Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu mô phỏng số bôi trơn thủy động ổ đầu to thanh truyền của động đốt tro...

Tài liệu Nghiên cứu mô phỏng số bôi trơn thủy động ổ đầu to thanh truyền của động đốt trong

.PDF
82
495
70

Mô tả:

LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình riêng của tôi dưới sự hướng dẫn khoa học của TS. Trần Thị Thanh Hải và TS. Nguyễn Tiến Lưỡng. Các kết quả nêu trong luận án là trung thực và chưa được ai công bố trong bất trì công trình, luận án nào khác. Hà Nội, ngày 12 tháng 10 năm 2018 Tác giả luận án Thay mặt Tập thể người hướng dẫn TS. Trần Thị Thanh Hải Nguyễn Đình Tân i LỜI CẢM ƠN Đầu tiên tôi xin bày tỏ long biết ơn chân thành và sâu sắc của mình tới tập thể Thầy cô hướng dẫn khoa học là TS. Trần Thị Thanh Hải và TS. Nguyễn Tiến Lưỡng. Các thầy cô đã gợi mở cho tôi các ý tưởng khoa học, luôn tận tình hướng dẫn tôi trong suốt thời gian thực hiện luận án. Đồng thời tôi cũng xin cảm ơn đến các thầy cô, anh chị em trong bộ môn Máy & Ma sát học – Viện Cơ khí – Trường Đại học Bách khoa Hà Nội, đã nhiệt tình có những góp ý xây dựng để tôi hoàn thành luận án của mình. Tôi xin trân trọng cảm ơn tới Ban giám hiệu, Viện đào tạo sau đại học, Viện Cơ khí – Trường Đại học Bách khoa Hà Nội đã tạo điều kiện thuận lợi cho tôi trong quá trình học tập và nghiên cứu từ năm 2011 đến nay. Qua đây, tôi cũng xin cảm ơn đến Giáo sư Aurélian FATU và các thầy cô, anh em tại Viện PPRIME • UPR 3346, Trường Đại học Poitiers, Cộng hòa Pháp đã giúp đỡ và chỉ bảo tôi về trang thiết bị thực nghiệm, các kỹ thuật phân tích trong thời gian tôi nghiên cứu thực nghiệm trong khuôn khổ luận án để tôi có thể hoàn thành luận án của mình. Tôi cũng xin chân thành cảm ơn các thầy cô giáo, anh chị em đồng nghiệp trường Cao đẳng Điện tử - Điện lạnh Hà Nội đã tạo điều kiện, giúp đỡ và động viên để tôi hoàn thành luận án này. Cuối cùng, tôi xin chân thành cảm ơn gia đình, những người thân luôn động viên về tinh thần, thời gian và vật chất để tôi có động lực trong quá trình học tập và nghiên cứu để có thể hoàn thành luận án này. Hà Nội, tháng 10 năm 2018 Tác giả Nguyễn Đình Tân ii MỤC LỤC LỜI CAM ĐOAN .................................................................................................................. i LỜI CẢM ƠN....................................................................................................................... ii MỤC LỤC ...........................................................................................................................iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ....................................................... vi DANH MỤC HÌNH VẼ ....................................................................................................viii DANH MỤC BẢNG BIỂU ...............................................................................................viii MỞ ĐẦU ............................................................................................................................... 1 1. Lý do chọn đề tài ........................................................................................................... 1 2. Mục tiêu nghiên cứu ...................................................................................................... 1 3. Đối tượng và phạm vi nghiên cứu ................................................................................. 2 4. Phương pháp nghiên cứu ............................................................................................... 2 5. Nội dung nghiên cứu ...................................................................................................... 2 6. Ý nghĩa khoa học của đề tài ........................................................................................... 2 7. Ý nghĩa thực tiễn của đề tài ........................................................................................... 3 8. Các kết quả mới ............................................................................................................. 3 Chương 1: TỔNG QUAN.................................................................................................... 4 1.1. Ổ đầu to thanh truyền.................................................................................................. 4 1.1.1. Khái niệm ............................................................................................................. 4 1.1.2. Các Hiện tượng, nguyên nhân hư hỏng ............................................................... 4 1.1.3. Khe hở bán kính ................................................................................................... 5 1.1.4. Khe hở dọc ........................................................................................................... 6 1.2. Những vấn đề về công nghệ thiết kế sơ bộ ổ đỡ bôi trơn thủy động ......................... 6 1.2.1. Xác định chiều dày màng dầu ............................................................................. 6 1.2.2. Chọn ổ theo khe hở .............................................................................................. 7 1.2.3. Xác định chế độ bôi trơn ...................................................................................... 8 1.3. Tổng quan tình hình nghiên cứu ................................................................................. 8 1.3.1. Trên thế giới ......................................................................................................... 9 1.3.1.1. Nghiên cứu mô phỏng số bôi trơn ổ đầu to thanh truyền ............................. 9 1.3.1.2. Nghiên cứu thực nghiệm ổ đầu to thanh truyền .......................................... 16 1.3.2. Trong nước......................................................................................................... 19 1.4. Kết luận ..................................................................................................................... 21 Chương 2: LÝ THUYẾT BÔI TRƠN THỦY ĐỘNG .................................................... 22 2.1. Phương trình Reynolds tổng quát ............................................................................. 22 2.2 Phương trình Reynolds cho ổ đỡ thuỷ động .............................................................. 25 2.2.1 Chiều dày màng dầu ........................................................................................... 25 iii 2.2.2 Phương trình Reynolds ....................................................................................... 27 2.2.3. Hiện tượng xâm thực ......................................................................................... 29 2.2.3.1. Nguyên nhân ............................................................................................... 29 2.2.3.2. Mô hình hóa hiện tượng xâm thực .............................................................. 30 2.2.4 Điều kiện biên Reynolds .................................................................................... 31 2.2.5 Áp dụng điều kiên biên Reynolds cho ổ đỡ thủy động ....................................... 31 2.3. Phương trình cân bằng tải ......................................................................................... 32 2.4. Kết luận ..................................................................................................................... 33 Chương 3: MÔ PHỎNG SỐ BÔI TRƠN Ổ ĐẦU TO THANH TRUYỀN ĐỘNG CƠ 5S-FE ................................................................................................................................... 34 3.1 Mô hình hóa bôi trơn ổ đầu to thanh truyền .............................................................. 34 3.1.1 Bài toán 1 ............................................................................................................ 34 3.1.1.1. Rời rạc miền khai triển ổ ............................................................................ 35 3.1.1.2. Hàm nội suy và hàm trọng số ..................................................................... 35 3.1.1.3. Phép biến đổi tọa độ.................................................................................... 36 3.1.1.4. Tích phân Gauss.......................................................................................... 37 3.1.1.5. Tính các đạo hàm phụ thuộc thời gian ........................................................ 38 3.1.2. Bài toán 2 ........................................................................................................... 39 3.1.3 Giải hệ phương trình cân bằng tải bằng phương pháp lặp Newton-Raphson ..... 40 3.2. Thuật toán ................................................................................................................. 41 3.3 Ổ đầu to thanh truyền động cơ xăng 5S-FE ............................................................... 44 3.3.1. Thanh truyền động cơ 5S-FE ............................................................................. 44 3.3.2. Đo đường kính trung bình của ổ đầu to thanh truyền của động cơ 5S-FE ........ 46 3.3.2.1 Mục đích ...................................................................................................... 46 3.3.2.2 Giới thiệu thiết bị đo .................................................................................... 46 3.3.2.3 Tiến trình đo................................................................................................. 47 3.3.3 Kết quả thực nghiệm ........................................................................................... 47 3.3.4. Tải tác dụng lên ổ đầu to thanh truyền động cơ 5S-FE ..................................... 49 3.4 Kết quả mô phỏng số ................................................................................................. 50 3.4.1. Áp suât màng dầu .............................................................................................. 50 3.4.2. Chiều dày màng dầu .......................................................................................... 55 3.4.3. Độ lệch tâm trục – bạc ....................................................................................... 56 3.5.Kết luận ...................................................................................................................... 58 iv Chương 4: SO SÁNH KẾT QUẢ CỦA CHƯƠNG TRÌNH MÔ PHỎNG SỐ VỚI PHẦN MỀM ACCEL ........................................................................................................ 59 4.1. Tính toán số bôi trơn ổ đầu to thanh truyền của động cơ 5S-FE bằng phần mềm tính toán ACCEL .................................................................................................................... 59 4.1.1. Mục đích tính toán ............................................................................................. 59 4.1.2. Tiến trình tính toán ............................................................................................ 59 4.2. So sánh kết quả mô phỏng số và kết quả trên phần mềm ACCEL ........................... 60 4.2.1. Áp suất màng dầu .............................................................................................. 60 4.2.2. Chiều dày màng dầu .......................................................................................... 61 4.2.3. Độ lệch tâm trục – bạc ....................................................................................... 62 4.3. Kết luận ..................................................................................................................... 62 KẾT LUẬN CHUNG VÀ KIẾN NGHỊ ........................................................................... 63 1. Kết luận chung ............................................................................................................. 63 2. Kiến nghị...................................................................................................................... 64 TÀI LIỆU THAM KHẢO ................................................................................................. 66 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ........................... 72 v DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Kí hiệu Diễn giải e Độ lệch tâm của tâm bạc so với tâm trục εx Độ lệch tâm tương đối của tâm bạc so với tâm trục theo phương x εy Độ lệch tâm tương đối của tâm bạc so với tâm trục theo phương y ρ Khối lượng riêng của dầu bôi trơn ρ0 Khối lượng riêng của hỗn hợp bôi trơn dầu – khí µ Độ nhớt động lực học của dầu bôi trơn ω Vận tốc góc của trục khuỷu d khoảng cách từ lỗ dầu đến tâm của trục khuỷu C Khe hở bán kính (mm) D Đường kính của ổ (mm) R Bán kính ổ (mm) L Chiều dài ổ Λ Hệ số xác định chế độ bôi trơn cho ổ Rq Sai lệch hình học trung bình của bề mặt Ra Sai lệch số học trung bình h Chiều dày màng dầu hmin Chiều dày màng dầu nhỏ nhất u, v, w Vận tốc của dầu bôi trơn theo phương x, y, z U1,V1,W1,U2, V2,W2 Vận tốc của bề mặt 1 và bề mặt 2 theo phương x, y, z P Áp suất thủy động của dầu bôi trơn ∆P Sai lệch áp suất Pmax Áp suất thủy động lớn nhất của dầu bôi trơn σ Ứng suất tiếp tuyến của bề mặt W Hàm trọng lượng F Biến trạng thái Fx; Fy Tải trọng tác dụng lên ổ r Chiều dày lớp hỗn hợp bôi trơn dầu - khí Ω Miền khai triển ổ Ω + Điểm màng dầu bắt đầu gián đoạn Ω - Điểm màng dầu bắt đầu hồi phục t Thời gian ∆t Bước thời gian vi J Ma trận Jacobi EHD Elastohydrodynamic THD ThermoHydrodynamic TEHD Thermo ElastoHydroDynamic vii DANH MỤC HÌNH VẼ Hình 1.1 Các bộ phận của thanh truyền ................................................................................. 4 Hình 1.2 Một số hư hỏng thường gặp của ổ đầu to thanh truyền .......................................... 5 Hình 1.3 Màng dầu bôi trơn trong ổ đỡ thanh truyền ............................................................ 6 Hình 1.4 Chiều dày màng dầu nhỏ nhất có thể chấp nhận được............................................ 7 Hình 1.5 Lựa chọn ổ theo khe hở bán kính............................................................................ 8 Hình 1.6 Mô hình rời rạc ổ đầu to thanh truyền .................................................................. 12 Hình 1.7 Ứng suất trong thanh truyền chịu tác dụng của lực siết bu-lông ......................... 12 Hình 1.8 Biến dạng của ổ đầu to thanh truyền chịu siết bu-lông ....................................... 13 Hình 1.9 Hình dạng ban đầu của các bạc lót do lực xiết bu lông ....................................... 13 Hình 1.10 Hình dạng của bạc lót trong một chu kỳ của hoạt động ..................................... 13 Hình 1.11 Mô hình ổ đầu to thanh truyền ............................................................................ 14 Hình 1.12 Sự dịch chuyển của bạc lót trong ổ đầu to thanh truyền ..................................... 15 Hình 1.13 (a) Tiếp xúc tròn xoay và (b) Mô hình ổ đầu to thanh truyền............................. 15 Hình 1.14 Thanh truyền và hệ thống đo đặc tính bôi trơn ô đầu to ..................................... 16 Hình 1.15 Băng thử để khảo sát bôi trơn ổ đầu đo thanh truyền ......................................... 17 Hình 1.16 Sơ đồ lực tác dụng lên ổ đầu to thanh truyền...................................................... 17 Hình 1.17 Ứng suất trong thanh truyền .............................................................................. 18 Hình 1.18 Trượt tương đối của bạc lót trong ổ ................................................................... 18 Hình 1.20 Thiết bị thực nghiệm ........................................................................................... 19 Hình 1.19 Thiết bị nghiên cứu bôi trơn ổ đầu to thanh truyền của Pierre-Eugene .............. 19 Hình 2.1 Hệ tọa độ ............................................................................................................... 23 Hình 2.2 Mặt cắt ổ đỡ .......................................................................................................... 26 Hình 2.3 Hệ tọa độ xác định chiều dày màng dầu ............................................................... 27 Hình 2.4 Miền khai triển ổ ................................................................................................... 28 Hình 2.5 Hiện tượng xâm thực màng dầu xảy ra trên 1 ổ đỡ .............................................. 29 Hình 2.6 Vùng khai triển màng dầu ..................................................................................... 30 Hình 2.7 Phân bố áp suất trong tiết diện giữa ổ theo phương dọc trục................................ 32 Hình 2.8 Sơ đồ cân bằng lực tác dụng lên thanh truyền ...................................................... 32 Hình 3.1 Rời rạc miền khai triển ổ ...................................................................................... 35 Hình 3.2 Phép biến đổi hệ tọa độ ......................................................................................... 36 Hình 3.3 Các điểm Gauss .................................................................................................... 37 Hình 3.4 Lưu đồ thuật toán chương trình chính .................................................................. 42 Hình 3.5 Lưu đồ thuật toán chương trình xử lý dữ liệu đầu vào ......................................... 43 viii Hình 3.6 Lưu đồ thuật toán chương trình giải bài toán 1..................................................... 43 Hình 3.7 Lưu đồ thuật toán chương trình giải bài toán 2..................................................... 44 Hình 3.8 Thanh truyền động cơ 5S-FE ................................................................................ 45 Hình 3.9 Hình ảnh tổng thể máy TALYRON 365 ............................................................... 46 Hình 3.10 Hình ảnh chụp màn hình phần mềm đang làm việc ............................................ 46 Hình 3.11 Ổ đỡ, trục mẫu đi kèm theo máy Talyron 365 .................................................... 47 Hình 3.12 Đo đường kính ổ đầu to thanh truyền ................................................................. 47 Hình 3.13 Kết quả đo đường kính ổ đầu to thanh truyền 25Nm+300 .................................. 48 Hình 3.14 Kết quả đo đường kính ổ đầu to thanh truyền 25Nm+300 tại một tiết diện ........ 48 Hình 3.15 Trung tâm điều khiển băng thử MEGAPASCALE ............................................ 49 Hình 3.16 Tải tác dụng lên ổ đầu to thanh truyền động cơ 5S-FE ...................................... 49 Hình 3.17 Chia lưới ổ đầu to thanh truyền .......................................................................... 50 Hình 3.18 Phân bố áp suất theo phương chu vi tại 3700 của trục khuỷu khi khe hở bán kính C = 24µm ............................................................................................................................. 50 Hình 3.19 Phân bố áp suất theo phương chiều dài tại 3700 của trục khuỷu khi khe hở bán kính C = 24µm ..................................................................................................................... 51 Hình 3.20 Phân bố áp suất tại góc 3700 của trục khuỷu khi khe hở bán kính C = 24µm .... 51 Hình 3.21 Phân bố áp suất tại tiết diện giữa ổ theo phương chu vi tại các góc 200, 3200, 3500, 3700 của trục khuỷu khi khe hở bán kính C = 24µm .................................................. 52 Hình 3.22 Vị trí mòn trên nửa bạc lót dưới do hiện tượng xâm thực ................................. 52 Hình 3.23 Phân bố áp suất tại góc 200 của trục khuỷu khi khe hở bán kính C = 24µm ...... 53 Hình 3.24 Phân bố áp suất tại góc 7000 của trục khuỷu khi khe hở bán kính C = 24µm .... 53 Hình 3.25 Phân bố áp suất tại góc 3200 của trục khuỷu khi khe hở bán kính C = 24µm ... 54 Hình 3.26 Phân bố áp suất tại tiết diện giữa ổ theo phương chu vi tại góc 3700 của trục khuỷu với C = 24µm, C = 38µm, C = 55µm, C = 69µm ..................................................... 54 Hình 3.27 Áp suất màng dầu lớn nhất khi C = 24µm, C = 38µm, C = 55µm, C = 69µm .. 55 Hình 3.28 Chiều dầy màng dầu nhỏ nhất hmin, áp suất màng dầu lớn nhất pmax theo góc quay của trục khuỷu với C = 24µm ..................................................................................... 56 Hình 3.29 Độ lệch tâm tương đối của thanh truyền và trục khi khe hở bán kính C = 24µm ............................................................................................................................................. 57 Hình 3.30 Độ lệch tâm tương đối của thanh truyền và trục khi thay đổi khe hở bán kính .. 57 Hình 4.1 Giao diện màn hình tính toán của phần mềm ACCEL ......................................... 59 Hình 4.2 Áp suất lớn nhất pmax theo góc quay của trục khuỷu ............................................ 60 Hình 4.3 Chiều dày màng dầu nhỏ nhất hmin theo góc quay của trục khuỷu ....................... 61 Hình 4.4 So sánh độ lệch tâm tương đối khi tính toán và khi tính bằng ACCEL ở khe hở bán kính C=24µm ................................................................................................................ 62 ix DANH MỤC BẢNG BIỂU Bảng 2.1 Thông số ổ đỡ ....................................................................................................... 31 Bảng 3.1 Tọa độ và trọng số của các điểm Gauss ............................................................... 38 Bảng 3.2 Thành phần và các tính chất cơ lý của hợp kim chịu mòn ................................... 45 Bảng 3.3 Đường kính ổ đầu to thanh truyền theo siết bu-lông thanh truyền ....................... 49 Bảng 4.1 Sai lệch áp suất lớn nhất pmax từ kết quả mô phỏng và từ phần mềm ACCEL .... 60 Bảng 4.2 Sai lệch chiều dày màng dầu nhỏ nhất hmin từ kết quả mô phỏng và từ phần mềm ACCEL ................................................................................................................................ 61 x MỞ ĐẦU 1. Lý do chọn đề tài Thanh truyền là một trong các bộ phận quan trọng của động cơ, trong đó đầu to thanh truyền (ổ đầu to thanh truyền: được tạo bởi thân thanh truyền, nắp thanh truyền và trục khuỷu) làm việc trong điều kiện khắc nghiệt (tải trọng lớn và thay đổi liên tục, vận tốc lớn, nhiệt độ cao, …). Do vậy các nghiên cứu theo hướng giảm ma sát, mài mòn và bôi trơn ổ đầu to thanh truyền trên thế giới đã có những kết quả đáng kể và ngày càng được hoàn thiện. Tuy nhiên tại Việt Nam vấn đề này chưa được quan tâm đúng mức. Việc tính toán các đặc tính bôi trơn ổ đầu to thanh truyền là rất phức tạp vì phải giải quyết đồng thời phương trình Reynolds (là phương trình vi phân cấp 2 đạo hàm riêng) và phương trình cân bằng tải. Hơn nữa trong quá trình làm việc, ổ đầu to thanh truyền phải chịu tác dụng đồng thời của các lực khí thể, lực quán tính, nhiệt độ cao, biến dạng đàn hồi, hiện tượng xâm thực trong màng dầu. Khi chế độ bôi trơn ổ đầu to thanh truyền không đảm bảo dẫn đến các dạng hư hỏng rất nguy hiểm như mòn, dính bạc lót gây kẹt cứng thanh truyền phá hủy động cơ. Kết cấu của ổ đầu to thanh truyền đảm bảo cho ổ làm việc ở chế độ bôi trơn thủy động với các hiệu ứng như đàn hồi (thủy động đàn hồi) hoặc hiệu ứng nhiệt (nhiệt thủy động đàn hồi) tùy thuộc vào tải trọng tác dụng và tốc độ của trục khuỷu. Để xây dựng một chương trình tính toán mô phỏng với đầy đủ các yếu tố trong chế độ bôi trơn như trên, mà ở Việt Nam ta chưa có nghiên cứu mô phỏng số về bôi trơn ổ đầu to thanh truyền. Do đó NCS bắt đầu nghiên cứu ổ ở chế độ bôi trơn thủy động. Các nghiên cứu tiếp theo sẽ tính tới các hiệu ứng đàn hồi, hiệu ứng nhiệt, hiệu ứng quán tính...Điều này là phù hợp với sự phát triển của các nghiên cứu về vấn đề này trên thế giới. Để góp phần trong việc làm chủ được các nghiên cứu về vấn đề bôi trơn ổ đầu to thanh truyền tại Việt Nam, trước hết cần phải làm chủ được các tính toán bôi trơn ổ đầu to thanh truyền ở chế độ bôi trơn thủy động. Đó là các lý do dẫn tới luận án chọn hướng nghiên cứu “Nghiên cứu mô phỏng số bôi trơn thủy động ổ đầu to thanh truyền của động đốt trong”. Nhằm góp phần từng bước làm chủ các nghiên cứu về bôi trơn ổ đầu to thanh truyền tại Việt Nam. Qua đó đưa ra các lưu ý khi bảo trì, bảo dưỡng, lắp ráp ổ đầu to thanh truyền động cơ đối với các doanh nghiệp sửa chữa, lắp ráp động cơ đốt trong nói chung, ô tô nói riêng tại Việt Nam. 2. Mục tiêu nghiên cứu - Mô phỏng số các đặc tính bôi trơn của ổ đầu to thanh truyền (phân bố áp suất, chiều dày màng dầu và độ lệch tâm của tâm bạc và tâm trục) ở chế độ bôi trơn thủy động với điều kiện biên Reynolds có tính đến hiện tượng gián đoạn màng dầu trong một chu kỳ làm việc của động cơ đốt trong ở một chế độ làm việc phù hợp. 1 - Xác định sự thay đổi đường kính ổ đầu to thanh truyền động cơ 5S-FE khi thay đổi lực siết bu-lông thanh truyền từ 25Nm đến 25Nm+900. - Xác định đặc tính bôi trơn ổ đầu to thanh truyền trên phần mềm thương mại ACCEL của cộng hòa Pháp ở các lực siết bu-lông thanh truyền khác nhau. 3. Đối tượng và phạm vi nghiên cứu - Ổ đầu to thanh truyền của động cơ 5S-FE lắp trên xe ô tô Toyota Camry 2.5. - Việc nghiên cứu được giới hạn ở các chế độ làm việc ổn định của động cơ (30% tải, n = 3000 vòng/phút). - Giả thiết động cơ được bôi trơn ở chế độ bôi trơn thủy động có tính đến hiện tượng gián đoạn màng dầu. 4. Phương pháp nghiên cứu - Tổng kết các nghiên cứu đã có liên quan đến bôi trơn ổ đầu to thanh truyền. - Xây dựng bài toán, mô hình hóa hệ trục bạc của ổ đầu to thanh truyền; Giải phương trình Reynolds ở chế độ bôi trơn thủy động có tính tới hiện tượng gián đoạn màng dầu. - Đo đường kính trung bình của ổ đầu to thanh truyền của động cơ 5S-FE ở các lực siết bu-lông thanh truyền khác nhau. - Tính toán mô phỏng các đặc tính bôi trơn ổ đầu to thanh truyền của động cơ 5SFE trên phần mềm ACCEL - So sánh kết quả thu được của chương trình mô phỏng số của luận án với kết quả mô phỏng thu được từ phần mềm ACCEL. 5. Nội dung nghiên cứu - Tổng kết các nghiên cứu đã có liên quan đến bôi trơn ổ đầu to thanh truyền. - Xây dựng bài toán, mô hình hóa hệ trục bạc của ổ đầu to thanh truyền; Giải phương trình Reynolds ở chế độ bôi trơn thủy động có tính tới hiện tượng gián đoạn màng dầu. - Đo đường kính trung bình của ổ đầu to thanh truyền của động cơ 5S-FE ở các lực siết bu lông thanh truyền khác nhau. - Nghiên cứu sử dụng phần mềm ACCEL để tính toán mô phỏng các đặc tính bôi trơn ổ đầu to thanh truyền của động cơ 5S-FE. - So sánh kết quả thu được của chương trình mô phỏng số của luận án với kết quả mô phỏng thu được từ phần mềm ACCEL. 6. Ý nghĩa khoa học của đề tài - Các tính toán mô phỏng số bôi trơn thủy động ổ đầu to thanh truyền động cơ đốt trong góp phần giải quyết bài toán bôi trơn ổ đầu to thanh truyền của động cơ tương ứng với tải tác dụng theo chu kỳ làm việc. Góp phần từng bước làm chủ nghiên cứu bôi trơn ổ 2 đầu to thanh truyền tại Việt Nam. - Là cơ sở khoa học cho các nghiên cứu tiếp theo về bôi trơn cho ổ đầu to thanh truyền của động cơ đốt trong tại Việt Nam. 7. Ý nghĩa thực tiễn của đề tài - Xây dựng được phần mềm tính toán mô phỏng bôi trơn thủy động cho ổ đầu to thanh truyền động cơ đốt trong. Ứng dụng phần mềm để tính toán mô phỏng áp suất, chiều dày màng dầu bôi trơn và quỹ đạo tâm trục ổ đầu to thanh truyền động cơ 5S-FE theo chu kỳ làm việc. - Đưa ra khuyến cáo với các cơ sở bảo dưỡng, sửa chữa ô tô về lực siết bu lông thanh truyền phù hợp khi thay thế, sửa chữa, bảo dưỡng ổ đầu to thanh truyền để đảm bảo ổ làm việc ở chế độ bôi trơn tốt nhất. 8. Các kết quả mới - Xây dựng được chương trình tính toán các đặc tính bôi trơn (trường áp suất, chiều dày màng dầu và quỹ đạo tâm trục) ổ đầu to thanh truyền động cơ đốt trong với điều kiện biên Reynolds và có xét tới sự gián đoạn của màng dầu. Góp phần làm chủ việc nghiên cứu trong nước về vấn đề bôi trơn ổ đầu to thanh truyền động cơ, tiến tới phục vụ ngành công nghiệp bảo dưỡng, sửa chữa, chế tạo phụ tùng và công nghiệp sản xuất ô tô nội địa. - Đưa ra ảnh hưởng của lực siết bu lông thanh truyền tới đặc tính bôi trơn ổ đầu to thanh truyền động cơ 5S-FE từ đó đưa ra khuyến cáo với cơ sở bảo dưỡng, sửa chữa ô tô về lực siết bu-lông thanh truyền phù hợp khi thực hiện bảo dưỡng, sửa chữa, lắp ráp cơ cấu trục khuỷu thanh truyền. 3 Chương 1: TỔNG QUAN 1.1. Ổ đầu to thanh truyền 1.1.1. Khái niệm Liên kết trục khuỷu - thanh truyền, còn được gọi là "ổ đầu to thanh truyền" là liên kết giữa đầu to thanh truyền và trục khuỷu. Ổ đầu to thanh truyền là bộ phận quan trọng, có ảnh hưởng rất lớn đến độ tin cậy và tuổi thọ của động cơ. Đã có nhiều nghiên cứu thực nghiệm và lý thuyết về liên kết này, giúp tối ưu hóa các thông số hình học cũng như vật liệu của các chi tiết tạo thành ổ đầu to thanh truyền, cũng như kiểm soát tốt hơn các chất bôi trơn. Thanh truyền được cấu tạo bởi 6 chi tiết: Thân, nắp, hai bạc lót và 2 bu lông thanh truyền như hình 1.1 a. a) Cấu tạo thanh truyền b) Bạc lót thanh truyền Hình 1.1 Các bộ phận của thanh truyền Các bạc lót thanh truyền (hình 1.1 b) được làm bằng thép mỏng và hợp kim chống mòn là ba bít thiếc hay hợp kim của đồng, thiếc, chì, ăngtimon. Mặt trong của bạc lót có phay rãy để chứa dầu bôi trơn.Vỏ thép của bạc lót có các gờ (ắc gô) để định vị khi lắp ráp nhằm giữ cho bạc không quay, trong đầu to thanh truyền.Đường kính ngoài của vỏ bạc lớn hơn đường kính của đầu to thanh truyền từ 0.03- 0.04mm. 1.1.2. Các Hiện tượng, nguyên nhân hư hỏng - Bạc lót bị mòn rộng, mòn ô van: Do lực tác dụng không đều nhau, do điều kiện bôi trơn kém. Sẽ làm tăng khe hở lắp ghép, giảm áp suất dầu bôi trơn, gây ra va chạm khi động cơ làm việc. - Lớp hợp kim chống ma sát bị cháy, bong tróc, biến dạng dẻo do thiếu dầu bôi trơn, sửa chữa không đúng yêu cầu kỹ thuật. - Bề mặt bạc lót có nhiều vết sước, lõm, rỗ do tạp chất cơ học, hóa học, hiện tượng mỏi gây ra. - Cổ biên bị mòn. 4 Trước khi nghiên cứu, tác giả đã đi khảo sát thực tiễn tại các gara ô tô trên các địa bàn như Hà Nội, Quảng Ninh,…Nhằm xác định các hư hỏng thường gặp của các chi tiết ổ đầu to thanh truyền của các động cơ ô tô hoạt động trong các điều kiện khác nhau. Bên cạnh đó tác giả cũng đã lựa chọn loại động cơ để nghiên cứu mô phỏng số. Hình 1.2 Một số hư hỏng thường gặp của ổ đầu to thanh truyền 1.1.3. Khe hở bán kính Điều kiện thanh truyền chuyển động được trên trục khuỷu, thì đầu to thanh truyền phải tồn tại khe hở bán kính (khe hở dầu) và khe hở dọc. Khe hở bán kính là hiệu số hai kích thước gữa đường kính trong của bạc lót đầu to và đường kính ngoài của trục khuỷu. Khe hở này rất quan trọng, nó rất nhỏ để đảm bảo hình thành được màng dầu trong quá trình động cơ làm việc. Để hiểu rõ về tầm quan trọng của khe hở này. Chúng ta xét hai trường hợp sau đây: 5 Hình 1.3 Màng dầu bôi trơn trong ổ đỡ thanh truyền Xét một trục chuyển động trong ổ đỡ, + Khi trục đứng yên thì trục và ổ tiếp xúc. + Khi trục quay, có một lượng dầu được cung cấp vào ổ để bôi trơn (do bơm dầu cung cấp). Do dầu có độ nhớt nhất định, nên dầu bám vào bề mặt của trục một lớp mỏng, lớp dầu này được trục cuốn xuống phía bên dưới, nó có khuynh hướng chèn gữa trục và ổ. Khi trục quay đạt được một tốc độ nào đó thì nhớt được cuốn xuống khe hở hẹp (giống như hình một cái chêm) nên nó tạo thành một áp suất có khuynh hướng nâng trục đi lên, khi hợp lực do áp suất nâng trục tạo nên lớn hơn tải trọng tác dụng lên trục, thì trục nổi lên. Lúc này trục chuyển động trong ổ thông qua một lớp dầu chèn ở bên dưới. Để hình thành được lớp màng dầu này thì phải đảm bảo đủ 3 điều kiện sau: + Khe hở lắp ghép phải hẹp . + Trục phải chuyển động đạt một tốc độ nhất định, đó là tốc độ chạy Ralenti do nhà chế tạo qui định . + Dầu phải có một độ nhớt nhất định (phải tốt). 1.1.4. Khe hở dọc Là khe hở giữa mép đầu to thanh truyền và má khuỷu, trị số khe hở này rất nhỏ, nó vào khoảng 0,08 – 0,14mm, vừa đủ cho thanh truyền chuyển động. Nếu khe hở lớn thanh truyền dễ bị đưa sang một bên, lúc này đầu nhỏ thanh truyền không nằm giữa trục pít tông, nên pít tông bị lệch làm tăng ma sát và điều kiện bôi trơn trục pít tông kém đi. 1.2. Những vấn đề về công nghệ thiết kế sơ bộ ổ đỡ bôi trơn thủy động 1.2.1. Xác định chiều dày màng dầu [10] Chiều dày màng dầu rất mỏng là nguyên nhân dẫn đến sự tiếp xúc giữa trục và ổ, có thể dẫn tới mòn và phá hủy ổ. Chiều dày màng dầu phải lớn hơn tổng nhấp nhô bề mặt để tạo ra cơ chế bôi trơn thủy động. 6 Hình 1.4 Chiều dày màng dầu nhỏ nhất có thể chấp nhận được Với các điều kiện vận hành thông thường, các giá trị nhỏ nhất của chiều dày màng dầu được tính sơ bộ cho các đường kính trục khác nhau trên hình 1.4. Các giá trị này được thiết lập bởi Martin bằng việc sử dụng các giá trị thô và hệ số an toàn bằng 3 trên tổng độ nhấp nhô bề mặt của trục và bạc. 1.2.2. Chọn ổ theo khe hở [10] Khe hở bán kính là một thông số rất quan trọng. Đối với các điều kiện vận hành cho trước khe hở bán kính lớn sẽ làm tăng rò rỉ và giảm chiều dày chất bôi trơn. Ngược lại, khe hở nhỏ hơn cho thấy ma sát tăng lên, có thể dẫn đến hoàn toàn mất khe hở do thay đổi về sự giãn nở. Các công thức kinh nghiệm được đề xuất. O’Connor đưa ra quan hệ sau: 2C = 7.10-4D+7,6.10-3 (1.1) Các bề mặt được mài: 2C = 3.10-3D+10-1 (1.2) Với các bề mặt gia công thông thường, C và D tương ứng là khe hở bán kính và đường kính của ổ (mm). Khi kể đến tốc độ quay của trục, đường kính được chọn như trên hình 1.5. Theo tiêu chuẩn ISO: dung sai lắp ghép H7/d8 hoặc H7/e8 dùng cho ổ thông thường. Còn đối với ổ phức tạp: - Chế đội tải tĩnh: H7/g6 - Chế độ tải động: H7/h6 Những Quan hệ này được sử dụng kèm theo những chú ý, vì đôi khi dẫn tới những thiết kế không đảm bảo. Chỉ những phân tích về sự thay đổi đặc tính bôi trơn như là chiều dày 7 màng dầu nhỏ nhất, năng lượng tiêu hao hoặc tốc độ dòng chảy mới cho phép chúng ta quyết định chọn khe hở trung bình và dung sai chế tạo một cách tốt nhất. Hình 1.5 Lựa chọn ổ theo khe hở bán kính 1.2.3. Xác định chế độ bôi trơn [53] Dựa vào độ nhám bề mặt ổ, đưa ra hệ số Λ để xác định chế độ bôi trơn cho ổ. Λ= hmin �Rqa +Rqb (1.3) Trong đó: hmin chiều dầy màng dầu nhỏ nhất (µm) R qa sai lệch hình học trung bình của bề mặt a (µm) R qb sai lệch hình học trung bình của bề mặt b (µm) (Giá trị sai lệch hình học trung bình R q lớn hơn sai lệch số học trung bình R a khoảng 1,25 lần) Dựa vào giá trị Λ ta xác định được chế độ bôi trơn hiện tại của cặp ma sát: - Chế độ bôi trơn thủy động: 5 ≤ Λ ≤ 100 - Chế độ bôi trơn thủy động đàn hồi: 3 ≤ Λ ≤ 10 - Chế độ bôi trơn hỗn hợp: 1 ≤ Λ < 3 - Chế độ bôi trơn giới hạn: Λ < 1 1.3. Tổng quan tình hình nghiên cứu Nghiên cứu bôi trơn ổ đầu to thanh truyền của động đốt trong là vấn đề đã được nhiều nhà khoa học trên thế giới quan tâm. Tuy nhiên ở Việt Nam vấn đề nghiên cứu này chưa được quan tâm nghiên cứu nhiều. Để có cái nhìn tổng quan, tiếp theo luận án trình bày về tình hình nghiên cứu trong và ngoài nước về vấn đề nghiên cứu của đề tài. 8 1.3.1. Trên thế giới Từ đầu những năm 1980 đến nay đã có rất nhiều nghiên cứu lý thuyết và thực nghiệm về vấn đề này. Tác giả trình bày bày ngắn gọn những nghiên cứu chính về bôi trơn ổ đầu to thanh truyền bắt đầu từ các nghiên cứu được thực hiện cho điều kiện tĩnh bằng cách đặt giả thiết độ lệch tâm không đổi hoặc tải cố định. Tiếp đó là các nghiên cứu cho ổ chịu tải động. Ổ đầu to thanh truyền của động cơ đốt trong là ổ chịu tải trọng động. Trong trường hợp này tải tác dụng thay đổi theo modul và theo thời gian. Quỹ đạo của trục trong bạc được xác định tại từng thời điểm để nhận được chiều dày màng dầu và trường áp suất thủy động của ổ. 1.3.1.1. Nghiên cứu mô phỏng số bôi trơn ổ đầu to thanh truyền Các nghiên cứu mô phỏng số được tiến hành ở chế độ bôi trơn thủy động hoặc bôi trơn thủy động đàn hồi là sự kết hợp giữa lý thuyết bôi trơn và pháp pháp số như phương pháp phần tử hữu hạn hay phương pháp sai phân hữu hạn. a) Nghiên cứu mô phỏng số bôi trơn ổ chịu tải trọng tĩnh Phương tiện tính cho phép giải bài toán bôi trơn bằng phương pháp số được phát triển từ những năm 60 của thế kỷ trước và cho chúng ta kết quả ngày càng sát thực tế như hiện nay. Năm 1968, Reddy và các cộng sự [52] đã vận dụng lý thuyết của Chung và Visser đưa ra năm 1965 để đưa ra giải pháp sử dụng phương pháp phần tử hữu hạn để giải quyết bài toán bôi trơn. Đây là các tác giả đầu tiên giới thiệu phương pháp phần tử hữu hạn trong các nghiên cứu về bôi trơn. Năm 1972, Nicolas [24] sử dụng phương pháp phần tử hữu hạn để nghiên cứu cho ổ chịu tải trọng bất kỳ. Sau đó Nicolas và J. Frêne đưa ra so sánh kết quả lý thuyết với các kết quả thực nghiệm của nhóm nghiên cứu đã thực hiện. Năm 1973, OH và Huebrer [58] lần đầu tiên tính tới biến dạng của cấu trúc. Các tác giả đã sử dụng phương pháp phần tử hữu hạn để giải phương trình Reynolds với các phương trình đàn hồi, chất lỏng với giả thiết là đẳng nhớt. Tác giả đã biểu diễn lực nút {F} như hàm {σ} bởi ma trận độ cứng [K]. Các lực nút được xác định bằng cách tích phân trường áp suất bỏ qua áp suất âm. Nghiên cứu sử dụng phương pháp Newton-Rapson để xác định và sau đó nghịch đảo ma trận Jacobin [J]. Tuy nhiên phương pháp này có hạn chế vì thời gian tính toán lâu. Hơn nữa sơ đồ lặp cho bài toán phân kỳ nhanh khi biến dạng của bề mặt lớn so với khe hở bán kính. Năm 1979, Fantino, Frêne [17] lần đầu tiên nghiên cứu ổ thanh truyền đàn hồi chịu tải trọng tĩnh. Phương trình Reynolds được giải bằng phương pháp sai phân hữu hạn sử dụng phương pháp lặp Gauss-Seidel. Ổ nghiên cứu có chiều dài hữu hạn. Các kết quả cho thấy áp suất tương ứng với chiều dày màng dầu. 9 Năm 1983, Pierre-Eugene, và các cộng sự [52] đã tiến hành so sánh các kết quả tính toán lý thuyết và các kết quả thực nghiệm trong điều kiện tải tĩnh. Các kết quả tính toán của Fantino rất tương thích với thực nghiệm của Pi cho thanh truyền bằng vật liệu nhựa. Tải tác dụng lên ổ có giá trị tối đa là 10KN b) Nghiên cứu mô phỏng số bôi trơn ổ chịu tải trọng động Năm 1979, Fantino và cộng sự [17] đã công bố nghiên cứu về "Ảnh hưởng của sự biến dạng đàn hồi của ổ đầu to thanh truyền tới màng dầu”. Thanh truyền được coi là một vật rắn và dầu bôi trơn có độ nhớt thay đổi theo áp lực. Để giải phương trình Reynolds, các tác giả sử dụng phương pháp sai phân hữu hạn và phương pháp lặp Gauss-Seidel với hệ số 1,88. Phương pháp phần tử hữu hạn được sử dụng để xác định các biến dạng của ổ. Việc tính toán được thực hiện bằng cách sử dụng phương pháp của Rhode và Li [54]. Kết quả thu được là trường áp lực và chiều dày màng dầu. Năm 1981, cũng chính Fantino [18] đưa ra giải pháp EHD cho ổ của thanh truyền dưới tác dụng của tải trọng động, phương trình Reynols được giải với điều kiện biên của Gumbel. Năm 1983, Fantino và cộng sự [19] đã tính toán quỹ đạo tâm trục trong ổ thanh truyền trong trường hợp chịu tải trọng động. Ổ đầu to thanh truyền được xem là ổ ngắn đàn hồi. Tác giả đã so sánh chiều dày màng dầu và mômen ma sát giữa thanh truyền tuyệt đối cứng và thanh truyền đàn hồi. Năm 1984, Booker và Shu [33] đã đưa ra cách tiếp cận mới cho việc tính toán chế độ bôi trơn thủy động đàn hồi. Các phương pháp tiếp cận dựa trên phương pháp phần tử hữu hạn và áp dụng trực tiếp cho tất cả các hình dạng màng dầu với bất kỳ tải trọng phức tạp nào tác dụng lên bề mặt. Cùng năm, Goenka [42] trình bày một công thức phần tử hữu hạn để phân tích chế độ bôi trơn. Công thức này làm giảm đáng kể thời gian tính toán. Năm 1985, Fantino và Frêne [20] đưa ra so sánh tính toán bôi trơn cho thanh truyền của động cơ xăng và diezel. Tiếp đó, Booker và Labouff [12] công bố một nghiên cứu về ổ cứng và ổ đàn hồi chịu tải trọng động. Năm 1986, Goenka và Oh [43] cũng đề cập đến vấn đề bôi trơn thủy động đàn hồi. Phương pháp của các tác giả dựa trên mô hình của Rohde và Li [54]. Phương pháp Newton-Raphson và hai phương pháp số (phần tử hữu hạn và sai phân hữu hạn) được sử dụng để giải gần đúng phương trình Reynolds. Năm 1988, Mcivor và Fenner [21] đã nghiên cứu và cho thấy rằng việc sử dụng loại phần tử giúp giảm đáng kể thời gian tính toán. Các tác giả đã so sánh hai loại phần tử: phần tử tứ giác với 8 nút và phần tử tam giác với 3 nút. Kết quả tính toán cho thấy, với phần tử 8 nút nhanh hơn. Năm 1992 Fenner và cộng sự đã sử dụng đa giác lưới 8 nút để phân tích màng dầu [57] để nghiên cứu về ổ chịu tải trọng nặng. Sự biến dạng đàn hồi làm 10
- Xem thêm -

Tài liệu liên quan