Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu đặc tính nhiệt phân của gỗ keo và quá trình khí hóa tạo khí nhiên liệ...

Tài liệu Nghiên cứu đặc tính nhiệt phân của gỗ keo và quá trình khí hóa tạo khí nhiên liệu

.PDF
122
546
146

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của tôi. Các số liệu, kết quả nêu trong luận án là trung thực và chưa từng được tác giả khác công bố. Hà Nội, ngày tháng năm 2018 Nghiên cứu sinh Đinh Quốc Việt i LỜI CẢM ƠN Em xin gửi lời cảm ơn chân thành đến thầy giáo PGS.TS Văn Đình Sơn Thọ đã hướng dẫn hoàn thành luận án tiến sĩ. Thầy cũng là chủ nhiệm đề tài hợp tác nghiên cứu giữa Trường Đại học Bách Khoa Hà Nội và Trường Đại học Ghent (Bỉ): “Research and application of Biomass gasification technology for electric/energy application of Vietnam remote areas”, code: ZEIN2013RIP021 và đã hỗ trợ một phần kinh phí để em có thể nghiên cứu và thực hiện luận án. Em xin gửi lời cảm ơn tới các Thầy giáo, Cô giáo trong Bộ môn Công nghệ Hữu cơ – Hóa dầu, Viện Kỹ thuật Hóa học, Viện Đào tạo sau đại học - Trường Đại học Bách khoa Hà Nội đã tạo điều kiện, giúp đỡ trong thời gian thực hiện luận án. Em xin cảm ơn các cán bộ trong xưởng thiết bị áp lực, Viện khoa học và công nghệ Nhiệt Lạnh, cán bộ phòng thí nghiệm trọng điểm lọc - hóa dầu, Trường Đại học Bách khoa Hà Nội. Em xin cảm ơn các chuyên gia trong và ngoài nước của lĩnh vực khí hóa đã hỗ trợ công sức, góp ý chia sẻ để tác giả thực hiện nghiên cứu luận án. Em xin gửi lời cảm ơn tới lãnh đạo trường Đại học Quy Nhơn, lãnh đạo Khoa Hoá – Trường Đại học Quy Nhơn đã tạo điều kiện thuận lợi cho em trong học tập, nghiên cứu và thực hiện luận án. Cuối cùng em xin bày tỏ lòng biết ơn sâu sắc tới gia đình, bạn bè và các đồng nghiệp đã động viên, giúp đỡ trong suốt thời gian nghiên cứu và thực hiện luận án. Hà Nội ngày tháng năm 2018 Nghiên cứu sinh Đinh Quốc Việt ii MỤC LỤC LỜI CAM ĐOAN .........................................................................................................................i LỜI CẢM ƠN............................................................................................................................. ii MỤC LỤC ................................................................................................................................. iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT.................................................................. v DANH MỤC BẢNG BIỂU ...................................................................................................... vii DANH MỤC HÌNH VẼ .......................................................................................................... viii MỞ ĐẦU ..................................................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN ................................................................................................... 4 1.1. Các công nghệ nhiệt hóa học mới để chuyển hóa sinh khối thành nhiên liệu .................. 4 1.2. Công nghệ khí hóa sinh khối để sản xuất khí nhiên liệu .................................................. 5 1.2.1. Các công nghệ khí hóa sinh khối .............................................................................. 5 1.2.2. Quá trình khí hóa trong TBKH thuận chiều lớp cố định .......................................... 7 1.2.3. Nâng cao chất lượng khí ......................................................................................... 10 1.3. Lựa chọn nguyên liệu gỗ cho quá trình khí hóa sản xuất khí nhiên liệu ........................ 12 1.3.1. Tiềm năng gỗ keo ở Việt Nam có thể sử dụng để sản xuất khí nhiên liệu ............. 12 1.3.2. Thành phần hóa học của sinh khối gỗ .................................................................... 13 1.4. Tình hình nghiên cứu chuyển hóa sinh khối thành nhiên liệu ngoài nước và trong nước liên quan đến đề tài ................................................................................................................ 16 1.4.1. Tình hình nghiên cứu ngoài nước liên quan đến đề tài .......................................... 16 1.4.2. Tình hình nghiên cứu trong nước liên quan đến đề tài .......................................... 19 Kết luận từ tổng quan và Định hướng nghiên cứu của luận án ............................................. 21 CHƯƠNG 2. THỰC NGHIỆM............................................................................................ 22 2.1 Phương pháp phân tích thành phần kỹ thuật, thành phần hóa học, nhiệt trị của gỗ keo và thành phần oxit kim loại trong tro ......................................................................................... 22 2.2 Phương pháp nghiên cứu đặc tính nhiệt phân của gỗ keo ............................................... 24 2.2.1 Phương pháp phân tích nhiệt trọng lượng (TGA) và tính toán năng lượng hoạt hóa của quá trình nhiệt phân.................................................................................................... 24 2.2.2 Nghiên cứu, phân tích và đánh giá sản phẩm của quá trình nhiệt phân gỗ keo bằng thiết bị lớp cố định ............................................................................................................ 26 2.3 Phương pháp nghiên cứu khí hóa sinh khối .................................................................... 32 2.3.1. Sơ đồ và nguyên lý hoạt động ................................................................................ 32 2.3.2. Hệ thống xác định hàm lượng hắc ín trong khí sản phẩm ...................................... 34 2.3.3. Đánh giá kết quả quá trình khí hóa ......................................................................... 35 2.4 Phương pháp nâng cấp chất lượng khí nhiên liệu............................................................ 39 2.4.1. Phương pháp bổ sung thêm oxy vào tác nhân khí hóa ........................................... 39 2.4.2. Phương pháp reforming hơi nước chuyển hóa toluen ............................................ 40 iii CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ....................................................................... 43 3.1. Đặc tính nhiệt phân của gỗ keo ...................................................................................... 43 3.1.1. Thành phần kỹ thuật, thành phần hóa học, thành phần oxit kim loại trong tro của gỗ keo 43 3.1.2. Hình thái bề mặt, các liên kết, nhóm chức chính của gỗ keo ................................. 47 3.1.3. Nghiên cứu đánh giá đặc tính nhiệt phân của gỗ keo ............................................. 50 3.2. Nghiên cứu khí hóa gỗ trong thiết bị khí hóa thuận chiều ............................................. 63 3.2.1. Kết quả khí hóa gỗ keo với ER 0,3 (SVa 0,14)....................................................... 63 3.2.2. Khảo sát ảnh hưởng tốc độ khí cấp qua vùng thắt của TBKH ............................... 67 3.2.3. Ảnh hưởng tỷ lệ mol nước và mol cacbon (S/C) đến quá trình khí hóa tạo khí nhiên liệu 72 3.2.4. Nhiệt độ và thành phần khí trong vùng cháy và vùng khí hoá của TBKH ............. 78 3.3. Nghiên cứu nâng cao chất lượng sản phẩm khí trong khí hóa gỗ keo ............................ 83 3.3.1. Phương pháp bổ sung thêm oxy vào vùng oxy hóa (làm giàu oxy trong không khí cấp) 83 3.3.2. Xử lý thành phần chính của hắc ín (toluen) bằng phương pháp xúc tác reforming hơi nước ............................................................................................................................ 87 KẾT LUẬN VÀ ĐỀ XUẤT ..................................................................................................... 99 NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN ........................................................................ 101 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ................................... 102 TÀI LIỆU THAM KHẢO ....................................................................................................... 103 PHỤ LỤC ................................................................................................................................ 112 iv DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Danh mục các ký hiệu Ký hiệu Đại lượng Thứ nguyên Ash Hàm lượng tro của sinh khối % Ea Năng lượng hoạt hóa kJ/mol ER Tỷ lệ không khí tương đương (m3/kg)/(m3/kg) FA Tiết diện của vùng thắt của thiết bị khí hóa m2 FC Hàm lượng cacbon cố định của sinh khối % H/C Tỷ lệ phần trăm khối lượng của hydro và cacbon kg/kg trong mẫu HHV Nhiệt trị cao của sinh khối O/C Tỷ lệ phần trăm khối lượng của oxy và cacbon trong kg/kg mẫu RA Lượng không khí thực tế trên 1 kg nhiên liệu m3/kg RB Lượng không khí lý thuyết trên 1 kg nhiên liệu m3/kg S/C Tỷ lệ mol nước và cacbon trong nguyên liệu mol/mol SVa Vận tốc bề mặt của khí cấp qua vùng vùng thắt m/s V Hàm lượng chất bốc của sinh khối % W Phần trăm khối lượng ẩm trong sinh khối % MJ/kg Danh mục chữ viết tắt Ký hiệu viết tắt Tiếng Anh Tiếng Việt AW Acacia wood Gỗ keo EW Eucalyptus wood Gỗ bạch đàn RW Rubber wood Gỗ cao su B2C Biomass to Chemicals Chuyển hoá sinh khối thành hoá chất B2F Biomass to Fuel Chuyển hoá sinh khối thành nhiên liệu Char Char, biochar Sản phẩm rắn sau nhiệt phân hay khí hóa Tar Tar Hắc ín, hydrocacbon cao phân tử, hydrocacbon đa vòng ER Equivalence ratio Tỷ lệ không khí tương đương IC-Gen Internal combustion generation Động cơ đốt trong IGCC Integrated gasification combined Hệ thống dùng chu trình tích hợp khí cycle hóa kết hợp v Pin nhiên liệu muối cacbonat nóng chảy MCFC Molten carbonated fuel cell PEMFC Polymer electrolyte membrane Pin nhiên liệu màng điện phân fuel cell polymer TBKH Gasifier Thiết bị khí hóa GC Gas chromatography Phân tích sắc ký khí GC-MS Gas chromatography – mass Phân tích sắc ký khí khối phổ spectroscope XRD X-ray diffraction ICP-MS Phương pháp Quang phổ nguồn Inductively coupled plasma mass plasma cảm ứng cao tần kết nối khối spectrometry phổ SEM Scanning electron microscope Phương pháp hiển vi điện tử truyền qua TGA Thermogravimetric analysis Phân tích nhiệt trọng lượng TPR-H2 Temperature programe reduction Phương pháp khử H2 theo chương trình nhiệt độ FT-IR Fourier transform spectroscopy WGS Water gas shift FWO Flynn-Wall-Ozawa KAS Kissiger-Akahira-Sunnose Phương pháp nhiễu xạ tia X infrared Phương pháp phổ hồng ngoại chuyển đổi Fourier Phản ứng chuyển hoá khí nước Xúc tác chứa 15% niken trên chất mang char 15NiChK vi DANH MỤC BẢNG BIỂU Bảng Bảng Bảng Bảng Bảng Bảng Bảng Bảng Bảng 1.1 Các công nghệ nhiệt hóa học chuyển hóa sinh khối ................................................... 4 1.2 Tiềm năng sản xuất điện từ gỗ keo ở Việt Nam........................................................ 13 2.1 Các phương pháp sử dụng để tính toán năng lượng hoạt hóa [89] ........................... 25 2.2 Ký hiệu và thông số thí nghiệm khí hóa dăm gỗ keo ................................................ 34 2.3 Ký hiệu và thông số thí nghiệm khí hóa khi thêm oxy vào tác nhân khí hóa ........... 40 3.1 Thành phần kỹ thuật và thành phần nguyên tố của gỗ keo ....................................... 44 3.2 Thành phần oxit trong tro của gỗ .............................................................................. 46 3.3 Thành phần hydrocacbon lỏng trong quá trình nhiệt phân ...................................... 56 3.4 Kết quả Ea và R2 của nhiệt phân gỗ keo theo phương pháp FOW, KAS ................. 62 Bảng Bảng Bảng Bảng Bảng Bảng Bảng Bảng Bảng Bảng 3.5 Thông số đặc trưng trong khí hóa trong thí nghiệm Dk1 .......................................... 65 3.6. Hằng số C của thành phần khí [71] .......................................................................... 66 3.7. Giá trị Cp của thành phần khí ở các nhiệt độ khác nhau .......................................... 67 3.8 Biến thiên dòng năng lượng trong TBKH với ER 0,30 trong quá trình phản ứng.. 67 3.9 Thông số đặc trưng trong khí hóa với SVa khác nhau .............................................. 71 3.10 Chuyển hóa năng lượng trong TBKH trong nghiên cứu ảnh hưởng của SVa ......... 71 3.11 Thông số đặc trưng trong khí hóa trong thí nghiệm với S/C từ 0,11 đến 0,46 ....... 77 3.12 Chuyển hóa năng lượng trong TBKH trong nghiên cứu ảnh hưởng của tỷ lệ S/C . 77 3.13 Các phản ứng xảy ra trong vùng cháy ..................................................................... 80 3.14 Nhiệt độ trong thiết bị khí hóa theo nồng độ oxy trong khí cấp ............................. 84 Bảng 3.15. Diện tích bề mặt, đường kính mao quản, thể tích mao quản của chất mang char và xúc tác 15NiChK ....................................................................................................................... 90 vii DANH MỤC HÌNH VẼ Hình Hình Hình Hình Hình Hình Hình Hình Hình Hình 1.1 Thiết bị khí hóa: (a) thuận chiều, (b) ngược chiều, (c) dòng cắt nhau ........................ 6 1.2 Lưu trình của quá trình khí hóa[17]............................................................................. 7 1.3 Nguyên lý của quá trình nhiệt phân sinh khối [64] ..................................................... 8 1.4 Tập kết dăm gỗ keo phục vụ xuất khẩu ..................................................................... 13 1.5 Các thành phần hóa học cấu tạo nên gỗ [3] ............................................................... 14 1.6 Cấu tạo hóa học của gỗ [33] ...................................................................................... 15 1.7 Thành phần và cấu tạo của thành phần trong gỗ [86] ................................................ 15 2.1 Đồ thị quan hệ giữa ln(β) – 1000/T (FWO) [39] ....................................................... 26 2.2 Đồ thị quan hệ giữa ln(β/T2) – 1000/T (KAS) [39] ................................................... 26 2.3 Sơ đồ phản ứng nhiệt phân gỗ keo ............................................................................ 28 Hình 2.4 Thiết bị phân tích thành phần khí sản phẩm .............................................................. 29 Hình 2.5 Sơ đồ phản ứng đánh giá khả năng phản ứng của char với hơi nước ........................ 32 Hình 2.6 Sơ đồ nguyên lý tổng thể hệ thống khí hóa sinh khối ............................................... 33 Hình 2.7 Sơ đồ hệ thống thiết bị xác định hàm lượng hắc ín [6] ............................................. 35 Hình 2.8 Sơ đồ phản ứng chuyển hóa toluen............................................................................ 42 Hình 3.1 Thành phần kỹ thuật và nhiệt trị của sinh khối ......................................................... 45 Hình 3.2 Sơ đồ van Krevelen sinh khối.................................................................................... 45 Hình 3.3 Ảnh SEM của mẫu gỗ keo độ phóng đại x1000 ........................................................ 47 Hình 3.4 Phổ FT-IR của gỗ keo, xenlulôzơ và lignin từ dăm gỗ keo trong khoảng số sóng (a) 4000-2500 cm-1; (b) 2000-500 cm-1........................................................................................... 48 Hình 3.5 Cấu trúc của (a) hemixenlulôzơ [25]; (b) xenlulôzơ [17]; (c) Một vài đơn vị cấu trúc của lignin [17]............................................................................................................................ 50 Hình 3.6 Nhiệt phân gỗ keo, xenlulôzơ và lignin tại tốc độ gia nhiệt 10oC/min...................... 51 Hình 3.7 Tỷ lệ sản phẩm rắn, lỏng, khí thu được của quá trình nhiệt phân gỗ keo .................. 52 Hình 3.8 Thành phần khí nhiệt phân gỗ keo theo nhiệt độ....................................................... 53 Hình 3.9 Phổ FT-IR của sản phẩm lỏng từ nhiệt phân gỗ keo ................................................. 54 Hình 3.10 Kết quả GC của sản phẩm lỏng của quá trình nhiệt phân........................................ 55 Hình 3.11 Các xu hướng tạo thành furfural khi nhiệt phân xenlulôzơ [63] ............................. 56 Hình 3.12 Các đơn vị cơ sở của hemixenlulôzơ ....................................................................... 57 Hình 3.13 Các xu hướng tạo thành furfural và ancol khi nhiệt phân hemixenlulôzơ [104] ..... 57 Hình 3.14 Các đơn vị cơ sở của lignin [80].............................................................................. 58 Hình 3.15 Quá trình phân hủy (β-O-4) của lignin để tạo thành các nhóm chức [80] ............... 58 Hình 3.16 Phổ FT-IR của sản phẩm rắn từ nhiệt phân gỗ keo ................................................. 58 Hình 3.17 So sánh thành phần khí của quá trình nhiệt phân sâu char và phản ứng khí hóa char với hơi nước tại 750oC ............................................................................................................... 59 Hình 3.18 So sánh độ chuyển hóa cacbon của quá trình nhiệt phân char và khí hóa char ....... 60 viii Hình 3.19 Đồ thị quan hệ giữa ln(β) – 1000/T (FWO)............................................................. 61 Hình 3.20 Đồ thị quan hệ giữa ln(β/T2) – 1000/T (KAS)......................................................... 61 Hình 3.21 Sự biến đổi của năng lượng hoạt hóa phân hủy gỗ keo theo độ chuyển hóa ........... 62 Hình 3.22 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng, ER 0,30 ...... 64 Hình 3.23 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng, ER 0,30 ........................ 65 Hình 3.24 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng SVa 0,19 ..... 68 Hình 3.25 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng SVa 0,19 ........................ 68 Hình 3.26 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng SVa 0,24 ..... 69 Hình 3.27 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng SVa 0,24 ........................ 69 Hình 3.28 Giản đồ nhiệt độ dọc theo chiều thiết bị khí hóa của thí nghiệm SVa khác nhau..... 70 Hình 3.29 Đồ thị quan hệ giữa thành phần khí trung bình và SVa ............................................ 70 Hình Hình Hình Hình Hình Hình Hình Hình Hình Hình 3.30 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng S/C 0,11 ...... 72 3.31 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng S/C 0,11 ........................ 73 3.32 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng S/C 0,20 ...... 73 3.33 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng S/C 0,20 ........................ 73 3.34 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng S/C 0,35 ...... 74 3.35 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng S/C 0,35 ........................ 74 3.36 Phân bố nhiệt độ trong TBKH theo chiều cao và thời gian phản ứng S/C 0,46 ...... 74 3.37 Đồ thị thành phần khí sản phẩm theo thời gian phản ứng S/C 0,46 ........................ 75 3.38 Ảnh hưởng của tỷ lệ S/C trong TBKH đến giản đồ nhiệt độ .................................. 75 3.39 Đồ thị quan hệ giữa thành phần khí trung bình và tỷ lệ S/C ................................... 76 Hình 3.40 Tỷ lệ thể tích khí H2, CH4, CO, CO2 và O2 tại vùng nhiệt phân của tbkh (SVa 0,17 và S/C 0,23) ............................................................................................................................... 78 Hình 3.41 Biến thiên lưu lượng mol khí sản phẩm dọc thân TBKH (SVa 0,17 và S/C 0,23) .. 79 Hình 3.42 Dòng vật chất xảy ra trong thiết bị khí hóa sinh khối ............................................. 82 Hình 3.43 Giản đồ phân bố nhiệt độ trong thiết bị khí hóa khi nồng độ thể tích oxy thay đổi 84 Hình 3.44 Đồ thị so sánh thành phần khí trung bình ................................................................. 85 Hình 3.45 So sánh hàm lượng hắc ín và hiệu suất khí hóa lạnh ................................................ 87 Hình 3.46 Phổ hồng ngoại của hắc ín thu được sau quá trình khí hóa dăm gỗ keo ................. 88 Hình 3.47 So sánh TG của hắc ín trong môi trường không khí và nitơ với 10 oC/phút ........... 89 Hình 3.48. Giản đồ tín hiệu TPR-H2 của 15NiChK ................................................................. 90 Hình 3.49 Giản đồ XRD của chất mang (ChK), xúc tác (15NiChK) ....................................... 91 Hình 3.50 Thành phần khí từ quá trình reforming toluen (600oC) ........................................... 92 Hình 3.51 Thành phần khí từ quá trình reforming hơi nước toluen (700oC) ........................... 93 Hình 3.52 Đồ thị tính lượng H2 sinh ra trong quá trình reforming C7H8 ................................. 93 Hình 3.53 Đồ thị biểu diễn lượng khí theo nhiệt độ ................................................................. 94 Hình 3.54 Thành phần khí từ quá trình reforming toluen của xúc tác 5NiChK (700oC) ......... 95 Hình 3.55 Thành phần khí từ quá trình reforming toluen của xúc tác 10NiChK (700oC) ....... 95 ix Hình Hình Hình Hình Hình 3.56 Đồ thị biểu diễn lượng khí theo nhiệt độ ................................................................. 96 3.57. Sơ đồ ngưng tụ cacbon từ CO với tâm kim loại ..................................................... 96 3.58 Sơ đồ hình thành cốc từ toluene .............................................................................. 96 3.59 Ảnh SEM của xúc tác 15NiChK (a) trước phản ứng;(b)sau phản ứng.................... 97 3.60 Giản đồ XRD xúc tác sau phản ứng (15NiChK spu) .............................................. 97 x MỞ ĐẦU 1. Tính cấp thiết của đề tài Nhiên liệu hóa thạch có vai trò hết sức quan trọng trong nền kinh tế của các quốc gia trên toàn thế giới. Năng lượng, nhiên liệu được sản xuất chủ yếu từ nguồn nhiên liệu hoá thạch. Nhu cầu về năng lượng, nhiên liệu ngày càng tăng nhanh, bên cạnh đó sử dụng nhiên liệu hóa thạch để sản xuất năng lượng phát thải khí NOx, SOx, CO2 gây hiệu ứng nhà kính gây ra tác động đến môi trường và biến đổi khí hậu toàn cầu. Do đó, nghiên cứu tìm ra nguồn nguyên liệu, nhiên liệu mới có khả năng tái tạo và bổ sung thêm vào nguồn nhiên liệu để sản xuất năng lượng là vấn đề quan trọng trên toàn thế giới. Việt Nam là đất nước có khí hậu nhiệt đới gió mùa, lượng mưa hàng năm lớn nên nguồn sinh khối rất phong phú và dồi dào. Theo số liệu thống kê có khoảng hơn 100 triệu tấn sinh khối gỗ, phụ phẩm gỗ từ ngành chế biến lâm nghiệp và từ phụ phẩm nông nghiệp, chủ yếu là trấu, bã mía, ngô…. Với công nghệ hiện nay, chuyển hóa phụ phẩm nông lâm nghiệp tạo ra năng lượng nhiệt, điện theo phương pháp truyền thống như đốt cháy để sản xuất điện. Các công nghệ mới như khí hóa sinh khối để sản xuất điện theo công nghệ IGCC, hoặc sử dụng nhiên liệu khí cho động cơ, cho tuabin khí hoặc sử dụng cho pin nhiên liệu…đang được nghiên cứu phát triển. Khí hóa sinh khối không những là phương pháp có thể nâng cao giá trị của phụ phẩm nông lâm nghiệp mà còn giảm phát thải khí nhà kính và đa dạng hóa nguồn cung cấp năng lượng cho quốc gia. Nghiên cứu công nghệ khí hóa sinh khối thành khí nhiên liệu sử dụng sản xuất điện, nhiệt, vận hành động cơ đốt trong hay sản xuất hóa chất bắt đầu được quan tâm nghiên cứu tại trường đại học và các trung tâm nghiên cứu tại Việt Nam. Để làm chủ công nghệ khí hóa thì cần phải hiểu rõ các đối tượng sinh khối sẽ sử dụng làm nguyên liệu và bản chất biến đổi hóa học khi tiến hành khí hóa, các yếu tố quan trọng ảnh hướng đến quá trình khí hóa, thiết kế thiết bị khí hóa (TBKH), xử lý khí sản phẩm và sử dụng khí sản phẩm…. cần được quan tâm nghiên cứu. Xuất phát từ những thực tế trên, đề tài “Nghiên cứu đặc tính nhiệt phân của gỗ keo và quá trình khí hóa tạo khí nhiên liệu” được thực hiện nghiên cứu với mục tiêu và nội dung dưới đây. 2. Mục tiêu của luận án Nghiên cứu nhiệt phân của gỗ keo và xác định điều kiện phù hợp để khí hóa sản xuất khí nhiên liệu (có thành phần khí cháy CO, H2 và hàm lượng hắc ín thấp), định hướng sử dụng cho động cơ đốt trong để sản xuất điện. 3. Nội dung nghiên cứu của luận án 1- Nghiên cứu, phân tích và đánh giá thành phần kỹ thuật: hàm ẩm, hàm lượng chất bốc (hydrocacbon nhẹ, CO, CO2, H2O thoát ra ở nhiệt độ 950oC trong 7 phút, hàm lượng cacbon cố định (cacbon còn lại sau khi chất bốc thoát ra) và hàm lượng tro thấp; thành phần nguyên tố như cacbon, hydro, oxy, nitơ, lưu huỳnh; phân tích hàm lượng chất 1 bốc, hàm lượng cacbon cố định. Phân tích hàm lượng oxit kim loại trong tro và xác định nhiệt độ chảy mềm của tro gỗ keo. Phân tích xác định các liên kết, nhóm chức trong gỗ keo. 2- Nghiên cứu quá trình nhiệt phân gỗ keo bằng phương pháp phân tích nhiệt và tính toán năng lượng hoạt hóa của quá trình. Đánh giá sản phẩm của quá trình nhiệt phân và phân tích thành phần và tính chất hóa học của chúng. 3- Nghiên cứu yếu tố ảnh hưởng đến quá trình khí hóa (SVa , S/C) và đánh giá hiệu quả của quá trình khí hóa. Phân tích các vùng phản ứng trong thiết bị khí hóa. 4- Nghiên cứu nâng cấp chất lượng khí nhiên liệu bằng phương pháp cấp thêm oxy trong quá trình khí hóa và bước đầu nghiên cứu reforming toluen (thành phần chính của hắc ín) bởi xúc tác Ni/Char. 4. Ý nghĩa khoa học và thực tiễn của luận án 4.1. Ý nghĩa khoa học của luận án - Nghiên cứu về tính chất kỹ thuật của gỗ keo là cơ sở để đánh giá khả năng ứng dụng của gỗ keo và giải thích các quá trình xảy ra trong TBKH cũng như các thông số cho thiết kế, chế tạo TBKH. Ngoài ra, kết quả từ nghiên cứu về tính chất kỹ thuật của gỗ keo tạo nền tảng cho các nghiên cứu tiếp theo để nghiên cứu mở rộng hướng ứng dụng của gỗ keo cũng như nghiên cứu tính chất kỹ thuật cho các loại sinh khối khác. - Đã đưa ra được phương pháp luận để đánh giá quá trình nhiệt phân sinh khối và có thể áp dụng cho các đối tượng nghiên cứu khác. - Phân tích, biện luận và bình chú về TBKH, công nghệ khí hóa và trình bày các kết quả nghiên cứu về các thông số ảnh hưởng đến quá trình khí hóa giúp cung cấp thông tin cơ sở và khoa học cho các nghiên cứu sau này. 4.2. Ý nghĩa thực tiễn của luận án - Những phân tích chi tiết về tính chất kỹ thuật của gỗ keo cung cấp đầy đủ thông tin để góp phần sử dụng nguyên liệu và nhiên liệu sinh khối cho quá trình cháy, quá trình nhiệt phân và quá trình khí hóa. - Góp phần hiểu rõ hơn công nghệ khí hóa sinh khối để sản xuất điện và có khả năng áp dụng ở quy mô công nghiệp tại Việt nam khi sử dụng nguyên liệu là gỗ keo với công suất phát điện < 1MWh. 5. Những đóng góp mới của luận án 1. Lần đầu tiên đã xác định được thành phần kỹ thuật của gỗ keo Việt Nam: hàm lượng chất bốc, hàm lượng cacbon cố định, hàm lượng tro và thành phần hóa học: cacbon, hydro, oxy, nitơ, lưu huỳnh, các thành phần oxit kim loại trong tro gỗ keo và nhiệt độ chảy mềm của tro gỗ keo, nhiệt trị của gỗ keo Việt Nam. 2. Đã phân tích và lượng hóa được các sản phẩm hình thành trong quá trình nhiệt phân. Xác định được năng lượng hoạt hóa phản ứng nhiệt phân gỗ keo bằng phương pháp 2 phân tích nhiệt. Char hình thành trong quá trình nhiệt phân chủ yếu do quá trình phân hủy nhiệt của lignin. 3. Lần đầu tiên nghiên cứu sử dụng gỗ keo làm nguyên liệu cho quá trình khí hóa tạo ra khí nhiên liệu. Đã tìm được các thông số công nghệ (S/C, SVa và nồng độ oxy phù hợp) để khí hóa gỗ keo sản xuất khí nhiên liệu trong TBKH thuận chiều đáp ứng tiêu chuẩn nhiên liệu sử dụng cho động cơ đốt trong. Đã đề xuất các phản ứng chính xảy ra tại các vùng của thiết bị khí hóa dựa vào nhiệt độ, tốc độ dòng khí, hàm lượng khí trong thiết bị và đã viết được phản ứng hóa học xảy ra từng vùng của thiết bị. 4. Đã phát hiện ra quy luật khoa học mối liên quan giữa V, FC và vai trò của chúng đối với các phản ứng quan trọng của TBKH. Hàm lượng V và FC của sinh khối liên quan trực tiếp đến sự hình thành sản phẩm khí, lỏng và rắn trong quá trình nhiệt phân. Khi khí hóa sinh khối có V nhiều thì phản ứng reforming các hydrocacbon lỏng thành CO và H2 chiếm ưu thế. Lignin trong sinh khối đóng vai trò chính hình thành char khi nhiệt phân. Hàm lượng lignin lớn sẽ hình thành nhiều char khi nhiệt phân và quá trình khí hóa char tạo CO và H2 cũng sẽ có vai trò quan trọng. 6. Cấu trúc nội dung của luận án Chương 1: Tổng quan về công nghệ mới chuyển hóa sinh khối thành nhiên liệu, công nghệ khí hóa để sản xuất nhiên liệu, tiềm năng gỗ keo, tình hình nghiên cứu trong và ngoài nước liên quan đến đề tài. Chương 2: Thực nghiệm trình bày về phương pháp phân tích đặc tính kỹ thuật của gỗ keo, phương pháp phân tích đặc tính nhiệt phân của gỗ keo, phương pháp nghiên cứu khí hóa sinh khối, phương pháp nâng cấp chất lượng khí. Chương 3: Thảo luận các kết quả đạt được về đặc tính kỹ thuật của gỗ keo, thảo luận về đặc tính nhiệt phân của gỗ keo, thảo luận về các thông số ảnh hưởng đến quá trình khí hóa và nâng cao chất lượng khí sản phẩm. Kết luận về kết quả đạt được từ nghiên cứu đề tài luận án. Các kết quả chính của luận án được công bố trong 07 công trình khoa học, trong đó có 01 bài báo đăng trên tạp chí quốc tế, 04 bài báo đăng trên các tạp chí quốc gia và 02 báo cáo tại các hội nghị quốc tế. 3 CHƯƠNG 1. TỔNG QUAN 1.1. Các công nghệ nhiệt hóa học mới để chuyển hóa sinh khối thành nhiên liệu Phương pháp chuyển hóa sinh khối bằng quá trình nhiệt hóa học là xu hướng nghiên cứu, ứng dụng mới trên thế giới góp phần sản xuất nhiên liệu có khả năng tái tạo, thay thế một phần nhiên liệu hóa thạch và giảm thiểu ô nhiễm môi trường. Quá trình nhiệt hóa học là quá trình chuyển hóa nguyên liệu sinh khối có khả năng tái tạo dưới tác dụng của nhiệt thành nhiên liệu, năng lượng hoặc hóa chất. Với mỗi quy trình chuyển hóa sinh khối thành hóa chất (Biomass to Chemicals (B2C)) hoặc chuyển hóa sinh khối thành nhiên liệu (Biomass to Fuel (B2F)) là các hướng nghiên cứu riêng được nhiều nhà khoa học trên thế giới quan tâm. Với định hướng nghiên cứu khoa học phục vụ ứng dụng cho Việt Nam thì B2F có nhu cầu thực tiễn cao. Đối với công nghệ B2F thì nhiên liệu có thể sản xuất từ sinh khối đó là quá trình thủy nhiệt (Hydrothermal process) để sản xuất nhiên liệu rắn có chất lượng cao, quá trình nhiệt phân nhanh (flash pyrolysis) để sản xuất nhiên liệu lỏng hoặc quá trình khí hóa (gasification) để sản xuất nhiên liệu khí (bio-syngas). Đây là các quá trình chuyển hóa sinh khối theo công nghệ mới có tiềm năng ứng dụng tại Việt Nam. Mỗi công nghệ sẽ tạo ra sản phẩm khác nhau và định hướng ứng dụng được thể hiện ở Bảng 1.1. Bảng 1.1 Các công nghệ nhiệt hóa học chuyển hóa sinh khối Công nghệ Sản phẩm sơ cấp Ứng dụng Dầu sinh học Sử dụng trực tiếp nhiên liệu lỏng hoặc nâng cấp thành diesel xanh hoặc sản xuất hóa chất Khí hóa Nhiên liệu khí Sử dụng trực tiếp cho chu trình IGCC, IC, MCFC Nâng cấp thành nhiên liệu H2 sử dụng cho PEMFC Thủy nhiệt Nhiên liệu rắn Nhiên liệu rắn mới đốt kèm với than trong nhà máy công nghiệp Nhiệt phân nhanh IGCC (Intergrated gasification combinated cycle), IC–Gen (Internal combustion engine), MCFC (Molten Carbonate Fuel Cell), PEMFC (Polymer Electrolyte Membrane Fuel Cell- pin nhiên liệu màng điện phân polymer). Với công nghệ chuyển hóa sinh khối thành nhiên liệu khí bằng công nghệ khí hóa có thể sản xuất được khí nhiên liệu có thành phần chính là CO và H2 và từ khí nhiên liệu có thể sản xuất điện theo các công nghệ tiên tiến như: - - Chu trình hỗn hợp (Intergrated gasification combinated cycle (IGCC)): Hỗn hợp khí CO và H2 là khí nhiên liệu để sản xuất điện theo chu trình hỗn hợp [35]. Sau quá trình khí hóa, hỗn hợp khí nhiên liệu CO và H2 có nhiệt độ cao sẽ tạo động năng cho tuabin khí để sản xuất điện, sau đó hỗn hợp khí CO và H2 sẽ thực hiện phản ứng cháy để tạo động năng cho chu trình hơi. Động cơ đốt trong phát điện (internal combustion engine (IC-Gen)): Hỗn hợp khí CO và H2 là khí nhiên liệu sau quá trình khí hóa được làm nguội và cung cấp trực tiếp cho 4 - - động cơ đốt trong để thực hiện quá trình đốt cháy sinh công [59]. Kết nối với động cơ khí là bộ phận phát điện sẽ chuyển hóa công năng của động cơ đốt trong thành dòng điện. Pin nhiên liệu muối cacbonat (Molten Carbonate Fuel Cell (MCFC)): Hỗn hợp khí CO và H2 là khí nhiên liệu sau quá trình khí hóa có nhiệt độ cao sẽ được trực tiếp sử dụng làm nhiên liệu cho pin nhiệt điện MCFC hoạt động ở nhiệt độ cao [34]. MCFC dùng các muối cacbonat của Na và Mg ở nhiệt độ cao làm chất điện phân. Hiệu suất pin đạt từ 60 đến 80%, vận hành ở nhiệt độ khoảng 650oC. MCFC dùng chất xúc tác điện cực niken và trong quá trình sử dụng ion cacbonat từ chất điện phân sẽ bị sử dụng hết trong phản ứng, đòi hỏi phải bổ sung thêm khí CO2. Phản ứng trên anode: CO32- + H2 => H2O + CO2 + 2ePhản ứng trên cathode: CO2+ ½ O2 + 2e- => CO32Tổng quát: H2(k) + ½ O2(k) + CO2 (cathode) => H2O(k)+O2 (anode)+ điện năng Pin nhiên liệu màng điện phân polymer (Polymer Electrolyte Membrane Fuel Cell (PEMFC)): Hỗn hợp khí CO và H2 là khí nhiên liệu thu được sau quá trình khí hóa sẽ tiếp tục thực hiện phản ứng chuyển hóa CO để làm giàu thêm H2 [40]. Nhiên liệu H2 sản xuất được sẽ sử dụng làm nhiên liệu cho pin PEMFC. Pin nhiên liệu PEMFC hoạt động với một màng điện phân bằng plastic mỏng. Hiệu suất pin từ 40 đến 50% và vận hành ở nhiệt độ thấp 80oC. Do có giải công suất linh hoạt nên có nhiều ứng dụng. Nhược điểm của pin họ này là điện cực bị ngộ độc bởi khí CO nên quá trình tinh chế và làm sạch khí phải được xử lý triệt để. Phản ứng trên anode: 2 H2 => 4 H+ + 4ePhản ứng trên cathode: O2 + 4 H+ + 4e- => H2O Tổng quát: 2 H2 + O2 => 2 H2O + năng lượng (điện) Có thể thấy rằng khí nhiên liệu sau quá trình khí hóa có nhiều ứng dụng trong công nghiệp và để có thể tạo ra nguồn khí nhiên liệu bao gồm hai thành phần chính là CO và H2, đặc tính kỹ thuật của sinh khối phải được xác định, phân tích, đánh giá và thực nghiệm nghiên cứu các thông số công nghệ của TBKH cần được nghiên cứu. 1.2. Công nghệ khí hóa sinh khối để sản xuất khí nhiên liệu 1.2.1. Các công nghệ khí hóa sinh khối Hầu hết các TBKH sử dụng là thiết bị lớp cố định (fixed bed gasifiers), thiết bị lớp tầng sôi (fluidized bed gasifier) và thiết bị dòng cuốn (entrained flow gasifiers). Với quy mô công nghiệp, thiết bị lớp tầng sôi và thiết bị dòng cuốn thường được áp dụng cho quy mô sản xuất có công suất nhiệt từ lớn hơn 10MW, đối với thiết bị lớp cố định thì công suất thường dưới 1MW. TBKH lớp cố định có 3 kiểu gồm thiết bị lớp cố định thuận chiều (downdraft gasifier, nguyên liệu và tác nhân khí hóa đi cùng chiều) Hình 1.1 (a), thiết bị lớp cố định ngược chiều (updraft gasifier, nguyên liệu và khí sản phẩm đi ngược chiều nhau) Hình 1.1 (b), thiết bị lớp 5 cố định dòng cắt nhau (crossdraft gasifier, chiều di chuyển của khí sản phẩm cắt ngang vuông góc với chiều di chuyển của nhiên liệu) Hình 1.1 (c). Hình 1.1 Thiết bị khí hóa: (a) thuận chiều, (b) ngược chiều, (c) dòng cắt nhau Mỗi loại TBKH kiểu lớp cố định đều có những ưu điểm và nhược điểm riêng, vì vậy khi sử dụng cần lựa chọn để phát huy những ưu điểm và hạn chế tối đa nhược điểm của loại thiết bị đó. TBKH ngược chiều có ưu điểm là tổn thất áp suất nhỏ, hiệu quả nhiệt cao, xu hướng hình thành xỉ ít, thiết kế đơn giản, linh hoạt với nguyên liệu (kích thước, hình dạng và độ ẩm), khí sản phẩm có nhiệt trị cao. Tuy nhiên, thiết bị loại này cũng có nhược điểm là thiết bị xử lý khí sau quá trình khí hóa phức tạp, hàm lượng hắc ín trong khí sản phẩm lớn, nhiên liệu khí có hàm ẩm cao do đó để làm sạch và nâng cấp chất lượng khí rất phức tạp. Nếu mục tiêu sử dụng khí để vận hành động cơ IC-Gen thì không nên chọn công nghệ này. TBKH dòng cắt nhau có ưu điểm là thiết kế đơn giản và đây là ưu điểm khi ứng dụng sản phẩm khí để phát điện, tuy nhiên nhược điểm của loại thiết bị này là trở lực lớn và khả năng đóng xỉ cao, khó điều khiển các thông số công nghệ. TBKH thuận chiều khắc phục được một số nhược điểm của 2 loại thiết bị trên như khí sản phẩm có hàm lượng hắc ín trong khí sản phẩm thấp hơn, thiết kế đơn giản, chi phí đầu tư thấp, khí sản phẩm rất linh hoạt thích ứng cho các nhu cầu phụ tải khác nhau. Bên cạnh đó, thiết bị loại này cũng có nhược điểm là thiết bị có kích thước lớn, yêu cầu cụ thể về nhiên liệu (kích thước, hình dạng và hàm ẩm), nhiệt trị khí sản phẩm trung bình, có thể đóng xỉ… Với mục tiêu sản xuất khí nhiên liệu làm nhiên liệu cho động cơ đốt trong để sản xuất điện, TBKH thuận chiều được lựa chọn vì các ưu điểm trên. Dăm gỗ keo cũng có thể là nguyên liệu tốt được sử dụng cho công nghệ này để sản xuất điện với quy mô nhỏ phân tán với công suất nhỏ hơn 1MWh, tuy nhiên phải nghiên cứu phân tích đặc tính kỹ thuật của nguyên liệu và các thông số công nghệ của thiết bị để tìm điều kiện công nghệ phù hợp nhằm khắc phục các nhược điểm của loại thiết bị này. 6 1.2.2. Quá trình khí hóa trong TBKH thuận chiều lớp cố định Quá trình có thể xảy ra trong TBKH sinh khối thuận chiều được trình bày trên Hình 1.1 (a). Nguyên liệu sinh khối được cấp ở trên đỉnh của thiết bị và tác nhân khí hoá (không khí) được cấp vào giữa thiết bị (cấp trực tiếp vào vùng oxy hóa). Sản phẩm khí được tạo ra từ quá trình khí hóa sẽ chuyển động xuống dưới và đi ra ở đáy thiết bị. Nguyên liệu sinh khối vào và dòng nhiên liệu khí đầu ra chuyển động cùng chiều trong TBKH. Hình 1.2 Lưu trình của quá trình khí hóa[17] Vùng “thắt” của TBKH là vị trí có đường kính thắt lại, đường kính vùng “thắt” nhỏ hơn so với đường kính của thiết bị. Mục đích thiết kế vùng thắt là tạo môi trường đồng nhất về nhiệt độ cao để sản phẩm từ quá trình nhiệt phân đi qua vùng nhiệt độ cao và có thể được đốt cháy hoàn toàn [17]. Theo Reed và cộng sự [83], đường kính “thắt” được xác định thông qua vận tốc bề mặt. Vị trí vùng thắt giao với phần thân chính của lò được xác định dựa trên 2 thông số đó là góc nghiêng và chiều cao tối thiểu. Trong đó góc nghiêng phụ thuộc vào đặc tính nhiên liệu sử dụng và có giá trị trong khoảng 75o – 90o; chiều cao tối thiểu thường chọn lớn hơn hoặc bằng bán kính “thắt”. Với TBKH sinh khối thuận chiều, chiều cao của vùng thắt quy định vào công suất thiết bị, đặc tính cháy của nhiên liệu và tốc độ cấp gió [83]. Sinh khối là gỗ, thông thường có thành phần nguyên tố hoá học C, H, O chiếm chủ yếu, hàm lượng nitơ, lưu huỳnh rất thấp, nên có thể dùng công thức chung 𝐶𝑥 𝐻𝑦 𝑂𝑧 . Phương trình phản ứng tổng quát cho phản ứng khí hóa sinh khối thể hiện như sau[17]: 𝐶𝑥 𝐻𝑦 𝑂𝑧 (𝑠𝑖𝑛ℎ 𝑘ℎố𝑖) + 𝑂2 + 𝐻2 𝑂 (𝑐ó 𝑡ℎể 𝑐ó) → ∑𝑘ℎí(𝐶𝑂, 𝐶𝑂2 , 𝐶𝐻4 , 𝐻2 ) + 𝑚𝐻2 𝑂 + 𝐶𝑎2 𝐻𝑏2 𝑂𝑐2 (𝑐ℎ𝑎𝑟) + 𝐶𝑥2 𝐻𝑦2 𝑂𝑧2 (𝑡𝑎𝑟)+ tro (1.1) 7 Tuy nhiên trong TBKH có nhiều quá trình xảy ra và bao gồm nhiều phản ứng hóa học xảy ra và được thể hiện ở Hình 1.2. Trong TBKH thuận chiều, theo lý thuyết sẽ chia làm 4 vùng khác nhau đặc trưng cho các quá trình chính xảy ra trong thiết bị bao gồm (1) vùng sấy, (2) vùng nhiệt phân, (3) vùng oxy hóa và (4) vùng khí hóa (vùng khử). (1) Vùng sấy: Nơi có nhiệt độ khoảng 150 – 200oC và tại nhiệt độ này ẩm trong nguyên liệu sinh khối sẽ bốc hơi và sinh khối khô được tạo thành theo phản ứng. 𝑆𝑖𝑛ℎ 𝑘ℎố𝑖 ướ𝑡 + 𝑛ℎ𝑖ệ𝑡 → 𝑆𝑖𝑛ℎ 𝑘ℎố𝑖 𝑘ℎô + 𝐻2 𝑂 (1.2) Trong TBKH, hơi ẩm thoát ra ở vùng sấy, đi qua vùng nhiệt phân, sau đó đi tiếp vào vùng oxy hóa và sau cùng đi vào vùng khí hóa. Hơi nước sẽ tham gia vào các phản ứng hoá học xảy ra trong vùng oxy hóa và vùng khí hóa. (2) Vùng nhiệt phân: Vùng nhiệt phân là vùng quan trọng trong thiết bị khí hóa sinh khối. Sinh khối khô sẽ chuyển sang vùng nhiệt phân nơi mà nhiệt độ vùng nhiệt phân từ 200 – 600oC. Trong vùng nhiệt phân sẽ xảy ra các phản ứng phân hủy nhiệt bẻ gãy mạch dài (hemixenlulôzơ, xenlulôzơ và lignin) có trong sinh khối thành khí không ngưng (H2, CO, CO2, CH4, CnHm), các hydrocacbon khí, hydrocacbon lỏng (axit axetic, hydrocacbon vòng thơm, xeton, hợp chất chứa oxy, hợp chất furan, hợp chất phenol, guaiacol, đường) [17]. Phần rắn còn lại của quá trình nhiệt phân (gọi là char). Sự biến đổi sinh khối ở vùng nhiệt phân thể hiện trên Hình 1.3. Sinh khối khô trải qua hai giai đoạn nhiệt phân, giai đoạn nhiệt phân sơ cấp hình thành sản phẩm lỏng, khí và char. Sau đó, các sản phẩm của quá trình nhiệt phân sơ cấp dưới tác dụng của nhiệt tiếp tục nhiệt phân thành các sản phẩm thứ cấp lỏng, khí, char. Hình 1.3 Nguyên lý của quá trình nhiệt phân sinh khối [64] Phản ứng tổng quát của quá trình nhiệt phân như sau: 8 𝑛ℎ𝑖ệ𝑡 𝐶𝑥 𝐻𝑦 𝑂𝑧 (sinh 𝑘ℎố𝑖) → 𝐶𝑥1 𝐻𝑦1 𝑂𝑧1 (𝑙ỏ𝑛𝑔) + 𝐶𝑎1 𝐻𝑏1 𝑂𝑐1 (𝑐ℎ𝑎𝑟) + ∑𝑘ℎí(𝐶𝑂, 𝐶𝑂2 , 𝐶𝐻4 , 𝐻2 ) + 𝑛𝐻2 𝑂 (1.3) Sản phẩm của quá trình nhiệt phân phụ thuộc vào bản chất của sinh khối, nhiệt độ cũng như thời gian lưu của sinh khối trong vùng này. Do đó nghiên cứu về đặc tính nhiệt phân sinh khối là rất quan trọng và sẽ giúp chúng ta hiểu rõ sự biến đổi của sinh khối và các sản phẩm hình thành tại vùng nhiệt phân. Toàn bộ sản phẩm hình thành tại vùng nhiệt phân sẽ tiếp tục đi vào vùng oxy hóa. 3) Vùng oxy hóa (vùng cháy): Tại vùng oxy hóa, oxy (không khí) đưa vào thiết bị để thực hiện các phản ứng hóa học. Khi oxy tiếp xúc với các sản phẩm đi ra khỏi vùng nhiệt phân sẽ xảy ra nhiều phản ứng phức tạp như phản ứng cháy, phản ứng reforming, phản ứng cracking và các phản ứng khác. Phản ứng cháy là phản ứng quan trọng nhất trong vùng này vì sẽ sinh nhiệt mạnh và cung cấp nhiệt cho toàn thiết bị khí hóa [17]. Ở vùng cháy nơi có nhiệt độ cao, các sản phẩm hình thành của vùng nhiệt phân sẽ tiếp tục tham gia các phản ứng hóa học để tạo thành các khí chính là CO, H2, CO2 và CH4…. Phản ứng xảy ra trong vùng oxy hóa giữa oxy không khí cấp với sản phẩm quá trình nhiệt phân ở nhiệt độ cao xảy ra như sau [17]: Phản ứng cháy CH4 + 0,5 O2 ↔ C + O2 → CO + 0,5 O2 → CO2 +284 kJ/mol (ở 25 C, 1 at) (1.6) H2 + 0,5 O2 → H2O + 242 kJ/mol (ở 25oC, 1 at) (1.7) C + 0,5 O2 → CO + 111 kJ/mol (ở 25 C, 1 at) (1.8) CH4 + 0,5 O2 → CO + 2H2 + 36 kJ/mol (ở 25oC, 1 at) (1.9) Phản ứng reforming CnHm+nH2O → nCO + CnHm +nCO2 → 2nCO + 2 H2 (1.11) → Cn’Hm’ + H2 (1.12) Phản ứng cracking CnHm CO2 + H2O +803 kJ/mol (ở 25oC, 1 at) o CO2 + 394 kJ/mol (ở 25 C, 1 at) o o m+2n 2 m H2 + 111 kJ/mol (1.4) (1.5) (1.10) Toàn bộ sản phẩm của quá trình oxy hóa sẽ tiếp tục chuyển động vào vùng khí hóa (4) Vùng khử (vùng khí hóa): Tại vùng khí hóa sẽ tiếp tục xảy ra các phản ứng hóa học và phản ứng chính của vùng này là [17] : Phản ứng của cacbon với hơi nước sinh ra từ phản ứng cháy và từ không khí cấp. C + H2O ↔ H2 + CO - 131,40 kJ/mol (ở 25oC, 1 at) (1.13) Phản ứng của CO2 tạo ra trong vùng cháy và cacbon ở nhiệt độ khoảng 800 – 900oC: 9 C + CO2↔ 2CO - 172 kJ/mol (ở 25oC, 1 at) (1.14) Các phản ứng khác cũng có thể xảy ra bao gồm: - Phản ứng chuyển hoá khí nước (water gas shift - WGS) giữa CO và hơi nước tạo CO2 và H2: CO + H2O ↔ CO2 + H2 + 41,20 kJ/mol (ở 25oC, 1 at) - (1.15) Ở nhiệt độ khoảng 500-600 C trong vùng khí hóa còn xảy ra phản ứng tạo H2: o C + 2H2O ↔ 2H2 + CO2 - 88 kJ/mol (ở 25oC, 1 at) - - (1.16) Khí metan được tạo ra trong thiết bị hoá khí giữa char và H2 ở khoảng trên 500 C, với tốc độ rất chậm: o C + 2H2↔ CH4 + 74,8 kJ/mol (ở 25oC, 1 at) Phản ứng reforming hơi nước khí metan: CH4 + 2H2O ↔ CO + 4H2 - 206 kJ/mol (ở 25oC, 1 at) (1.17) (1.18) Có thể thấy rằng các vùng được phân chia thứ tự trong TBKH, tuy nhiên theo Basu [17] cho rằng tại các vùng oxy hóa và vùng khí hoá, các phản ứng xảy ra không có ranh giới rõ ràng mà thường xảy ra đan xen với nhau. 1.2.3. Nâng cao chất lượng khí Sản xuất khí nhiên liệu có chất lượng tốt làm nhiên liệu cho động cơ đốt trong sản xuất điện thì sử dụng TBKH thuận chiều sẽ có chất lượng khí tốt hơn so với TBKH tầng sôi hoặc TBKH ngược chiều vì hàm lượng các hydrocacbon cao phân tử (hắc ín) trong khí sản phẩm thấp hơn. Để đảm bảo động cơ IC hoạt động tốt và ổn định, nhiệt trị hỗn hợp khí từ 4-6 MJ/m3 và hàm lượng hắc ín trong nhiên liệu khí phải giảm tối thiểu. Hắc ín là hydrocacbon đa vòng có khả năng ngưng tụ ở nhiệt độ thấp. Do đó, để đáp ứng yêu cầu này thì việc nghiên cứu để sản xuất ra khí nhiên liệu có nhiệt trị cao và hàm lượng hắc ín thấp đã được nhiều nhà khoa học tập trung nghiên cứu và gồm các phương pháp sau: i. Nâng cao nhiệt trị của sản phẩm khí Thành phần chính của khí nhiên liệu là CO, H2, ngoài ra còn có chứa CO2, H2O, CH4. Trong đó, thành phần khí góp phần tạo nhiệt trị của khí nhiên liệu chủ yếu là CO, H2 và CH4. Đã có những nghiên cứu sử dụng các tác nhân oxy hóa khác nhau như tăng nồng độ oxy của gió (không khí) vào, bổ sung thêm hơi nước của vùng khí hóa để tăng nồng độ CO và H2 của nhiên liệu khí [105]. ii. Giảm sự hình thành hắc ín Khí hóa sinh khối tạo ra không chỉ khí nhiên liệu mà còn tạo ra một số sản phẩm phụ không mong muốn như hắc ín. Sự hình thành của hắc ín trong quá trình khí hóa phụ thuộc vào chủng loại nhiên liệu, cấu tạo thiết bị, điều kiện vận hành. Hắc ín có thể gây ra một số vấn đề như hình thành cốc trong động cơ đốt trong, ngưng tụ làm tắc đường ống trong quá trình hoạt động của hệ thống IC-Gen do đó làm giảm tuổi thọ của thiết bị. Hàm lượng hắc ín cho phép với một số ứng dụng của nhiên liệu khí quy định như sau [46]: 10
- Xem thêm -

Tài liệu liên quan