong nhiên liệu diesel-ethanol......................................... 47 Bảng 2.25. Tính chất và chất lượng nhiên liệu diesel pha 5% ethanol (D5) ....................... 47 Bảng 3.1. Giá trị 2 trong kế hoạch thực nghiệm tâm trực giao ........................................ 71 Bảng 3.2. Giá trị cánh tay đòn trong kế hoạch thực nghiệm tâm trực giao ..................... 71 Bảng 3.3. Điều kiện thí nghiệm được chọn......................................................................... 74 Bảng 3.4a. Ma trận quy hoạch thực nghiệm tổ hợp phụ gia cho nhiên liệu E10 ................ 75 Bảng 3.4b. Ma trận quy hoạch thực nghiệm tổ hợp phụ gia cho nhiên liệu E10 ................ 77 Bảng 3.5: Điều kiện thí nghiệm được chọn ........................................................................ 79 Bảng 3.6. Ma trận quy hoạch thực nghiệm tổ hợp phụ gia cho nhiên liệu diesel D5 ......... 81 Bảng 3.7. Ăn mòn mảnh đồng của nhiên liệu E10 có phụ gia ............................................ 83 Bảng 3.8. Thành phần và hàm lượng của nước biển nhân tạo ............................................ 85 Bảng 3.9. Thành phần cất phân đoạn của nhiên liệu D5 có phụ gia ................................... 87 Bảng 3.10. Trị số xetan của nhiên liệu D5 có và không có phụ gia .................................... 88 Bảng 3.11. Nhiệt độ chớp cháy cốc kín của nhiên liệu diesel và D5 có phụ gia ................ 88 Bảng 3.12. Độ bôi trơn và độ nhớt động học của nhiên liệu D5 có phụ gia ....................... 89 Bảng 3.13. Sự phân tách pha của diesel-ethanol khi có phụ gia theo thời gian ở nhiệt độ thường .................................................................................................................................. 90 Bảng 3.14. Độ ổn định oxy hóa của nhiên liệu D5 khi có phụ gia ..................................... 91 Bảng 3.15. Ăn mòn tấm đồng trong nhiên liệu D5 khi có phụ gia ..................................... 91 Hình 3.13. Thép bị ăn mòn trong các mẫu nhiên liệu D5 ................................................... 93 vii Bảng 3.16. Tốc độ ăn mòn các kim loại nhôm, đồng và thép trong các môi trường nước chiết từ nhiên liệu thử nghiệm diesel, nhiên liệu D5 có và không có phụ gia ..................... 94 Bảng 3.17. Ăn mòn mảnh đồng trong diesel-ethanol ......................................................... 94 Bảng 3.18. Tính chất và chất lượng nhiên liệu D5 khi có 1,0% phụ gia VPI-D ................. 95 Bảng 4.1. Thông số cơ bản của động cơ D243 ................................................................... 97 Bảng 4.2. Thông số cơ bản của động cơ Dayhan 97 ........................................................... 97 Bảng 4.3. Thông số động cơ xe Ford LaserBPD-N 1.8L ................................................... 98 Bảng 4.4. Thông số xe Wave 110 ....................................................................................... 99 Bảng 4.5. Kết quả đo khí thải theo chu trình Châu Âu ECE R49 ..................................... 106 Bảng 4.6. Kết quả phân tích mẫu dầu bôi trơn động cơ sử dụng nhiên liệu gia VPI-D ............................................................ 106 Bảng 4.7. Kết quả xác định hạt mài trong dầu bôi trơn động cơ sử dụng nhiên liệu D5 bằng phương pháp Ferograph ..................................................................................................... 107 Bảng 4.8. Kết quả phân tích mẫu dầu bôi trơn động cơ sử dụng nhiên liệu E10 ở thời điểm 0 giờ, sau 50 giờ và 100 giờ hoạt động ............................................................................. 116 Bảng 4.9. Kết quả xác định hạt mài trong dầu bôi trơn động cơ sử dụng nhiên liệu E10 bằng phương pháp Ferograph ............................................................................................ 116 Bảng 4.10. Kích thước các chi tiết trước và sau khi chạy bền .......................................... 120 viii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Trang Hình 1.1. Cơ cấu sản xuất biodiesel từ các loại dầu khác nhau ............................................ 8 Hình 1.2 Độ ổn định của hỗn hợp nhiên liệu diesel, ethanol với phụ gia ........................... 26 Hình 1.3 Động cơ Ford 1.8L Duratec Flexi Fuel trên băng thử và hình ảnh cặn cacbon bám trên xupap, vòi phun với trường hợp không và có pha phụ gia ........................................... 26 Hình 1.4 Khối lượng cặn bám trên xupap động cơ sử dụng nhiên liệu E85 khi thay đổi lượng phụ gia ....................................................................................................................... 27 Hình 1.5. Khối lượng cặn bám trên xu páp của động cơ khi thay đổi tỷ lệ ethanol ........... 27 Hình 1.6. Hiệu suất nhiệt và phát thải của động cơ với các mẫu nhiên liệu. Sample1 (E50 + 5% phụ gia), Sample2 (E60+10% phụ gia) và Sole fuel (xăng gốc). .................................. 28 Hình 2.1. Nhiệt độ phân pha của nhiên liệu E10 phụ thuộc hàm lượng nước .................... 41 Hình 2.2. Trị số xetan của nhiên liệu diesel-ethanol phụ thuộc vào nồng độ ethanol ........ 44 Hình 2.3. Nhiệt độ kết tinh của diesel-ethanol theo nồng độ ethanol ................................. 46 Hình 2.4. Độ bền phân tách pha của diesel D5 phụ thuộc vào hàm lượng nước ................ 47 Hình 2.5. Khi xảy ra sự phân tách pha trong nhiên liệu xăng-ethanol ............................... 50 Hình 2.6. Công thức hóa học của chất phụ gia có nguồn gốc dầu mỡ béo động thực vật .. 51 Hình 2.7. Chất phụ gia có độ nhớt cao................................................................................ 55 Hình 2.8. Công thức hóa học của một loại phụ gia đa chức năng ..................................... 56 Hình 2.9 Quy trình phát triển phụ gia cho hỗn hợp nhiên liệu sinh học với nhiên liệu khoáng ................................................................................................................................. 58 Hình 3.2. Mô hình đối tượng công nghệ MIMO (nhiều vào, nhiều ra) .............................. 69 Hình 3.3. Tọa độ các điểm thí nghiệm của phương án thực nghiệm cấp 2 ........................ 70 Hình 3.4. Ảnh hưởng của phụ gia đến độ bền phân pha của nhiên liệu E10 ...................... 83 Hình 3.5. Ảnh hưởng của phụ gia đến độ ổn định ôxy hóa của nhiên liệu E10 ................. 83 Hình 3.6. Ảnh soi kim tương mẫu kim loại đồng, nhôm và thép chịu tác động bởi nhiên liệu E10 không có và có phụ gia VPI-G .............................................................................. 85 Hình 3.7. Ăn mòn tấm đồng trong nhiên liệu E10 có (a) và không có (b) phụ gia VPI-G sau 7 ngày ở 50oC ................................................................................................................ 85 Hình 3.8. Tác động của phụ gia đến tính chống ăn mòn kim loại trong nhiên liệu E10 .... 87 Hình 3.9. Độ bôi trơn của nhiên liệu D5 phụ thuộc vào phụ gia ........................................ 89 Hình 3.10. Độ nhớt động học của nhiên liệu D5 phụ thuộc vào phụ gia ............................ 89 Hình 3.11. Độ bền phân tách pha của nhiên liệu D5 phụ thuộc vào phụ gia ...................... 90 Hình 3.12. Ảnh soi kim tương mẫu kim loại đồng, nhôm và thép chịu tác động bởi nhiên liệu D5 không và có phụ gia VPI-D .................................................................................... 92 Hình 3.13. Thép bị ăn mòn trong các mẫu nhiên liệu D5 ................................................... 93 Hình 4.1. Động cơ D243 trên băng thử ETB ...................................................................... 97 Hình 4.2. Động cơ Dayhan 97 trên băng thử .................................................................... 97 Hình 4.3. Đo đặc tính trên băng thử xe máy CD20”........................................................... 98 Hình 4.4. Sơ đồ băng thử động lực học cao ETB ............................................................. 101 Hình 4.6. Sơ đồ Sơ đồ băng thử Chassis Dynamometer 20’’ ........................................... 103 ......... 104 Hình 4.8. Tỷ lệ cải thiện các thông số tính năng và phát thải của động cơ D243 khi sử dụng nhiên liệu D5 pha phụ gia VPI-D ............................................................................. 104 điểm 0 giờ, sau 50 giờ và 100 giờ chạy ổn định với nhiên liệu D5 có phụ gia ................. 105 Hình 4.10. Ảnh hạt mài trong dầu bôi trơn trước khi chạy bền với nhiên liệu D5 ........... 107 Hình 4.11. Ảnh hạt mài trong dầu bôi trơn sau khi chạy bền 50 giờ với nhiên liệu D5 ... 108 Hình 4.12. Ảnh hạt mài trong dầu bôi trơn sau khi chạy bền 100 giờ với nhiên liệu D5 . 108 ix Hình 4.13. Hình ảnh kết cặn cacbon trên vòi phun động cơ D243 khi động cơ chạy nhiên liệu D5 có phụ gia sau 50 giờ và 100 giờ .......................................................................... 109 ....................................................................... 110 Hình 4.15. Tỷ lệ cải thiện các thông số tính năng và phát thải của động cơ khi pha phụ gia VPI-G ................................................................................................................................ 110 Wave 110 theo tốc độ ở chế độ toàn tải............................................................................. 111 Hình 4.17. Tỷ lệ cải thiện các thông số tính năng và phát thải của động cơ xe Wave khi dùng nhiên liệu E10 pha phụ gia VPI-G so với trường hợp không pha phụ gia .............. 112 Hình 4.18. Tỷ lệ cải thiện các thông số tính năng và phát thải của động cơ xe Wave khi nhiên liệu E10 pha phụ gia VPI-G so với trường hợp pha phụ gia Keropur .................... 112 theo tốc độ ở chế độ toàn tải .............................................................................................. 113 Hình 4.20. Tỷ lệ cải thiện các thông số tính năng và phát thải của động cơ ô tô Ford khi nhiên liệu E10 pha phụ gia VPI-G so với trường hợp không pha phụ gia ....................... 113 Hình 4.21. Tỷ lệ cải thiện các thông số tính năng và phát thải của động cơ ô tô Ford khi nhiên liệu E10 pha phụ gia VPI-G so với trường hợp pha phụ gia Keropur .................... 114 giờ và 100 giờ chạy ổn định với E10 có phụ gia ............................................................... 114 điểm 0 giờ, sau 50 giờ và 100 giờ chạy ổn định với E10 có phụ gia ................................ 115 điểm 0 giờ, sau 50 giờ và 100 giờ chạy ổn định với E10 có phụ gia ................................ 115 Hình 4.25. Ảnh hạt mài trong dầu bôi trơn trước khi chạy bền với nhiên liệu E10 ......... 117 Hình 4.26. Ảnh hạt mài trong dầu bôi trơn sau khi chạy bền 50 giờ với nhiên liệu E10 . 117 Hình 4.27. Ảnh hạt mài trong dầu bôi trơn sau khi chạy bền 100 giờ với nhiên liệu E10 117 Hình 4.28. Hình ảnh kết cặn cacbon trên bugi khi động cơ Dayhan 97 chạy nhiên liệu E10 có phụ gia sau 50 giờ và 100 giờ ....................................................................................... 118 chạy ổn định với ba mẫu nhiên liệu E10 không và có phụ gia ......................................... 118 giờ chạy ổn định với E10 không và có các phụ gia ........................................................... 119 Hình 4.31. Tỷ lệ cải thiện các thông số tính năng và phát thải của xe Wave 110cc sau 100 giờ chạy ổn định với E10 pha phụ gia VPI-G với trường hợp không pha phụ gia............ 119 Hình 4.32. Tỷ lệ cải thiện các thông số tính năng và phát thải của xe Wave 110 sau 100 giờ chạy ổn định với E10 pha phụ gia VPI-G với trường hợp pha phụ gia Keropur ........ 119 x MỞ ĐẦU Ngày nay thế giới đang phải đối mặt với một thực tế là nguồn nhiên liệu hóa thạch dầu mỏ đang có xu hướng ngày càng cạn dần. Bên cạnh đó, vấn đề ô nhiễm môi trường do khí thải từ các phương tiện giao thông vận tải cũng đang trở nên đáng báo động. Một hướng đang được tập trung nghiên cứu nhằm tiết kiệm năng lượng và giảm thiểu khí thải độc hại từ động cơ là sử dụng nhiên liệu sinh học phối trộn cùng nhiên liệu hóa thạch, trong đó ethanol sinh học đang được quan tâm vì nguồn cung khá dồi dào và có khả năng pha trộn cho cả xăng và diesel. Tuy nhiên do ethanol pha vào nhiên liệu khoáng thì tính chất và chất lượng của nhiên liệu nhận được sẽ bị thay đổi so với ban đầu. Sự thay đổi nhiều hay ít phụ thuộc vào tỷ lệ ethanol so với nhiên liệu khoáng. Để thuận tiện trong cách gọi, hỗn hợp giữa nhiên liệu sinh học và nhiên liệu khoáng với các tỷ lệ pha khác nhau đều gọi chung là nhiên liệu sinh học (NLSH). Tuy nhiên, để phân biệt thì cần chỉ rõ tỷ lệ nhiên liệu sinh học/nhiên liệu khoáng và viết theo ký hiệu riêng. Ví dụ: nhiên liệu sinh học E5, E10, D5, D10, B10, B20... còn gọi xăng sinh học E5 (hỗn hợp gồm 5% ethanol và 95% xăng khoáng), diesel sinh học D5 còn gọi là diesohol D5 (hỗn hợp gồm 5% ethanol và 95% diesel khoáng), diesel sinh học B10 (hỗn hợp gồm 10% bio diesel và 90% diesel)... Khi pha ethanol vào nhiên liệu khoáng thì sẽ có ảnh hưởng nhất định đến tính bền vững của hỗn hợp, tính đồng pha, tính ăn mòn kim loại... cho nên cần thiết phải có chất phụ gia phù hợp do vậy phụ gia trong hỗn hợp nhiên liệu có tác dụng cải thiện và bổ sung các tính chất cần thiết hoặc còn thiếu của hỗn hợp ethanol và nhiên liệu khoáng nhằm đảm bảo yêu cầu kỹ thuật cũng như chất lượng nhiên liệu. Có nhiều loại phụ gia với công dụng khác nhau nhưng có thể chia thành hai nhóm: nhóm phụ gia tính năng và nhóm phụ gia tồn trữ bảo quản. Khi phối trộn nhiên liệu khoáng với nhiên liệu sinh học mà ethanol là một trường hợp phổ biến, vai trò của phụ gia càng được quan tâm nhiều hơn. Phụ gia cho xăng pha ethanol và phụ gia cho diesel pha ethanol về mặt nguyên tắc cũng giống như phụ gia cho xăng và diesel khoáng. Tuy nhiên, do tính chất đặc thù của nhiên liệu hỗn hợp, trong thành phần phụ gia sử dụng cho các loại nhiên liệu này cần có sự thay đổi sao cho phù hợp. Trên thế giới, đã có những công ty, tổ chức nghiên cứu và sử dụng phụ gia cho nhiên liệu sinh học. Tại Việt Nam chưa có nghiên cứu cụ thể để tìm ra phụ gia có đủ các tính năng cho nhiên liệu sinh học để ứng dụng có hiệu quả. Để giảm bớt sự phụ thuộc vào dầu mỏ, than đá và bù đắp cho sự thiếu hụt năng lượng trong tương lai, năm 2007, Chính phủ đã phê duyệt “Đề án phát triển nhiên liệu sinh học đến năm 2015, tầm nhìn đến năm 2025” theo quyết định 177/2007/QĐ-TTg năm 2007. Mới đây, ngày 22/11/2012, Thủ tướng Chính phủ ký Quyết định số 53/2012/QĐ-TTg ban hành lộ trình áp dụng tỷ lệ phối trộn nhiên liệu sinh học với nhiên liệu truyền thống. Theo đó: Đối với nhiên liệu E5: Từ ngày 01/12/2014, xăng được sản xuất, phối chế, kinh doanh để sử dụng cho phương tiện cơ giới đường bộ tiêu thụ trên địa bàn các tỉnh, thành phố: Hà Nội, thành phố Hồ Chí Minh, Hải Phòng, Đà Nẵng, Cần Thơ, Quảng Ngãi, Bà Rịa – Vũng Tàu. Từ 01/12/2015 xăng được sản xuất, phối chế, kinh doanh để sử dụng cho phương tiện cơ giới đường bộ tiêu thụ trên toàn quốc. Đối với nhiên liệu E10: Từ ngày 01/12/2016, xăng được sản xuất, phối chế, kinh doanh để sử dụng cho phương tiện cơ giới đường bộ tiêu thụ trên địa bàn các tỉnh, thành phố: Hà Nội, Hồ Chí Minh, Hải Phòng, Đà Nẵng, Cần Thơ, Quảng Ngãi, Bà Rịa – Vũng 1 Tàu. Từ 01/12/2017 xăng được sản xuất, phối chế, kinh doanh để sử dụng cho phương tiện cơ giới đường bộ tiêu thụ trên toàn quốc. Đặc biệt, trong thời gian chưa thực hiện áp dụng tỉ lệ phối trộn theo Lộ trình khuyến khích các tổ chức, cá nhân sản xuất, phối chế, kinh doanh xăng E5, E10, diesel B5 và B10. Nhiên liệu E5 được khẳng định về các tính năng kinh tế, kỹ thuật và đã được đưa vào sử dụng. Để đáp ứng được lộ trình áp dụng tỷ lệ phối trộn NLSH với nhiên liệu khoáng của chính phủ thì việc nghiên cứu đưa nhiên liệu E10 vào sử dụng là rất cấp thiết. Với tỷ lệ pha này cần thiết phải có nghiên cứu cẩn thận để đảm bảo về an toàn cháy nổ, các tính năng kỹ thuật của nhiên liệu cũng như khi sử dụng cho động cơ thì việc nghiên cứu phát triển phụ gia cho loại nhiên liệu này cũng trở nên cấp thiết và có vai trò rất quan trọng. Song song với nghiên cứu pha ethanol vào xăng và đã thành công cho nhiên liệu E5 và tiến tới E10, ở nước ta cũng dần từng bước phát triển cho nhiên liệu diesel pha ethanol vì những lý do đã trình bày ở trên và do nước ta chưa sản xuất biodiesel ở quy mô công nghiệp mà mới ở mức thử nghiệm, nhỏ lẻ và giá thành cao nên thời điểm này chưa áp dụng phối trộn biodiesel với diesel khoáng, bước đầu nghiên cứu ứng dụng cho nhiên liệu diesohol D5 (tỷ lệ pha 5% ethanol và 95% diesel). Do đó việc nghiên cứu phát triển phụ gia cho loại nhiên liệu này cũng trở nên cấp thiết và có vai trò rất quan trọng. ,d d góp phần cải thiện … Trên thế giới đã có nhiều nước đưa diesohol vào sử dụng như d ụng. Do v lcohol còn diesel ị Trên thế giới đã có một số phụ gia đáp ứng được yêu cầu cho NLSH trong đó có E10 và D5, tuy nhiên giá thành rất cao. Ngoài ra, nguồn nguyên liệu sản xuất NLSH trong nước có những điểm khác biệt của nước ngoài và thời tiết nhiệt đới cũng khác biệt nên việc sử dụng phụ gia cũng cần có những thay đổi về thành phần đảm bảo phù hợp hơn với thời tiết và nguyên liệu sản xuất ở Việt Nam. Đề tài “Nghiên cứu ảnh hưởng của phụ gia nhiên liệu sinh học E10 và D5 đến các chỉ tiêu kinh tế kỹ thuật của động cơ về phát triển và ứng dụng phụ gia cho nhiên liệu sinh học đáp ứng nhu cầu sản xuất và kinh doanh nhiên liệu sinh học ở nước ta, góp phần cắt giảm lượng sử dụng nhiên liệu hóa thạch, giảm phát thải của thực tiễn. Việc nghiên cứu phát triển phụ gia trong nước giúp chủ động nguồn cung, giảm sự phụ thuộc vào nước ngoài và giá thành hạ. Luận án này được thực hiện chủ yếu trên cơ sở đề tài hợp tác giữa Trung tâm Ứng dụng và Chuyển giao Công nghệ, Viện dầu khí Việt Nam và Bộ môn Động cơ đốt trong, Viện cơ khí động lực, Đại học Bách khoa Hà Nội [17], [33]. Kết quả nhiên liệu D5 và VPI-G cho E10. gia đa chức năng (chống phân tách pha, ổn định oxi hóa, bảo vệ kim loại… ), qua đó nâng cao chất lượng cho D5 và E10. Sau khi xác lập được phụ gia mới, phụ gia được kiểm tra đối chứng với trường hợp nhiên liệu không pha phụ gia và có pha các loại phụ gia đang sử dụng phổ biến và hiệu quả của nước ngoài về các tính chất hóa lý theo TCVN và ASTM trong phòng thí nghiệm. Kết quả cho thấy phụ gia VPI-D và VPI-G có chất lượng tương tương phụ gia của nước ngoài, bên cạnh đó còn có một số tính chất có nhiều ưu điểm hơn. 2 đối chứng VPItrình thử ổn định 100 giờ không phát hiện ảnh hưởng xấu đến dầu bôi trơn cũng như không có hiện tượng đọng bám, tắc vòi phun. Kết quả thử nghiệm đối chứng trên động cơ xăng Dayhan 97, xe Honda Wave 110 và động cơ ô tô Ford laser 1.8 L dùng nhiên liệu E10 với phụ gia VPI-G cũng cho kết quả tương tự và không có hiện tượng bám cặn các bon trên cực bugi. Ngoài ra kết quả đối chứng trước và sau chạy bền đối với phụ gia Keropur loại đang dùng cho nhiên liệu E10 của nước ngoài (sản phẩm của tập đoàn đa quốc gia BASF-The Chemical Company) cho thấy các thông số tính năng và phát thải của động cơ được cải thiện hơn. i. Mục đích, đối tượng và phạm vi nghiên cứu của đề tài Đánh giá ảnh hưởng của chất phụ gia cho nhiên liệu sinh học E10 và D5 đến các chỉ tiêu kinh tế kỹ thuật của động cơ như công suất, tiêu hao nhiên liệu, mức phát thải, mài mòn… Đây là những tổ hợp phụ gia mới được nghiên cứu phát triển. Đề tài cũng nhằm đưa ra được quy trình về phát triển, phụ gia cho nhiên liệu sinh học phối trộn với nhiên liệu khoáng. Đề tài đưa ra giải pháp phát triển tổ hợp phụ gia đa tính năng cho NLSH trên cơ sở xác định chất phụ gia, tỷ lệ các thành phần phụ gia tính năng đơn lẻ (bằng phương pháp tính toán tối ưu hóa, bằng khảo nghiệm hóa lý trong phòng thí nghiệm).. Áp dụng giải pháp để cắt giảm lượng sử dụng nhiên liệu hóa thạch và giảm phát thải cho động cơ đốt trong mà trước hết tập trung vào nghiên cứu phụ gia cho nhiên liệu E10 và D5 để đáp ứng đúng và kịp thời lộ trình áp dụng tỷ lệ phối trộn NLSH với nhiên liệu truyền thống của chính phủ đã phê duyệt ở trên. Việc nghiên cứu được thực hiện trên cơ sở đặc điểm của nhiên liệu sinh học, điều kiện thời tiết và bảo quản của Việt Nam. Sau khi đã lựa chọn được thành phần, xây dựng được đơn pha chế, khảo nghiệm và đánh giá chất lượng các phụ gia cho nhiên liệu E10 và D5 về mặt lý-hóa trong phòng thí nghiêm đảm bảo các tiêu chuẩn TCVN và ASTM, phụ gia sẽ được thực nghiệm trên động cơ và phương tiện để đánh giá các đặc tính kinh tế-kỹ thuật, từ đó có những đề xuất, kiến nghị để đưa vào ứng dụng trong thực tiễn có hiệu quả. Động cơ D243, động cơ Dayhan 97, động cơ xe ô tô Ford laser 1.8 và xe Wave Honda là các loại động cơ sử dụng phổ biến ở Việt Nam được lựa chọn làm đối tượng nghiên cứu. Các nội dung nghiên cứu của được thực hiện tại Viện dầu khí Việt Nam, Viện hóa học công nghiệp Việt Nam và PTN Động cơ đốt trong, Trường ĐH Bách khoa Hà Nội. Đề tài tập hợp những nghiên cứu về tổng quan nhiên liệu sinh học và phụ gia, lý thuyết về ảnh hưởng của phụ gia trong nhiên liệu; lựa chọn nhiên liệu sinh học khảo sát; lựa chọn phụ gia cho nhiên liệu sinh học đã chọn; lựa chọn động cơ thử nghiệm và qui trình cùng các chế độ thử nghiệm; tiến hành thử nghiệm đối chứng theo kế hoạch đề ra; thảo luận kết quả nghiên cứu và kết luận. ii. Phương pháp nghiên cứu Phương pháp nghiên cứu của đề tài là sử dụng phương pháp tối ưu hóa (dùng quy hoạch thực nghiệm) để tìm ra tỷ lệ các thành phần chất phụ gia đơn lẻ tối ưu nhất trong tổ hợp phụ gia cho nhiên liệu sinh học E10 và D5, thực nghiệm đối chứng các chỉ tiêu về tính chất hóa lý, tính ăn mòn, chống phân tách pha… trong phòng thí nghiệm giữa nhiên liệu không phụ gia và có phụ gia, giữa các phụ gia với nhau. Cuối cùng là nghiên cứu thực nghiệm theo phương pháp đối chứng trên động cơ và phương tiện để đánh giá ảnh hưởng 3 của phụ gia đến các thông số kinh tế, kỹ thuật và phát thải của động cơ ở thời điểm 0 giờ (sau khi căn chỉnh, động cơ làm việc ổn định thì thực hiện thử nghiệm và quy ước là thời điểm không giờ) và sau khi chạy ổn định với phụ gia. Ngoài ra, cũng áp dụng phương pháp thống kê, xử lý số liệu cho nghiên cứu. iii. Ý nghĩa khoa học và thực tiễn Đề tài ứng dụng được Quy hoạch thực nghiệm xác định tỷ lệ thành phần phụ gia cho nhiên liệu sinh học E10 và D5 phù hợp với điều kiện của Việt Nam, đảm bảo được các yêu cầu về tính năng sử dụng, tồn trữ, bảo quản và môi trường và có thể đưa nhiên liệu E10, D5 sử dụng thực tiễn. Ngoài ra, luận án đưa ra phương pháp, quy trình phát triển phụ gia cho nhiên liệu sinh học nói chung. Đưa ra được phương pháp đánh giá ảnh hưởng của phụ gia về tính năng và phát thải của động cơ, những lợi ích kinh tế của phụ gia mới cho nhiên liệu E10 và D5, góp phần bổ sung vào tiêu chuẩn cho nhiên liệu sinh học của Việt Nam. Hai tổ hợp phụ gia VPI-G cho nhiên liệu E10 và VPI-D cho nhiên liệu D5 đã được đánh giá về khả năng thích ứng khi sử dụng trên các đối tượng động cơ nghiên cứu. Như vậy, đây là đề tài có ý nghĩa về mặt khoa học và thực tiễn rõ nét trong bối cảnh nền công nghiệp NLSH còn rất mới mẻ ở nước ta, góp phần xây dựng tiêu chuẩn cho nhiên liệu sinh học Việt Nam, bên cạnh đó kết quả nghiên cứu còn góp phần đảm bảo đúng lộ trình tỷ lệ phối trộn nhiên liệu sinh học với nhiên liệu khoáng của chính phủ đề ra. Ngoài ra, việc phát triển phụ gia trong nước sẽ mang lại hiệu quả kinh tế do các thành phần được lựa chọn rẻ tiền, dễ kiếm do vậy sẽ rẻ hơn tổ hợp phụ gia nhập ngoại, không những thế, phụ gia sẽ phù hợp hơn với nguồn ethanol và thời tiết của Việt Nam. Luận án này còn làm cơ sở nghiên cứu cho các nhà khoa học, các học viên và những người quan tâm đến lĩnh vực nhiên liệu sinh học và phụ gia. Như vậy đề tài đưa ra một giải pháp toàn diện và khả thi trong việc phát triển và áp dụng phụ gia cho nhiên liệu sinh học E10 và D5 trong tương lai gần. Nội dung của Luận án gồm: Mở đầu Chương 1. Tổng quan về nhiên liệu sinh học và phụ gia cho nhiên liệu động cơ đốt trong Chương 2. Cơ sở lý thuyết về phụ gia cho hỗn hợp nhiên liệu sinh học với nhiên liệu hóa thạch. Chương 3. Phát triển phụ gia cho nhiên liệu sinh học E10 và D5 Chương 4. Thử nghiệm phụ gia cho nhiên liệu D5 và E10 trên động cơ Kết luận và kiến nghị Mặc dù đã hết sức cố gắng nhưng chắc rằng Luận án sẽ không tránh khỏi những thiếu sót. Do vậy NCS mong nhận được sự đóng góp ý kiến từ quý thầy cô, các nhà chuyên môn cùng quý đồng nghiệp. Xin chân thành cảm ơn! Hà nội, tháng 01 năm 2014 NCS Lê Danh Quang 4 CHƢƠNG 1. TỔNG QUAN VỀ NHIÊN LIỆU SINH HỌC VÀ PHỤ GIA CHO NHIÊN LIỆU ĐỘNG CƠ ĐỐT TRONG 1.1 Nhiên liệu sinh học và vai trò Do nguồn nhiên liệu hóa thạch sẽ cạn kiệt trong thời gian tới, ngoài ra khí thải của động cơ dùng nhiên liệu truyền thống (xăng và diesel) gây ô nhiễm môi trường ngày càng trầm trọng nên việc nghiên cứu tìm ra nguồn nhiên liệu thay thế và đảm bảo sạch, thân thiện với môi trường đã được nhiều nhà khoa học nghiên cứu. Trong số đó nhiên liệu sinh học đã được các nhà khoa học hướng đến và đạt được những thành tựu nhất định. Nhiên liệu sinh học thuộc loại nhiên liệu tái tạo được định nghĩa là bất kỳ loại nhiên liệu nào nhận được từ sinh khối, được hình thành từ các hợp chất có nguồn gốc từ động thực vật [4]. Ví dụ như nhiên liệu sản xuất từ chất béo của động thực vật (mỡ động vật, dầu dừa...) ngũ cốc (lúa mỳ, ngô, đậu tương) các chất thải nông nghiệp (rơm rạ, phân...) sản phẩm thải trong công nghiệp (mùn cưa, gỗ thải....). Chúng bao gồm bioethanol, biodiesel, biogas, ethanol pha trộn (ethanol - blended fuels), dimetyl este sinh học và dầu thực vật. Nhiên liệu sinh học (NLSH) được phân thành hai nhóm, nhóm dùng cho động cơ xăng gồm các dạng cồn nhưng phổ biến là bioethanol và nhóm dùng cho động cơ diesel là các este của dầu béo (biodiesel) và diesel-ethanol (phối trộn ethanol vào nhiên liệu diesel). Với nguyên liệu là tinh bột và đường nhờ quá trình phân giải của vi sinh vật có thể sản xuất ra ethanol, sau đó tách nước bổ sung các chất phụ gia thành ethanol biến tính gọi là ethanol nhiên liệu biến tính hay cồn nhiên liệu. Còn diesel sinh học được chế biến từ dầu thực vật và mỡ động vật. Nhiều nước trên thế giới đã tiến hành nghiên cứu tận dụng và trồng các loài cây nông, lâm nghiệp để cung cấp nguyên liệu sinh học cho chế biến loại nhiên liệu này. Việc sử dụng nhiên liệu sinh học có vai trò rất quan trọng cho nền kinh tế thế giới và của nước ta, điều này mang lại các lợi ích: - Thay thế một phần nhiên liệu hóa thạch đang cạn dần. Theo nghiên cứu và thăm dò của các chuyên gia về năng lượng thì trên trái đất có khoảng 280.000 tỷ tấn dầu mỏ [16], như vậy dầu mỏ không phải là nguồn vô hạn, dự báo sẽ cạn kiệt trong thời gian tới (theo uỷ ban năng lượng thế giới dự báo: dầu mỏ còn khoảng 39 năm) [22]. Đứng trước nguy cơ thiếu nhiên liệu trầm trọng và việc tìm kiếm nguồn nhiên liệu thay thế là đòi hỏi cấp bách. Những năm gần đây nhiều nhà khoa học đã nghiên cứu tìm nguồn nhiên liệu mới có nguồn gốc từ sinh học cho động cơ đốt trong thay thế nhiên liệu truyền thống. - Giảm ô nhiễm môi trường do độc hại ít hơn. Nhiều nghiên cứu trên thế giới đã khẳng định sự phát thải độc hại như CO, HC, PM (động cơ diesel) và CO2 đều giảm đáng kể. - Ngoài ra, còn tạo công ăn việc làm, phát triển kinh tế xã hội ở những nơi chậm phát triển như nông thôn, rừng… đồng thời tận dụng tài nguyên (phế phẩm thừa của nông nghiệp, công nghiệp thực phẩm…) làm nhiên liệu. Nhận thức rõ vai trò của NLSH, Thủ tướng Chính phủ đã phê duyệt “Đề án phát triển nhiên liệu sinh học đến năm 2015, tầm nhìn đến năm 2025” theo quyết định 177/2007/QĐTTg năm 2007 [23]. 1.1.1. Các dạng nhiên liệu sinh học 1.1.1.1. Cồn Methanol: Đây là loại cồn đơn giản nhất chứa 1 nguyên tử C trong mỗi phân tử (CH3OH). Là chất lỏng nhạt, không màu với mùi gây chóng mặt, độc có thể hấp thụ qua 5 da. Phần lớn methanol được làm từ than đá và khí tự nhiên, cũng có thể làm từ nguồn tái sinh như gỗ hoặc giấy thải. Để làm nhiên liệu động cơ có thể dùng M100 (methanol nguyên chất), thực tế chỉ dùng M85 (hỗn hợp 85% methanol và 15% xăng) có chỉ số octan 102. Do M85 là chất lỏng, nó có thể được tích trữ và phân phối trong hệ thống phân phối chất lỏng như xăng. Để dùng M85, xe phải được thay đổi cho phù hợp như tỷ số nén cao hơn, hệ thống nạp thiết kế lại để lấy đủ khí... Do vậy, các xe được trang bị một cảm biến đặc biệt nhận biết tỷ lệ cồn và xăng rồi đưa ra tín hiệu đến ECU để điều chỉnh tỷ lệ phối hợp nhiên liệu cũng như quyết định thời điểm đánh lửa. Xe chạy methanol yêu cầu dầu bôi trơn riêng chịu được tác hại của methanol, dầu này đắt hơn dầu thường vì nó được sản xuất với số lượng hạn chế. Ethanol: Có công thức hóa học C2H5OH, dễ cháy, không màu, được sản xuất từ nguồn nguyên liệu sinh học như khoai tây, ngũ cốc, củ cải đường, mía đường, gỗ, chất thải nhà máy bia, nhiều sản phẩm nông nghiệp khác, thực phẩm hỏng trong quá trình lên men, cũng có thể sản xuất từ khí tự nhiên và dầu thô. Ethanol hầu như không độc, hòa tan được trong nước, có thể bị phân hủy và dễ cháy hơn xăng. Ethanol nguyên chất ít được dùng làm nhiên liệu, nhưng thường được trộn với xăng để thỏa mãn nhu cầu nhiên liệu sạch. Xăng E5 và E10 đã được khuyến khích và bắt buộc sử dụng tại hơn 30 nước trên thế giới do đem lại những lợi ích to lớn trong việc đảm bảo an ninh năng lượng, phát triển kinh tế và cải thiện chất lượng môi trường. Cụ thể E10 được dùng ở Mỹ nhiều năm qua. Còn ở Braxin ethanol sinh học thường được làm từ mía đường làm nhiên liệu chủ yếu trong phương tiện giao thông. Trung Quốc và Thái lan cũng đã sử dụng nhiên liệu E10. Tại Việt Nam cũng đã đưa xăng E5 vào sử dụng và đang triển khai nghiên cứu sử dụng nhiên liệu E10. 1.1.1.2. Dầu thực vật Dầu thực vật về tính chất lý hóa, phần lớn có trị số cetane cao và số octane thấp, độ nhớt cao và nhiệt độ tự cháy thấp chỉ có thể ứng dụng cho động cơ diesel. Dầu thực vật có thể làm nhiên liệu bao gồm dầu hạt cây cải dầu, dầu ôliu, dầu hạt đậu tương, dầu cọ, dầu cây hướng dương, dầu ngô. Chúng là loại nhiên liệu tiềm năng cho động cơ diesel. Lần đầu tiên, vào đầu thập kỷ 70 của thế kỷ trước, dầu thực vật thô được thử làm nhiên liệu cho động cơ diesel. Kết quả thử nghiệm cho thấy, những loại dầu này so với nhiên liệu diesel có thời gian phun lâu hơn, cháy trễ ngắn hơn, thời gian cháy dài hơn. Còn các cuộc thử nghiệm bền cho thấy có sự thoái hóa động cơ nhanh hơn, sự mài mòn của bơm cao áp, đóng muội than ở đế xupáp, vòi phun, thân xupáp và tích tụ trong buồng cháy, đỉnh piston nhiều hơn… hiệu suất động cơ giảm đáng kể, công suất động cơ giảm, dễ kẹt xécmăng, tắc hệ thống nhiên liệu, đóng muội than trong buồng cháy. Dầu thực vật thô cũng có nhiệt độ khởi động lạnh rất cao, vì vậy cần phải sấy nóng nhiên liệu trước khi khởi động. 1.1.1.3. Metyl este Metyl este là sản phẩm của quá trình trao đổi este từ dầu thực vật. Đây là một loại biodiesel. Biodiesel thường dùng có tên monoankyl este (methyl hoặc ethyl este) của axit béo có chuỗi phân tử dài được lấy từ lipit như dầu thực vật hoặc mỡ thực vật. Nó là sản phẩm trong quá trình este hóa từ dầu nho, dầu đậu tương, dầu cây hướng dương, dầu conola, dầu cọ và được sử dụng làm dầu ăn và nhiều chất béo khác. Dầu đậu dùng nhiều ở Mỹ, trong khi dầu cây cải dầu (gọi là RME, Rapeseed Methyl Este) được sử dụng khá nhiều ở Châu Âu. Quá trình este hóa dễ dàng thực hiện được khi methanol được dùng làm chất phản ứng để thu được methyl este. Phản ứng này có thể thực hiện trong điều kiện nhiệt độ khoảng 500C và áp suất khí quyển với glyxerin là sản phẩm phụ. Metyl este không độc, có thể bị vi khuẩn phân hủy, đặc biệt không tan trong nước, cơ bản không chứa sunphua hoặc gốc thơm. Nó làm mềm và thoái hóa các loại hợp chất cao su tự nhiên và có thể ảnh hưởng đến các thành phần của hệ thống nhiên liệu do vậy cần chú 6 ý khi sử dụng. Có thể sử dụng metyl este nguyên chất hoặc pha với dầu diesel thông thường. Do metyl este có tính chất bôi trơn đặc biệt nên thường được dùng như chất phụ gia nhờn cho nhiên liệu diesel có hàm lượng sunphua thấp. Mặt hạn chế khi sử dụng metyl este tinh khiết làm nhiên liệu là nhiệt độ hóa hơi thấp và tính ổn định sinh học kém. 1.1.1.4. Hợp chất chứa oxy Hợp chất hữu cơ chứa oxy với một lượng nhỏ có thể được thêm vào nhiên liệu để đẩy mạnh việc đốt cháy hỗn hợp vì chúng chứa oxy. Hợp chất chứa oxy khác nhau đáng kể về lý tính so với các hydrocacbon, vì vậy mức độ của chúng trong nhiên liệu bị giới hạn. Động cơ chạy bằng nhiên liệu chứa oxy phát thải các chất độc hại ít hơn, đặc biệt là CO. Hầu hết, các hợp chất chứa oxy pha vào xăng là cồn methanol, ethanol, tertiary butyl alcohol (TBA) và các chất khác như methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE) và tertiary amyl methyl ether (TAME) do vậy hợp chất hữu cơ chứa oxy có chỉ số octane cao. Chúng chứa từ 1 đến 6 nguyên tử cacbon trong mỗi phân tử. Nhờ thể hiện tính chống kích nổ tốt, chúng thay thế tốt cho các chất có gốc thơm. Cồn đã được sử dụng trong xăng từ những năm 30 và MTBE được sử dụng lần đầu tiên trong các sản phẩm xăng thương mại ở Ý vào năm 1973 [4]. 1.1.1.5. Dimetyl ether Dimetyl ether (DME) là hợp chất có công thức hóa học đơn giản nhất và được sử dụng một cách rộng rãi như là chất đẩy dùng trong các bình xịt. DME là chất khí ở nhiệt độ môi trường và áp suất khí quyển, nhưng có thể hóa lỏng với điều kiện áp suất thấp (0,5 MPa tại 250C). Nó có thể được sản xuất từ gas tự nhiên hoặc từ sinh vật. DME không độc, không ăn mòn và không có chất gây ung thư, trong trường hợp bị rò rỉ nó phân hủy rất nhanh trong khí quyển. Về mặt sinh thái, DME cũng được coi là một loại nhiên liệu tốt cho động cơ, bởi nó rất dễ cháy và phát thải ít. DME có chỉ số octane khoảng 60. Tính bôi trơn của DME thấp vì độ nhớt của nó rất thấp (khoảng 1/30 so với nhiên liệu diesel). Vì vậy, để tránh mài mòn vòi phun cần được cho thêm chất bôi trơn. Trước đây, DME nguyên chất là nhiên liệu tốt cho động cơ diesel, bởi vì động cơ sử dụng nhiên liệu đó có đặc điểm cháy rất tốt, lượng phát thải thấp, đặc biệt giảm thải NOx và khói. Sử dụng DME trên phương tiện vận tải có ưu điểm hơn là dùng methanol vì sử dụng methanol có quá trình cháy xấu, tuy nhiên có thể khắc phục nhược điểm này bằng cách chuyển hóa methanol thành DME theo phản ứng: 2CH3OH CH3OCH3 + H2O Phản ứng này cần có mặt chất xúc tác -Al2O3, lựa chọn theo tính toán về hiệu quả và giá thành của nó. Ở nhiệt độ và áp suất môi trường, DME là một chất khí, vì vậy nó được đưa vào xy lanh động cơ ở dạng hơi sương. Tuy nhiên sử dụng nhiên liệu DME có thể xuất hiện hơi nước, đó là nhược điểm chính của loại nhiên liệu này [4]. 1.1.1.6. Dimetyl cacbonate (DMC) DMC là một chất lỏng ở nhiệt độ và áp suất môi trường. Nó không màu, không độc và không gây ăn mòn. Nó có thể trộn lẫn với nhiên liệu diesel theo một vài tỷ lệ nhất định. DMC khi pha vào nhiên liệu diesel có vai trò như một chất phụ gia, bởi vì nó chứa 53% (về trọng lượng) oxy. Hiện tại, DMC được sản xuất từ phosgene (COCl2) và methanol với HCl là phụ phẩm. Bởi vì phosgene là một chất hóa học cực kỳ độc và nguy hiểm, nhiều công ty đang tìm kiếm và phát triển chất thay thế thân thiện với môi trường để loại bỏ phosgene. Một chất thay thế có thể là sản xuất DMC từ methanol, CO và O2 với chất xúc tác HCl thêm 5% KCl vào [4] theo phản ứng sau: 2CH3OH + CO + 1/2O2 = CH3OCOO-CH3 + H2O 7 Như chúng ta có thể thấy có rất nhiều loại nhiên liệu sinh học. Tuy nhiên, có thể quy về hai loại thường dùng cho động cơ đốt trong đó là biodiesel và ethanol. 1.1.2. Nhiên liệu bio- diesel 1.1.2.1. Khái niệm và nguồn nguyên liệu để sản xuất Biodiesel được định nghĩa là một dạng nhiên liệu dùng để thay thế diesel có nguồn gốc từ dầu thực vật (đậu nành, dừa, cọ, hạt caosu...) hoặc mỡ động vật (ví dụ mỡ cá basa, cá tra, mỡ bò, mỡ lợn, mỡ gà...), được sử dụng rất thông dụng trên thị trường Châu Âu, Châu Mỹ và hiện nay bắt đầu xuất hiện ở Châu Á. Biodiesel là các ankyl este của axit béo. Cũng giống như diesel, biodiesel có thể sử dụng làm nhiên liệu cho các động cơ đốt trong. Việt Nam, một nước nông nghiệp có nguồn dầu thực vật phong phú thì việc sử dụng chúng trong sản xuất nhiên liệu, phụ gia cho nhiên liệu sẽ có giá trị khoa học và thực tiễn cao. Trước đây, kể từ khi động cơ diesel được phát minh ra thì nhiên liệu mà người ta sử dụng đầu tiên chính là dầu thực vật. Nhưng nguyên liệu dầu thực vật đã không được lựa chọn làm nhiên liệu cho động cơ diesel vì giá của dầu thực vật đắt hơn giá của diesel khoáng. Gần đây, với sự tăng giá của nhiên liệu khoáng và sự hạn chế số lượng của nó, nên nhiên liệu dầu thực vật ngày càng được quan tâm và có khả năng thay thế cho nhiên liệu dầu khoáng trong tương lai gần, vì những lợi ích về môi trường và khả năng tái sinh của dầu thực vật. Dầu thực vật sử dụng cho quá trình tổng hợp biodiesel phải có chỉ số axit thấp hơn 0,5 mg KOH/g dầu. Đối với dầu đã tinh chế thì có thể sử dụng ngay để tiến hành phản ứng. Nhưng đối với dầu thực vật thô hay dầu thải có chỉ số axit cao và nhiều tạp chất hữu cơ khác thì phải tiến hành tinh chế để loại bớt thành phần axit béo và các tạp chất bằng cách trung hòa bằng kiềm. Việc sử dụng dầu thực vật như một nhiên liệu thay thế để cạnh tranh với dầu mỏ đã được bắt đầu từ những năm 1980. Do những thuận lợi của các loại dầu thực vật so với nhiên liệu diesel là chúng có thể nuôi trồng, sẵn có, có khả năng tái sinh được, nhiệt trị tương đối cao, hàm lượng lưu huỳnh thấp hơn, hàm lượng chất thơm ít hơn, tuy nhiên khả năng dễ bị vi khuẩn phân hủy, độ nhớt cao hơn, khả năng bay hơi thấp hơn. Vấn đề chính liên quan đến việc hạn chế sử dụng trực tiếp dầu thực vật là độ nhớt quá cao, do vậy cần phải có quá trình chế biến, tổng hợp. Có thể tham khảo nguồn để sản xuất biodiesel trên thế giới như hình 1.1 [4]. Hình 1.1. Cơ cấu sản xuất biodiesel từ các loại dầu khác nhau Dưới đây là một số dầu thực vật điển hình để tổng hợp biodiesel. Dầu đậu nành: Dầu đậu nành được sản xuất từ cây đậu tương, cây đậu tương được trồng phổ biến nhiều nước trên thế giới, đặc biệt ở vùng đồng bằng nước ta. Dầu đậu 8 nành tinh khiết có màu vàng sáng, thành phần axit béo chủ yếu của nó là linoleic (50% 57%), oleic (23% 29%). Dầu đậu nành được dùng nhiều trong thực phẩm. Ngoài ra, dầu đậu nành đã được tinh luyện được dùng làm nguyên liệu để sản xuất margarin. Từ dầu đậu nành còn được dùng để sản xuất sơn, vecni, xà phòng... và đặc biệt là sản xuất biodiesel. Cây đậu tương được trồng phổ biến trên thế giới, đặc biệt ở vùng đồng bằng nước ta. Dầu dừa: Dừa là một loại cây nhiệt đới được trồng nhiều ở vùng Đông Nam Á, Châu Phi, Châu Mỹ Latinh. Ở Việt Nam, dừa được trồng nhiều ở Thanh Hóa, Nghĩa Bình, Phú Khánh, Nam Trung Bộ... Dừa cây sinh trưởng lâu năm, thích hợp với khí hậu nóng ẩm, có thể trồng được ở các nơi nước mặn, lợ, chua... Trong dầu dừa có chứa các axit béo lauric (44% 52%), myristi (13% 19%), panmitic (7,5% 10,5%). Hàm lượng các chất béo không no rất ít. Dầu dừa được sử dụng nhiều cho mục đích thực phẩm, có thể sản xuất margarin và cũng là nguyên liệu tốt để sản xuất xà phòng và biodiesel. Dầu cọ: Cọ là cây nhiệt đới được trồng nhiều ở Chilê, Ghana, Tây Phi, một số nước Châu Âu và một số nước Châu Á. Từ cây cọ có thể sản xuất được hai loại dầu khác nhau: dầu nhân cọ và dầu cùi cọ. Dầu nhân cọ có màu trắng còn dầu cùi cọ có màu vàng. Thành phần axit béo của chúng cũng rất khác nhau. Dầu cùi cọ là loại thực phẩm rất tốt dùng để ăn trực tiếp hoặc chế biến thành bơ, mỡ thực vật. Dầu cùi cọ có chứa nhiều caroten nên được dùng để sản xuất chất tiền sinh tố A. Dầu chất lượng xấu có thể dùng để sản xuất xà phòng hoặc dùng trong ngành luyện kim. Dầu nhân cọ có công dụng trong ngành thực phẩm bánh kẹo và xà phòng. Cả hai loại dầu này có thể làm nguyên liệu rất tốt để sản xuất biodiesel. Dầu cao su: Dầu hạt cao su được ép từ hạt cây cao su. Trong hạt hàm lượng dầu chiếm khoảng 40 đến 60%. Cây cao su được trồng nhiều nơi trên thế giới như Ấn Độ, Châu Phi, Nam Mỹ... ở Việt Nam cây cao su được đưa vào thời Pháp thuộc và trồng nhiều ở các tỉnh miền Đông Nam Bộ. Cây cao su sống thích hợp nhất ở những vùng đất đỏ. So với các loại dầu khác thì dầu hạt cao su ít được sử dụng trong thực tế do hàm lượng axit béo rất lớn. Vì vậy nếu sử dụng dầu hạt cao su làm nguyên liệu để sản xuất biodiesel thì hiệu quả kinh tế thu được là cao nhất [4]. Hàm lượng axit béo của dầu hạt cao su cao hơn các loại dầu khác do trong hạt cao su có enzym lipaza tác dụng thủy phân glyxerit tạo axit béo. Dầu sau khi được xử lý nhiệt thì chỉ số axit ổn định do không còn enzym lipaza nữa. Dầu sở: Cây sở là một loại cây lâu năm được trồng nhiều ở vùng nhiệt đới. ở nước ta, sở được trồng nhiều ở các tỉnh trung du phía Bắc. Thành phần axit béo của dầu sở bao gồm axit oleic (>60%), axit linolinic (15% 24%) và axit panmitic (15% 26%). Dầu sở sau khi tách saponin dùng làm dầu thực phẩm rất tốt. Ngoài ra, dầu sở còn được dùng rộng rãi trong công nghiệp xà phòng, mỹ phẩm. Dầu sở cũng có thể làm nguyên liệu để sản xuất biodiesel. Dầu bông: Bông là loại cây trồng một năm. Trong dầu bông có sắc tố carotenoit và đặc biệt là gosipol và các dẫn xuất của nó làm cho dầu bông có màu đặc biệt: màu đen hoặc màu sẫm. Gosipol là một độc tố mạnh. Hiện nay dùng phương pháp tinh chế bằng kiềm hoặc axit antranilic có thể tách được gossipol chuyển thành dầu thực phẩm. Do trong dầu bông có chứa nhiều axit béo no panmitic nên ở nhiệt độ thường nó đã ở thể rắn. Bằng cách làm lạnh dầu người ta có thể tách được panmitic dùng để sản xuất margarin và xà phòng. Dầu bông cũng là nguyên liệu rất tốt để sản xuất biodiesel. Dầu hướng dương: Hướng dương là loại cây hoa một năm và hiện nay được trồng nhiều ở xứ lạnh như Châu Âu, Châu Mỹ, Châu Á, và đặc biệt là Liên Xô cũ (chiếm 90% sản lượng của thế giới). Đây là loại cây có hàm lượng dầu cao và sản lượng lớn. Dầu hướng 9 dương có mùi vị đặc trưng và có màu từ vàng sáng tới đỏ. Dầu hướng dương chứa nhiều protein nên là sản phẩm rất quý nuôi dưỡng con người. Ngoài ra, dầu hướng dương cũng là nguyên liệu rất tốt để sản xuất biodiesel. Dầu thầu dầu: Dầu thầu dầu hay còn gọi là dầu ve, được lấy từ hạt quả của cây thầu dầu. Cây thầu dầu được trồng nhiều ở vùng có khí hậu nhiệt đới. Những nước sản xuất thầu dầu là Brazin (36%), Ấn Độ (6%), Trung Quốc, Liên Xô cũ, Thái Lan. Cây thầu dầu ở nước ta ở chủ yếu ở Thanh Hóa, Nghệ Tĩnh. Tuy nhiên, hiện nay dầu thầu dầu ở Việt Nam vẫn phải nhập nhiều từ Trung Quốc. Dầu thầu dầu là loại dầu không khô, chỉ số iot từ 80 90, tỷ trọng lớn, tan trong ankan, không tan trong xăng và dầu hỏa. Hơn nữa, do độ nhớt cao của dầu thầu dầu so với các loại dầu khác nên ngay từ đầu đã được sử dụng trong công nghiệp dầu mỡ bôi trơn. Hiện nay dầu thầu dầu vẫn là loại dầu nhờn cao cấp dùng trong động cơ máy bay, xe lửa, và các máy có tốc độ cao, cả trong dầu phanh. Dầu thầu dầu được dùng trong nhiều lĩnh vực như y tế để làm thuốc tẩy, nhuận tràng, trong công nghiệp hương liệu và mỹ phẩm, trong công nghiệp chất dẻo, làm giấy than, giấy nến và mực in. Ngoài ra còn sử dụng trong công nghệ dệt nhuộm, thuộc da, công nghệ sơn và công nghiệp bôi trơn. Đặc biệt là cũng có thể dùng để sản xuất biodiesel. Dầu lạc: Dầu lạc chứa chủ yếu axit oleic (50- 63%), linoleic (13- 33%), panmitic (611%). Hàm lượng các axit béo khác không nhiều. Dầu lạc chủ yếu dùng vào các mục đích thực phẩm, làm thức ăn gia súc. Hiện nay nguồn dầu lạc cũng được sử dụng để tổng hợp biodiesel. Cây lạc ở Việt Nam được trồng nhiều trên lưu vực các sông của đồng bằng Bắc Bộ và Nam Bộ. Dầu ngô: Cây ngô được trồng trên khắp thế giới, nhất là các vùng đất phù sa. Các axit béo trong dầu ngô thường là: axit linoleic (43- 49%), oleic (37- 40%), axit panmitic và stearic gần bằng 14%. Nói chung, các quá trình hóa học khi sản xuất và ứng dụng có khác biệt đối với từng loại dầu thực vật. Nhưng hầu hết tất cả các loại dầu thực vật đều có thể là nguyên liệu để sản xuất biodiesel hoặc pha trộn với nhiên liệu diesel khoáng làm giảm đáng kể các khí độc hại trong khí thải như SOx, NOx, các hydrocacbon thơm, CO... đồng thời có thể tiết kiệm đáng kể nhiên liệu khoáng. Ở nước ta rất thích hợp với các loại cây lấy dầu, vốn đầu tư lại ít nên việc trồng với một lượng lớn các cây dầu này sẽ là nguồn nguyên liệu tốt cho quá trình sản xuất biodiesel và rất có ý nghĩa về mặt bảo vệ môi trường. Ngoài nguyên liệu là dầu thực vật, để tổng hợp nhiên liệu biodiesel còn có thể sử dụng các nguồn khác, như: Mỡ động vật: Đây là nguồn nguyên liệu lấy từ mỡ các con vật, ví dụ mỡ cá basa, cá tra, mỡ bò, mỡ lợn, mỡ gà v.v... Đối với nguyên liệu loại này, ngoài tác nhân trao đổi este là methanol, có thể dùng tác nhân hỗn hợp là 65% methanol + 35% ethanol cũng thu được độ nhớt cần thiết của biodiesel. Dầu phế thải của các nhà máy chế biến dầu, mỡ: Đây chính là dầu cặn của các nhà máy chế biến thực phẩm, chúng có đặc điểm là đã qua gia nhiệt nhiều lần, có màu sẫm. Kết quả phân tích loại này cho thấy ngoài lượng dầu mỡ còn có nhiều các chất khác kể cả các chất rắn, nguyên liệu này được xử lý trước tiên là lọc sau đó tách nước v.v… Như vậy, nguồn nguyên liệu để sản xuất bio-diesel rất đa dạng và phong phú, dễ tái sinh, có thể phát triển, thay thế để cắt giảm lượng sử dụng nhiên liệu diesel khoáng. 1.1.2.2. Tình hình sản xuất và sử dụng bio-diesel trên thế giới và Việt Nam Bio-diesel là một dạng nhiên liệu sinh học được quan tâm nhiều hơn cả do xu hướng diesel hóa động cơ trên toàn cầu. Hàng chục nước trên thế giới đã và đang nghiên cứu sản 10
- Xem thêm -

Tài liệu liên quan