Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu thiết kế chế tạo nguồn các dòng và bộ ổn định nhiệt độ cho laser bán ...

Tài liệu Nghiên cứu thiết kế chế tạo nguồn các dòng và bộ ổn định nhiệt độ cho laser bán dẫn công suất cao.

.PDF
73
143
141

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ Nguyễn Thị Ngoan NGHIÊN CỨU THIẾT KẾ CHẾ TẠO NGUỒN CẤP DÒNG VÀ BỘ ỔN ĐỊNH NHIỆT ĐỘ CHO LASER BÁN DẪN CÔNG SUẤT CAO LUẬN VĂN THẠC SỸ Hà Nội - 2011 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ Nguyễn Thị Ngoan NGHIÊN CỨU THIẾT KẾ CHẾ TẠO NGUỒN CẤP DÒNG VÀ BỘ ỔN ĐỊNH NHIỆT ĐỘ CHO LASER BÁN DẪN CÔNG SUẤT CAO Ngành: Công nghệ Điện tử - Viễn thông Chuyên ngành: Kỹ thuật Điện tử Mã số: 60 52 70 LUẬN VĂN THẠC SỸ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS VŨ DOÃN MIÊN Hà Nội – 2011 Luận văn thạc sỹ Nguyễn Thị Ngoan Mục lục MỞ ĐẦU ............................................................................................................................... 1 CHƯƠNG 1: LASER BÁN DẪN – MỘT SỐ KHÁI NIỆM CƠ BẢN ................................... 3 1.1 Nguyên lý hoạt động và cấu tạo của laser bán dẫn......................................................... 3 1.2 Một số đặc trưng cơ bản của laser bán dẫn .................................................................. 11 1.2.1. Đặc trưng dòng bơm – công suất quang của laser bán dẫn ................................... 11 1.2.2 Đặc trưng dòng - thế ( I-V) ................................................................................. 12 1.2.3 Đặc trưng phân bố không gian trường xa .............................................................. 13 1.3 Sự phụ thuộc vào nhiệt độ của các đặc trưng laser bán dẫn ......................................... 14 1.3.1 Ảnh hưởng của nhiệt độ tới đặc trưng P-I ............................................................. 14 1.3.2 Ảnh hưởng của nhiệt độ tới hiệu suất quang điện.................................................. 15 CHƯƠNG 2: TÌM HIỂU VỀ NGUỒN CẤP DÒNG VÀ BỘ ỔN ĐỊNH NHIỆT ĐỘ CHO LASER BÁN DẪN CÔNG SUẤT CAO .............................................................................. 17 2.1 Tìm hiểu về nguồn cấp dòng cho laser bán dẫn công suất cao ..................................... 17 2.1.1 Một vài yếu tố ảnh hưởng tới nguồn cấp dòng cho laser bán dẫn .......................... 17 2.1.2 Nguồn xung và nguồn một chiều cấp dòng cho laser bán dẫn. ............................ 19 2.2 Tìm hiểu về bộ điều khiển nhiệt độ cho laser bán dẫn công suất cao ........................... 23 2.2.1 Bộ làm lạnh pin nhiệt điện peltier ......................................................................... 23 2.2.2 Bộ điều khiển nhiệt độ cho pin peltier .................................................................. 26 CHƯƠNG 3: THIẾT KẾ CHẾ TẠO NGUỒN CẤP DÒNG VÀ BỘ ỔN ĐỊNH NHIỆT ĐỘ CHO LASER BÁN DẪN CÔNG SUẤT CAO ..................................................................... 28 3.1 Thiết kế chế tạo nguồn phát xung cấp dòng cho laser bán dẫn công suất cao .............. 28 3.1.1 Yêu cầu của nguồn phát xung cấp dòng cho laser bán dẫn .................................... 28 3.1.2 Mạch nguyên lý và hoạt động của mạch nguồn phát xung .................................... 29 3.2 Thiết kế chế tạo nguồn cấp dòng một chiều cho laser bán dẫn công suất cao ............... 32 3.2.1 Cơ sở thiết kế mạch nguồn cấp dòng một chiều .................................................... 32 3.2.2 Nguyên lý hoạt động của mạch nguồn cấp dòng một chiều .................................. 33 3.2.3 Kiểm tra tính ổn định của nguồn dòng liên tục cấp nguồn cho laser bán dẫn ........ 36 3.3 Thiết kế, chế tạo bộ ổn định nhiệt độ cho laser bán dẫn công suất cao. ....................... 39 3.3.1 Mạch nguyên lý và thiết kế tổng thể của mạch điện điều khiển cấp dòng cho pin Peltier ........................................................................................................................... 39 3.3.2 Nguyên lý hoạt động của mạch điện điều khiển cấp dòng cho pin Peltier .............. 40 3.3.3 Quá trình căn chỉnh chế độ làm việc của hệ ổn định nhiệt độ ................................ 48 Luận văn thạc sỹ Nguyễn Thị Ngoan 3.3.4 Thiết kế chế tạo và lắp ráp bộ đế ổn định nhiệt độ trên cơ sở pin nhiệt điện Peltier và cảm biến nhiệt độ bán dẫn. ....................................................................................... 49 3.3.5 Kết quả khảo sát tính ổn định của bộ ổn định nhiệt độ cho laser bán dẫn. ............ 51 CHƯƠNG 4: NGHIÊN CỨU MỘT SỐ THÔNG SỐ CỦA LASER BÁN DẪN CÔNG SUẤT CAO .................................................................................................................................... 57 4.1 Nghiên cứu đặc trưng công suất quang – dòng bơm (P- I) ........................................... 57 4.2 Nghiên cứu đặc trưng dòng – thế (I-V)................................................................... 60 4.3 Nghiên cứu đặc trưng phân bố trường xa ............................................................... 62 KẾT LUẬN ......................................................................................................................... 66 Các bài báo đã công bố .......................................................... Error! Bookmark not defined. TÀI LIỆU THAM KHẢO .................................................................................................... 67 Luận văn thạc sỹ Nguyễn Thị Ngoan Ký hiệu viết tắt BA Broad Area BH Buried Heterostructure BNC British Naval Connector DBR Distributed Bragg Reflector DFB Distributed FeedBack ESD Electro Static Discharge FB Fabry Perot MOSFET Metal Oxide Semiconductor Field Effect Transistor MQW Multi Quantum Well Laser Light Amplification by Stimulated Emission of Radiation LD Laser Diode LED Light Emitting Diode LiDAR Light Detection And Ranging NTC Negative Temperature Coeficient RF Radio Frequency PWM Pulse Width Modulation QW Quantum Well SQW Single Quantum Well TEC Thermo Electric Cooler TTL Transistor Transitor Logic VCSEL Vertical Cavity Surface Emitting Laser Luận văn thạc sỹ Nguyễn Thị Ngoan 1 MỞ ĐẦU Laser (Light Amplification by Stimulated Emission of Radiation) là thiết bị tạo ra chùm ánh sáng có cường độ mạnh có tính đơn sắc, kết hợp và có tính chuẩn trực cao. Bước sóng (màu sắc) của ánh sáng laser là cực kỳ thuần khiết (đơn sắc) khi được so sánh với những nguồn sáng khác, và tất cả photon (lượng tử) tạo nên chùm laser có mối quan hệ về pha cố định (tính kết hợp). Ánh sáng từ một laser điển hình có tính phân kỳ thấp, có thể đi qua một khoảng cách lớn hoặc có thể được tập trung tới một điểm sáng rất nhỏ với cường độ sáng rất lớn. Do có những tính chất quí báu này, laser được sử dụng rất rộng rãi trong nhiều lĩnh vực của cuộc sống. Nguyên lý hoạt động cơ bản của laser được phát minh bởi Charles Townes và Arthur Schalow từ phòng thí nghiệm Bell Telephone năm 1958, và laser thực tế đầu tiên dựa trên tinh thể ruby hồng được chứng minh năm 1960 bởi Theodor Maiman tại phòng nghiên cứu Hughes. Từ thời điểm đó, có rất nhiều loại laser khác nhau được phát minh, nhưng chỉ có số ít được đưa vào những ứng dụng thực tế trong khoa học, công nghiệp, thương mại, và quân sự. Laser diode bán dẫn được công bố đầu tiên vào năm 1962 bởi Robert Hall. Kể từ đó đến nay, trải qua nhiều giai đoạn phát triển, các tính năng kỹ thuật của laser diode không ngừng được hoàn thiện. Từ chỗ ban đầu là các laser đơn chuyển tiếp có dòng ngưỡng phát laser cao, chỉ hoạt động được ở nhiệt độ thấp và công suất quang lối ra nhỏ (khoảng mW) ở vùng hồng ngoại gần. Đến nay laser bán dẫn dựa trên cơ sở dị chuyển tiếp kép dạng vật liệu khối hay đa giếng lượng tử (MQW) với dòng ngưỡng phát laser thấp (đối với laser công suất thấp), có thể hoạt động được ở nhiệt độ phòng hoặc cao hơn. Với các loại vật liệu bán dẫn khác nhau người ta có thể chế tạo các loại laser bán dẫn với bước sóng phát nằm trong cả dải từ vùng tử ngoại đến hồng ngoại (390 – 2000 nm) có công suất phát từ µW đến hàng chục W cho đơn chíp laser. Laser bán dẫn công suất cao ra đời đem lại nhiều ứng dụng thiết thực trong y tế, công nghiệp, an ninh quốc phòng cũng như trong đời sống hàng ngày. Laser bán dẫn có điện trở động nhỏ, chỉ một sự thay đổi nhỏ trong điện thế đặt vào sẽ có một sự thay đổi rất lớn trong dòng qua laser. Do vậy nguồn nuôi laser thường là nguồn dòng. Nguồn dòng nuôi laser phải cấp dòng ổn định và giảm thiểu tối đa tác động của xung tức thời (transient). Có rất nhiều nguồn dòng thương mại đã được chế tạo với nhiều tính năng được tích hợp nhưng giá thành vẫn còn khá cao. Do đó, trong khuôn khổ đề tài luận văn chúng tôi nghiên cứu thiết kế và chế tạo nguồn cấp dòng cho laser bán dẫn công suất cao phù hợp với mục đích sử dụng và có giá thành thấp phù hợp với điều kiện nghiên cứu trong phòng thí nghiệm cũng như các ứng dụng trong thực tế. Luận văn thạc sỹ Nguyễn Thị Ngoan 2 Bên cạnh đó, yếu tố nhiệt độ ảnh hưởng rất lớn tới hoạt động của laser bán dẫn như tính chất quang điện, tính tin cậy, hiệu suất và thời gian sống của linh kiện. Do đó để đảm bảo ổn định nhiệt độ cho laser hoạt động, chúng tôi đã nghiên cứu thiết kế và chế tạo bộ ổn định nhiệt độ dựa trên cơ chế làm lạnh nhiệt điện sử dụng pin peltier. Cũng như nguồn dòng, trên thế giới có rất nhiều những sản phẩm thương mại của bộ ổn định nhiệt độ cho laser. Nhưng với điều kiện trong nước, một thiết bị ổn định nhiệt độ cho laser bán dẫn công suất cao với giá thành rẻ là rất cần thiết. Trong luận văn này, chúng tôi đã nghiên cứu thiết kế chế tạo nguồn xung, nguồn dòng và bộ ổn định nhiệt độ bằng pin Peltier. Trên cơ sở các thiết bị chế tạo được, chúng tôi khảo sát một vài đặc trưng cơ bản của laser bán dẫn công suất cao phục vụ cho việc nghiên cứu laser bán dẫn cũng như nhằm mục đích ứng dụng laser bán dẫn công suất cao trong thực tế. Luận văn gồm có 4 chương : Chương 1: Trình bày những khái niệm cơ bản về laser bán dẫn và các đặc trưng cơ bản của laser bán dẫn. Chương 2: Tìm hiểu về nguồn phát xung và nguồn cấp dòng một chiều cho laser bán dẫn, cơ chế làm việc của pin lạnh peltier cũng như tìm hiểu về mạch điều khiển nhiệt độ cho pin peltier Chương 3: Trình bày các bước nghiên cứu thiết kế chế tạo nguồn cấp dòng và bộ ổn định nhiệt độ cho laser bán dẫn công suất cao Chương 4: Sử dụng các thiết bị chế tạo được vào một vài hệ thí nghiệm khảo sát một vài đặc trưng cơ bản của laser bán dẫn công suất cao . Luận văn thạc sỹ Nguyễn Thị Ngoan 3 CHƯƠNG 1: LASER BÁN DẪN – MỘT SỐ KHÁI NIỆM CƠ BẢN 1.1 Nguyên lý hoạt động và cấu tạo của laser bán dẫn Trong chất bán dẫn các chuyển mức của điện tử từ các trạng thái năng lượng thấp (E1) trong vùng hóa trị (Ev) lên trạng thái năng lượng cao (E2) trong vùng dẫn (Ec) nằm cách nhau một khoảng bằng năng lượng vùng cấm Eg gọi là sự kích thích. Sau một thời gian tồn tại ở trạng thái năng lượng cao các điện tử quay về trạng thái năng lượng thấp. Chuyển mức của điện tử từ trạng thái năng lượng cao xuống trạng thái năng lượng thấp là quá trình tái hợp của điện tử và lỗ trống, có hai loại tái hợp là tái hợp bức xạ và tái hợp không bức xạ. Tái hợp bức xạ phát ra các photon ánh sáng, tái hợp không bức xạ phát ra các phonon dao động mạng tinh thể. Trong trường hợp chuyển mức của điện tử từ đáy vùng dẫn xuống đỉnh vùng hoá trị, xác xuất chuyển dời bức xạ trong các bán dẫn vùng cấm thẳng cao hơn nhiều so với bán dẫn vùng cấm xiên (khi đáy vùng dẫn và đỉnh vùng hóa trị nằm trên cùng hoặc khác giá trị véc tơ sóng trong không gian véc tơ sóng). Vì vậy, các laser bán dẫn thường được chế tạo trên cơ sở các bán dẫn vùng cấm thẳng loại A3B5 như GaAs, InP,…với độ rộng vùng cấm của bán dẫn ở lớp tích cực của chíp laser ta có các bước sóng phát laser khác nhau. Ánh sáng (hay photon) phát ra trong laser bán dẫn liên quan tới bức xạ bờ vùng nên có bước sóng tuỳ thuộc vào độ rộng vùng cấm của chất bán dẫn, được xác định như sau [1,2,5]: = ℎ ↔ ( )= 1.240 (1.1) ( ) Khi có photon ánh sáng với năng lượng h ≥ Eg chiếu vào chất bán dẫn có thể xảy ra sự hấp thụ. Quá trình hấp thụ xảy ra khi điện tử chuyển từ trạng thái năng lượng thấp trong vùng hóa trị lên trạng thái năng lượng cao trong vùng dẫn. Sau đó, điện tử ở vùng dẫn có thể tái hợp với lỗ trống ở vùng hoá trị sau một thời gian sống nhất định và phát ra photon một cách ngẫu nhiên (có bước sóng, pha và hướng lan truyền khác nhau) gọi là phát xạ tự phát. Phát xạ cưỡng bức là quá trình mà trong đó ánh sáng chiếu tới gây ra sự phát xạ cưỡng bức (hay cảm ứng) của điện tử ở trạng thái kích thích. Ánh sáng phát ra có cùng bước sóng, pha, phân cực và hướng lan truyền với ánh sáng chiếu tới. Vì vậy ánh sáng sinh ra bởi phát xạ cưỡng bức có tính đơn sắc, kết hợp và định hướng cao. Trong bức xạ cưỡng bức có hai photon sinh ra: một là photon ánh sáng chiếu tới và một là photon sinh ra do bức xạ cưỡng bức. Hai photon này lại tiếp tục kích thích hay cảm ứng các cặp điện tử khác tái hợp sinh ra bức xạ cưỡng bức với các photon giống như vậy. Quá trình như vậy xảy ra tiếp tục trong môi trường khuếch Luận văn thạc sỹ Nguyễn Thị Ngoan 4 đại, ánh sáng chiếu tới được khuếch đại bởi bức xạ cưỡng bức và ta có sự khuếch đại quang. Trong điều kiện cân bằng nhiệt, số điện tử ở trạng thái năng lượng thấp nhiều hơn số điện tử ở trạng thái năng lượng cao. Vì vậy khi có ánh sáng chiếu tới chỉ có sự hấp thụ xảy ra. Để có được sự khuếch đại quang ta cần phải làm cho số điện tử ở trạng thái năng lượng cao nhiều hơn số điện tử ở trạng thái năng lượng thấp. Điều kiện này gọi là sự đảo mật độ tích lũy. Điều kiện đảo mật độ tích lũy hạt tải là − > − > với à là mức Fecmi của điện tử trong vùng dẫn và lỗ trống trong vùng hóa trị tương ứng. Sự đảo mật độ tích lũy trong các chất bán dẫn xảy ra ở vùng lân cận bờ vùng đạt được nhờ kích thích các điện tử bằng bơm quang hay tiêm dòng điện, khi đó có nhiều điện tử ở đáy vùng dẫn và nhiều lỗ trống ở đỉnh vùng hoá trị. Các bộ dao động laser sử dụng một phần phát xạ tự phát làm ánh sáng chiếu tới và khuếch đại ánh sáng này nhờ phát xạ cưỡng bức. Hệ số khuếch đại công suất quang g trên một đơn vị độ dài được định nghĩa [1,2] : = (1.2) Hình 1.1: Độ khuếch đại quang phụ thuộc vào năng lượng photon được tính cho các mật độ hạt tải khác nhau tiêm vào lớp tích cực InGaAsP 1,3 m. với I là cường độ ánh sáng trên một đơn vị diện tích. Người ta có thể tính toán g với lưu ý là g tỉ lệ với hiệu giữa tốc độ tái hợp bức xạ cưỡng bức và tốc độ hấp thụ giữa hai mức năng lượng E1 và E2. Cường độ ánh sáng bức xạ do chuyển mức quang học Luận văn thạc sỹ Nguyễn Thị Ngoan 5 giữa mức kích thích E2 và mức cơ bản E1 được định nghĩa là = ( ), với  là tốc độ nhóm, pht(E21) là mật độ photon và E21 = E2 - E1= h là năng lượng photon. Khi có ánh sáng chiếu tới vật liệu vùng tích cực, cả hai quá trình bức xạ cưỡng bức và hấp thụ có thể xảy ra đồng thời nên tốc độ tái hợp bức xạ cưỡng bức thực sẽ là hiệu của tốc độ tái hợp bức xạ cưỡng bức và tốc độ hấp thụ. Trên cơ sở tính toán tốc độ hấp thụ R12,abs, tốc độ tái hợp bức xạ cưỡng bức R21,stim giữa hai mức năng lượng E1 và E2 trong chất bán dẫn ta có sự phụ thuộc của hệ số khuếch đại quang g vào tốc độ tái hợp bức xạ cưỡng bức thực ( = − ) [1,2,5]: , , = ( ) (1.3) Nghĩa là tốc độ tái hợp bức xạ cưỡng bức thực càng lớn ta có hệ số khuếch đại quang càng lớn. So sánh với lý thuyết bức xạ của vật đen tuyệt đối (các hệ số Einstein) kết hợp sử dụng thuyết nhiễu loạn phụ thuộc vào thời gian trong cơ lượng tử có thể tính hệ số khuếch đại công suất quang g phụ thuộc vào năng lượng photon h nghĩa là phụ thuộc vào bước sóng khuếch đại được chọn và mật độ hạt tải tiêm vào. Việc tính toán cũng như biểu thức g(h) nhận được nói chung là phức tạp. Hình 1.1 là sự phụ thuộc của hệ số khuếch đại g vào năng lượng photon h cho các mật độ hạt tải tiêm vào khác nhau được tính toán cho vùng tích cực InGaAsP 1,3 m [2]. Khi mật độ hạt tải bơm vào yếu (1x1018 cm3), g < 0, chưa xảy ra sự đảo mật độ tích lũy hạt tải và chưa có sự khuếch đại. Khi mật độ hạt tải bơm vào tăng lên, g có giá trị dương, đường cong khuếch đại mở rộng, tăng lên về biên độ và đỉnh phổ khuếch đại dịch về phía năng lượng cao (bước sóng ngắn hơn). Khi tăng mật độ hạt tải bơm vào sự bắt đầu xuất hiện của độ khuếch đại dịch về phía năng lượng photon thấp hơn do sự giảm năng lượng vùng cấm Eg khi mật độ hạt tải tăng. Nửa âm của trục tung tương ứng với hệ số hấp thụ vì hệ số hấp thụ công suất quang α(h) và hệ số khuếch đại công suất quang g(h) được liên hệ với nhau như sau: α(h)= - g(h). Ta cũng thấy trên hình 1.1 hệ số khuếch đại quang tăng nhanh trong chất bán dẫn một khi sự đảo mật độ tích lũy hạt tải được thực hiện. Vì có độ khuếch đại quang cao như vậy nên các laser bán dẫn có thể được chế tạo với kích thước vật lý rất ngắn (dưới 1 mm). Contour khuếch đại như trên hình 1.1sẽ liên quan đến vùng xuất hiện các mode sóng dọc trong bức xạ cưỡng bức của laser bán dẫn loại buồng cộng hưởng Fabry-Perot hay nói cách khác, các mode sóng dọc (phụ thuộc vào bước sóng) phát ra sẽ nằm trong vùng của contour khuếch đại. Tuy nhiên, trong môi trường khuếch đại cũng xảy ra sự mất mát quang do sự hấp thụ trên bề mặt, hấp thụ trên các tâm tạp, hấp thụ bởi các hạt tải tự do như tái hợp Auger, v.v…. Khi sự khuếch đại quang bù trừ được các mất mát quang mới xảy ra dao động laser. Vì vậy, nếu chỉ có khuếch đại quang sẽ chưa đủ cho hoạt động laser mà phải có thêm một điều kiện cần thiết khác là phản hồi quang, điều này sẽ làm bộ Luận văn thạc sỹ Nguyễn Thị Ngoan 6 khuếch đại trở thành bộ dao động. Nghĩa là để có được dao động laser (hay bộ dao động quang với tần số dao động rất cao, f ~ 1014-15 Hz) độ khuếch đại quang cần phải bằng độ mất mát quang trong vùng tích cực. Sự phản hồi quang được thực hiện bằng cách đặt môi trường khuếch đại giữa các gương phản xạ tạo thành buồng cộng hưởng quang hay còn gọi là buồng cộng hưởng Fabry-Perot (FP). Trong trường hợp laser bán dẫn, các gương phản xạ ngoại là không cần thiết vì các bề mặt bổ tinh thể laser có tác dụng như các gương phản xạ với độ phản xạ [1,2,5]: =( −1 ) (1.4) +1 với n là chiết suất của môi trường khuếch đại. Thông thường, n = 3,5 cho các chất bán dẫn vùng cấm hẹp dẫn tới độ khuếch đại R ~ 30%. Trong các laser đơn tần (phản hồi phân bố DFB hay phản hồi phản xạ Bragg DBR) phản hồi quang được thực hiện bởi cách tử trên cơ sở thay đổi tuần hoàn chiết suất ở gần vùng tích cực. Khái niệm ngưỡng phát laser có thể hiểu là một phần các photon sinh ra bởi bức xạ cưỡng bức sẽ bị mất đi do sự mất mát trong buồng cộng hưởng và cần phải được bổ sung liên tục. Nếu độ khuếch đại quang không đủ lớn để bù trừ được sự mất mát trong buồng cộng hưởng sẽ không tạo ra được được mật độ photon cần thiết. Như vậy, một giá trị độ khuếch đại tối thiểu là cần thiết cho hoạt động laser, giá trị này thực hiện được chỉ khi laser được bơm trên mức ngưỡng. Dòng điện bơm cần thiết để đạt được ngưỡng gọi là dòng ngưỡng phát laser. Nói chung, dòng ngưỡng phát laser cũng gần với dòng ngưỡng để đạt được sự đảo mật độ trạng thái. Sự cân bằng giữa độ khuếch đại và độ mất mát đựơc biểu diễn như sau [1,2,5]: g   int   mir   int  1  1  ln   2 L  R1 R2  (1.5) Vế bên phải bao gồm mất mát nội int với các cơ chế đã nói ở trên, trong đó vai trò chính là mất mát do hấp thụ hạt tải tự do,và mất mát do gương laser mir với R1, R2 là độ phản xạ của hai mặt gương, L là độ dài buồng cộng hưởng (độ dài chíp laser giữa hai mặt gương). Như trên đã nói, laser bán dẫn có thể được bơm cả bằng quang và tiêm (hay bơm) bằng dòng điện. Tuy nhiên, hiệu suất bơm quang thấp và thường khó thực hiện nên hiện nay các laser bán dẫn thương mại đều được bơm bằng điện và có cấu trúc trên cơ sở chuyển tiếp p-n. Để tạo ra được bán dẫn loại n hay loại p người ta thực hiện pha tạp với các tạp chất phù hợp. Trong trường hợp bán dẫn loại n mật độ điện tử trong chất bán dẫn lớn hơn mật độ lỗ trống và ngược lại cho bán dẫn loại p (nếu không có pha tạp thì bán dẫn đó được coi là sạch và thường được gọi là bán dẫn thuần). Mức Fermi sẽ dịch chuyển đến vùng dẫn khi mà nồng độ pha tạp tăng. Đối với bán dẫn thuần (không pha tạp) thì mức Fermi sẽ nằm ở giữa vùng cấm. Nếu trường hợp pha tạp Luận văn thạc sỹ Nguyễn Thị Ngoan 7 rất mạnh bán dẫn loại n thì mức Fermi cho điện tử Efc sẽ nằm sâu trong vùng dẫn (Efc > Ec). Trong trường hợp như vậy người ta có bán dẫn suy biến loại n. Tương tự đối với mức Fermi cho lỗ trống Efv bị dịch chuyển vào vùng hoá trị đối với bán dẫn loại p và mức Fermi sẽ nằm sâu trong vùng đó khi pha tạp mạnh. Trong điều kiện cân bằng nhiệt thì mức Fermi phải là một đường thẳng liên tục xuyên qua chuyển tiếp p-n. Để dễ dàng đạt được trạng thái đảo mật độ tích lũy khi tiêm dòng vào laser bán dẫn hay nói cách khác, để có được dòng ngưỡng phát laser thấp, người ta thường pha tạp mạnh để có được bán dẫn suy biến trong vùng chuyển tiếp p-n của các laser bán dẫn. Khi chuyển tiếp p-n được phân cực thuận bằng một điện thế bên ngoài hàng rào thế năng của chuyển tiếp sẽ giảm đi. Sự giảm này dẫn tới sự khuếch tán của các điện tử và lỗ trống qua lớp chuyển tiếp. Trong các chuyển tiếp p-n đơn hay chuyển tiếp đồng nhất (vật liệu bán dẫn nằm ở hai phía của chuyển tiếp đều là như nhau) sự tái hợp của điện tử và lỗ trống xảy ra trên cả một vùng tương đối rộng (~1 10 m) được xác định bởi độ dài khuếch tán của điện tử và lỗ trống và các hạt tải không được giam giữ ở vùng lân cận ngay sát Hình 1.2 : Sơ đồ năng lượng của cấu chuyển tiếp nên rất khó đạt được mật độ trúc dị thể kép : a) Trong trạng thái cân hạt tải cao. Vấn đề về giam giữ hạt tải này băng nhiệt ; b) Khi phân cực thuận. có thể giải quyết bằng cách đưa vào một lớp mỏng nằm kẹp giữa các lớp loại n và loại p với điều kiện độ rộng vùng cấm của lớp này phải nhỏ hơn so với các lớp loại n và p xung quanh. Lớp ở giữa này có thể có pha tạp và cũng có thể không cần pha tạp, tuỳ phụ thuộc vào thiết kế của linh kiện. Vai trò của lớp này là nhằm giam giữ ở bên trong nó những hạt tải được tiêm vào dưới tác dụng của thiên áp thuận. Sự giam giữ hạt tải xảy ra là kết quả của sự gián đoạn trong độ rộng vùng cấm ở vùng chuyển tiếp giữa hai bán dẫn có cùng cấu trúc tinh thể (cùng hằng số mạng) nhưng khác nhau về độ rộng vùng cấm. Chuyển tiếp như vậy gọi là chuyển tiếp dị thể và các linh kiện dựa trên cơ sở đó có cấu trúc dị thể kép. Do độ dầy của lớp kẹp ở giữa có thể điều chỉnh được (thông thường ~ 0,1-1 m) nên mật độ hạt tải cao có thể thực hiện được tại một dòng tiêm (hay bơm) nào đó. Hình 1.2 cho thấy giản đồ năng lượng của cấu trúc dị thể kép khi không có và có thiên áp thuận. Luận văn thạc sỹ Nguyễn Thị Ngoan 8 Sử dụng cấu trúc chuyển tiếp p-n dị thể kép cho các nguồn sáng bán dẫn sẽ có hai lợi ích. Như đã nói tới ở trên, sự khác nhau về độ rộng độ rộng vùng cấm giữa hai chất bán dẫn giúp cho việc giam giữ các hạt tải trong lớp nằm giữa các lớp p và n. Lớp ở giữa này còn được gọi là lớp tích cực vì ánh sáng sinh ra ở đó là do kết quả của sự tái hợp của điện tử và lỗ trống. Do có độ rộng vùng cấm nhỏ hơn nên lớp tích cực cũng có chiết suất lớn hơn một ít so với các lớp loại p và n xung quanh. Sự khác nhau về chiết suất này làm cho lớp tích cực hoạt động như dẫn sóng điên môi và số mốt sóng quang (mốt ngang hay mốt không gian) trong đó có thể kiểm soát được bằng cách điều chỉnh độ dày lớp tích cực. Như vậy, cấu trúc dị thể giam giữ được các photon ánh sáng phát ra trong lớp tích cực do tính chất dẫn sóng điện môi này. Hình 1.3: Sơ đồ cấu tạo (a), giản đồ năng Hình 1.3 trình bày giản đồ lượng (b), phân bố chiết suất (c) và ánh sáng năng lượng, phân bố chiết suất và (d) của LD dị chuyển tiếp kép AlGaAs/GaAs cường độ ánh sáng trong laser cấu trúc dị chuyển tiếp kép AlGaAs/GaAs khi phân cực thuận. Ở đây điện tử được tiêm vào vùng tích cực từ phía bán dẫn loại n và lỗ trống được tiêm vào từ phía bán dẫn loại p. Tại vùng tích cực, hạt tải được giam giữ nhờ các rào thế của chuyển tiếp do độ rộng vùng cấm của lớp tích cực GaAs (Eg  1,42 eV) nhỏ hơn độ rộng vùng cấm của các lớp vỏ AlGaAs (Eg  2 eV). Để dễ đạt được điều kiện đảo mật độ tích lũy hạt tải, các lớp vỏ loại p và loại n ở hai phía lớp tích cực trong cấu trúc laser bán dẫn được pha tạp mạnh và trở thành bán dẫn suy biến. Lớp tích cực mỏng nằm kẹp giữa các lớp vỏ thường không pha tạp để tránh sự mất mát quang trên các tâm tạp làm giảm hiệu suất phát quang, tuy nhiên cho các mục đích đặc biệt, khi cần có thời gian sống của hạt tải nhỏ để tăng tốc độ hoạt động của laser người ta có thể pha tạp ở lớp này. Lớp tích cực có thể có chiết suất cao hơn các lớp xung quanh từ vài phần nghìn tới vài phần trăm nên ánh sáng laser được giam giữ trong vùng tích cực, tuy nhiên, một phần ánh sáng nằm trong các lớp vỏ. Luận văn thạc sỹ Nguyễn Thị Ngoan 9 Cấu tạo điển hình của một linh kiện phát quang bán dẫn dị chuyển tiếp kép được thường gồm bốn lớp màng mỏng từ vài phần mười m đến vài m được phủ lên trên đế bán dẫn (substrate) bằng kỹ thuật epitaxi nhằm làm cho sự sai khác về hằng số Cleaved reflecting surface mạng tinh thể giữa các lớp là ít W nhất (dưới 0,1%). Như trên hình 1.4 là cấu trúc điển hình của laser L Stripe electrode Oxide insulator chuyển tiếp dị thể dải (stripe) hình p-GaAs (Contacting layer) p-Al Ga As (Confining layer) học hay điện cực dải. Ta thấy có p-GaAs (Active layer) n-Al Ga As (Confining layer) 2 1 3 Substrate các lớp giam giữ hay lớp đệm Current n-GaAs (Substrate) paths Substrate Electrode (confining layer) loại n và p, lớp Elliptical Cleaved reflecting surface tích cực (active layer) và lớp pha laser Active region where J > J . beam (Emission region) tạp mạnh p+ để tăng tiếp xúc omic Schematic illustration of the the structure of a double heterojunction stripe (contacting layer). Dòng điện tiêm contact laser Hình 1.4:diode Cấu trúc của laser chuyển tiếp dị thể cho laser được giới hạn theo chiều © 1999 S.O. Kasap,Optoelectronics(Prentice Hall) dải hình học ngang bởi dải điện cực kim loại nằm giữa hai dải điện môi cách điện (oxide isolator). Ánh sáng laser phát vì vậy được giới hạn ở vùng nhỏ theo chiều ngang của lớp tích cực. Nếu không có hai dải điện môi này, lớp điện cực kim loại được phủ lên toàn bộ diện tích mặt phía trên của chíp laser và ta có laser diện rộng. Khi đó ánh sáng laser được phát dọc theo toàn bộ chiều ngang cạnh chíp laser và gồm nhiều mốt không gian. x 1-x x 1-x th Các cấu trúc dị thể nhóm III-V được sử dụng làm lớp tích cực và bước sóng bức xạ tương ứng như sau: - InGaP/AlInP (=584 nm) - GaInP/InGaAlP ( = 670 nm) - AlGaAs/GaAs (= 750 - 870 nm) - InGaAs/GaAs (=960 - 980 nm, 1064 nm) - InGaAsP/InGaP(=720 - 810 nm) - InGaAsP/InP (=1100 - 1600 nm) - InGaAlAs /AlGaAs (=810 nm) - InGaAlP / InGaP (=665 nm) Các Laser bán dẫn đang được ứng dụng phổ biến ở vùng nhìn thấy hiện nay thường là loại vật liệu GaxAl1-xAs trên đế GaAs có x thay đổi (0 < x < 0,37) để có các bước sóng phát khác nhau (từ 630 nm đến 850 nm) và InxGa1-xAsyP1-y trên để InP với x và y thay đổi ta có thể có các bước sóng 1310 nm (In0,75Ga0,25As0,5P0,5) và 1550 nm Luận văn thạc sỹ Nguyễn Thị Ngoan 10 (In0,63Ga0,37As0,8P0,2). Ngoài ra còn có các loại laser bán dẫn trên cơ sở các loại vật liệu khác như GaInAlP/GaAs (=0,63÷0,67m), laser siêu mạng có lớp ứng suất InGaAs/GaAs (=0,98 m), InGaN/ GaN (=390÷440 nm). Laser diode vùng hồng ngoại xa (=3÷34 m) trên cơ sở Pb1-XSeX trên đế PbTe và các vật liệu khác đang được nghiên cứu. Các nghiên cứu chế tạo các laser phát ở vùng nhìn thấy với vật liệu không chứa nhôm Al cũng được thực hiện nhằm tránh Al là vật liệu dễ bị oxy hóa nhằm tăng tuổi thọ laser. Có nhiều loại cấu trúc laser diode khác nhau như laser diện rộng, laser dải hình học, laser chuyển tiếp dị thể vùi, laser dạng gò (messa), laser phát mặt v.v. Ngoài việc giam giữ hạt tải theo chiều vuông góc với chuyển tiếp p-n do các rào thế (như trên hình 1.3 b), sự giam giữ hạt tải theo chiều song song với chuyển tiếp p-n cũng rất quan trọng nhằm tăng hiệu suất phát quang của laser bán dẫn như cho laser dải hình học ở trên. Tùy thuộc vào cấu trúc laser sử dụng mà người ta chia ra làm hai loại chính là laser dẫn hướng độ khuếch đại (gain-guided) và laser dẫn hướng chiết suất (indexguided). Trong đó, dẫn sóng cho bức xạ tự phát theo hướng song song với chuyển tiếp p-n được thực hiện bởi độ khuếch đại quang (do sự giam giữ mật độ hạt tải trong một vùng giới hạn như trên hình 1.4) hay do chiết suất của vật liệu ở tâm vùng tích cực cao hơn các vùng xung quanh theo hướng song song với lớp chuyển tiếp. Sự giam giữ ánh sáng trong vùng tích cực theo hướng vuông góc với chuyển tiếp p-n được thực hiện bởi lớp tích cực có chiết suất cao hơn các lớp vỏ như trên hình 1.3. Tuy nhiên, do là dẫn sóng điện môi nên một phần sóng quang lan truyền ra các lớp vỏ ( hình 1.3d) và ta có hệ số nhốt quang a (tỉ lệ giữa phần ánh sáng bên trong lớp tích cực trên toàn bộ ánh sáng lan truyền cả trong lớp tích cực và các lớp vỏ) . Các loại laser dẫn hướng chiết suất (ví dụ loại laser chuyển tiếp dị thể vùi BH, laser gò) thường có dòng ngưỡng phát laser thấp, công suất quang lối ra cao hơn laser dẫn hướng độ khuếch đại (laser dải hình học). Laser giếng lượng tử (QW) là các laser bán dẫn có lớp tích cực với cấu trúc giếng lượng tử, có các laser với giếng lượng tử đơn(SQW) và đa giếng lượng tử (MQW). Các laser giếng lượng tử có nhiều tính chất tuyệt vời như dòng ngưỡng thấp, hiệu suất lượng tử vi phân cao, tốc độ biến điệu cao, chirp thấp và độ bán rộng phổ nhỏ. Cấu trúc tổng thể của laser giếng lượng tử cũng giống như các loại laser bán dẫn khối nói trên, nghĩa là gồm các lớp epitaxi phủ trên đế bán dẫn. Lớp tích cực khác ở chỗ gồm một hay nhiều lớp epitaxi có độ dày vài nm tới ~ 10 nm tạo nên cấu trúc giếng lượng tử. Cấu trúc đơn giếng lượng tử dẫn tới làm giảm hệ số nhốt quang trong vùng tích cực do độ dày lớp tích cực giảm nên dòng ngưỡng phát laser tăng. Để có giá trị a lớn các cấu trúc giếng lượng tử được phát triển. với cấu trúc đa giếng lượng tử MQW, khi đó hệ số nhốt quang a tăng lên do có nhiều lớp giếng lượng tử ở vùng Luận văn thạc sỹ Nguyễn Thị Ngoan 11 giam giữ quang. Vì vậy, đa phần các laser bán dẫn hiện nay được chế tạo là các laser đa giếng lượng tử. Ngoài các laser phát cạnh phổ biến, người ta cũng thiết kế chế tạo các loại laser phát mặt (VCSEL), nghĩa là ánh sáng laser được phát ra từ bề mặt phía trên của chíp laser với cấu trúc khối hay giếng lượng tử. Như đã nhắc tới ở trên, các laser đơn tần DFB, DBR với các cấu trúc cách tử gần vùng tích cực cũng được thiết kế chế tạo. Các laser bán dẫn công suất cao với công suất quang lối ra từ vài trăm mW cho tới vài W cho đơn chip laser có nguyên lý hoạt động tương tự như nêu trên. Tuy nhiên, để có thể hoạt động ở chế độ dòng bơm lớn, mật độ công suất quang lối ra cao, độ dày vùng tích cực thường lớn (~1µm) so với độ dày vùng tích cực rất nhỏ của laser bán dẫn công suất thấp (~0,2 ÷ 0,3 µm). Đồng thời độ rộng vùng phát xạ hay vùng tích cực thường lớn ( ~ 60 ÷ 200 µm). Vì vậy, dòng ngưỡng phát laser cũng như dòng hoạt động của laser bán dẫn công suất cao lớn ( vài trăm mA tới vài A cho đơn chip laser). Các mặt gương của chip laser diode công suất cao có thể được phủ lớp chống phản xạ ở một mặt hoặc cả hai mặt (một mặt có độ phản xạ cao và một mặt có độ phản xạ thấp). Các laser bán dẫn công suất cao có cấu trúc diện rộng BA hoặc cấu trúc dẫn sóng gò hoặc các cấu trúc đặc biệt khác nhằm mục đích tăng công suất quang lối ra hoặc cải thiện chất lượng chùm tia laser. Các laser bán dẫn công suất cao được đặc biệt chú trọng về vấn đề tản nhiệt, thông thường chúng được hàn lên đế tản nhiệt dưới dạng cực dương nối vỏ (p-down) để tản nhiệt tốt hơn. Các yêu cầu về dòng hoạt động cũng như vấn đề tản nhiệt ngặt nghèo hơn nhiều so với laser bán dẫn công suất thấp để đảm bảo độ ổn định hoạt động cũng như tuổi thọ của laser. 1.2 Một số đặc trưng cơ bản của laser bán dẫn 1.2.1. Đặc trưng dòng bơm – công suất quang của laser bán dẫn Đặc trưng công suất quang dòng bơm là đặc trưng quan trọng nhất của laser bán dẫn , đây là đặc trưng phi tuyến và gồm có hai phần: phần biểu thị cho bức xạ tự phát (hay huỳnh quang) ở bên dưới dòng ngưỡng phát laser Ith và phần phát laser khi dòng bơm ở trên ngưỡng phát. Khi tăng dòng bơm đến một giá trị nào đó, mật độ hạt tải bơm vào vùng tích cực của laser đạt đến giá trị ngưỡng nth dẫn tới trạng thái đảo mật độ tích lũy hạt tải và bức xạ laser xảy ra. Luận văn thạc sỹ Vùng P bão hoà P I Ith I Hình 1.5: Đặc trưng công suất quang dòng bơm (P-I) của laser bán dẫn Nguyễn Thị Ngoan 12 Giá trị dòng bơm này là ngưỡng phát laser Ith. Đối với dòng bơm trên ngưỡng phát laser mật độ hạt tải có giá trị không đổi và bằng mật độ hạt tải ngưỡng nth . Từ đặc trưng P-I, người ta có thể xác định hiệu suất độ dốc ∆ ∆ . Nếu dòng ngưỡng phát laser thấp (vài mA), độ dốc đặc trưng lớn và dòng bơm làm laser bị bão hoà cao nghĩa là laser có chất lượng tốt. Nếu biểu diễn hiệu suất lượng tử nội ( xác suất tái hợp bức xạ của hạt tải tiêm vào vùng tích cực) là ηi, ta có thể viết công thức cho công suất quang sinh ra bởi bức xạ cưỡng bức bên trong buồng cộng hưởng của laser như sau [9]: = ℎ (1.6) Một phần công suất quang này bị tiêu tán do các mất mát nội trong buồng cộng hưởng của laser (α), phần còn lại thoát ra khỏi buồng cộng hưởng sau khi chịu sự mất mát do gương là (1/L)ln(1/R). Như vậy, ta có thể viết công suất quang lối ra của laser như sau [9]: = ( − )∗ 1 ∗ℎ ∗ + Trong đó: 1 ln ( ) 1 1 (1.7) ln ( ) : dòng ngưỡng phát laser : hệ số mất mát nội : điện tích của một điện tử : hệ số phản xạ của mặt buồng cộng hưởng : chiều dài buồng cộng hưởng Từ công thức (1.7) ta có hiệu suất lượng tử ngoại của laser: = ln 1 + 1 (1.8) 1.2.2 Đặc trưng dòng - thế ( I-V) Đặc trưng dòng thế I -V là đường biểu diễn mối quan hệ giữa dòng điện bơm chạy qua laser diode và điện thế đặt trên chuyển tiếp. Với dòng bơm rất nhỏ, điện thế tăng rất nhanh và khi đạt đến mức điện thế phân cực thuận đặt trên chuyển tiếp laser thì tốc độ tăng của thế so với dòng giảm đi. Điều này chứng tỏ điện trở laser là phi tuyến và nó phụ thuộc vào dòng bơm. Khi chưa có điện áp phân cực thì điện trở laser rất lớn. Còn khi đã đạt tới điện áp phân cực thuận thì điện trở của laser diode giảm xuống còn rất nhỏ. Luận văn thạc sỹ Nguyễn Thị Ngoan 13 Hình 1.6: Đặc trưng I-V của laser bán dẫn Từ đặc trưng trên ta xác định được sụt thế thuận trên chuyển tiếp VF . 1.2.3 Đặc trưng phân bố không gian trường xa Do lớp tích cực của laser diode bán dẫn có kích thước nhỏ và tính chất hai mặt phản xạ ở hai mặt gương buồng cộng hưởng quang, do đó không tạo ra được sự hội tụ. Điều đó dẫn tới laser bán dẫn có độ phân kì của chùm tia ra lớn hơn so với các loại laser khác. Dạng chùm ra của laser bán dẫn là không đối xứng, điều này xuất phát từ tính chất không đối xứng của kích thước lớp tích cực (độ dày d=0,1~0,3 μm, độ rộng w=3~5 μm, từ đó ta có w>>d). Phân bố không gian trường gần và trường xa tạo nên cấu trúc mode ngang của laser bán dẫn. Khi đặt màn chắn sát mặt laser (phân bố trường gần) ta sẽ thu được vệt sáng mà cường độ sáng của nó biểu thị mật độ của chùm ra. Số lượng vệt sáng và sự sắp xếp vị trí không gian vết sáng tùy thuộc vào kích thước miền tích cực và công suất quang ra. Trong thực tế, người ta chú ý hơn tới phân bố không gian trường xa (phân bố ở khoảng cách rất lớn so với kích thước vùng tích cực) đường biểu diễn phân bố không gian trường xa là đuờng cong của công suất quang ra và nó phụ thuộc vào góc. Khi công suất bức xạ thay đổi, đường biểu diễn phân bố không gian trường xa sẽ thay đổi theo. Ta có các công thức tính góc phân kỳ theo hai chiều vuông góc và Luận văn thạc sỹ Hình 1.7: Sơ đồ trường xa và trường gần của laser Nguyễn Thị Ngoan 14 song song với lớp tích cực: = ; = (1.9) Với : bước sóng phát laser d: bề dày lớp tích cực w: bề rộng lớp tích cực và : là các góc được biểu diễn trong hình 1.7 1.3 Sự phụ thuộc vào nhiệt độ của các đặc trưng laser bán dẫn Làm lạnh hay làm mát là quá trình kỹ thuật giữ cho nguồn nhiệt (laser bán dẫn) tại một nhiệt độ mong muốn. Tiến trình làm mát thực hiện loại bỏ phần nhiệt lượng được tạo ra do lượng công suất điện Pel duy trì hoạt động của laser bán dẫn không được chuyển đổi thành công suất quang Popt, mà chuyển đổi thành công suất nhiệt Pth=Pel - Popt Điện trở nhiệt Rth của một vùng cần loại bỏ nhiệt hay tản nhiệt (nguồn nhiệt + vùng nhiệt) được định nghĩa như là sự khác biệt nhiệt độ giữa điểm nóng nhất và điểm lạnh nhật trong vùng này mà được tạo ra bởi 1W của công suất nhiệt [3]: = ∆ (1.10) Nhiệt của laser bán dẫn chủ yếu được tạo ra trong lớp tích cực – vùng tạo ra và dẫn hướng ánh sáng trong dẫn sóng của bộ phát laser. Điểm nóng nhất trong một laser bán dẫn được định vị tại điểm giao nhau của ống dẫn sóng và mặt trước, điểm lạnh nhất trong laser bán dẫn được định vị ở vị trí nào đó tại biên của luồng nhiệt- ví dụ, tại lối vào của nước trong trường hợp được làm lạnh bằng nước. Nhiệt độ của laser bán dẫn ảnh hướng tới tính chất điện quang như hiệu suất và tính tin cậy. Để hiểu rõ hơn chúng ta sẽ tìm hiểu ảnh hưởng của nhiệt độ trong những tính chất của laser bán dẫn 1.3.1 Ảnh hưởng của nhiệt độ tới đặc trưng P-I Đối với laser bán dẫn, khi nhiệt độ tăng, mật độ dòng ngưỡng Jth tăng và hiệu suất lượng tử vi phân ngoại giảm như trên hình 1.8: Sự phụ thuộc của mật độ dòng ngưỡng Jth vào nhiệt độ được xác định bởi [8] : = Luận văn thạc sỹ exp (1.11) Nguyễn Thị Ngoan 15 Hình 1.8: Đặc trưng P-I của hai loại laser bán dẫn với hai nhiệt độ đặc trưng T0 khác nhau Với Jth0 là hệ số, Tj nhiệt độ trong vùng tích cực hay là nhiệt độ chuyển tiếp p-n, T0 là nhiệt độ đặc trưng. T0 lớn dẫn tới dJth/dTj nhỏ nghĩa là laser tốt hơn. Tuy nhiên cũng cần thận trọng khi đánh giá laser theo T0 vì khi Jth lớn hơn dẫn tới J0 lớn hơn trong khi dJth/dTj = hằng số. Vì vậy, khi các laser có cùng Jth ở tại một nhiệt độ thì T0 mới đánh giá đúng chất lượng laser. Việc tăng Jth khi Tj tăng gây ra bởi sự mở rộng phổ khuếch đại và sự tràn của hạt tải bên trên các rào thế dị chất. Để giảm sự tràn này cần tăng rào thế ∆Eg giữa lớp tích cực và các lớp vỏ xung quanh. ∆Eg cần lớn hơn 0,3eV. Hiệu suất ήd giảm khi Tj tăng do nồng độ hạt tải ngưỡng ήth tăng theo Jth làm tăng sự hấp thụ hạt tải tự do. Trong các laser InGaAsP/InP (λ=1,3μm) T0 ~70K (trong dải 250C -650C). T0 nhỏ hơn với laser AlGaAs/GaAs vì do sự tràn qua rào thế mạnh hơn do khối lượng hiệu dụng của hạt tải điện tử nhẹ hơn và do các tái hợp không bức xạ gây ra bởi các quá trình Auger và sự hấp thụ ở vùng hóa trị. Sự phụ thuộc đáng kể vào nhiệt độ của laser bán dẫn là một nhược điểm lớn của nó. Điều này làm hạn chế hoạt động trong các ứng dụng cụ thể. Vì vậy điểm quan trọng là phải ổn định được nhiệt độ làm việc của nó trong sự biến đổi nhiệt độ. 1.3.2 Ảnh hưởng của nhiệt độ tới hiệu suất quang điện Tính chất của chất bán dẫn phụ thuộc vào nhiệt độ, do vậy các thông số thuộc tính của laser bán dẫn như dòng ngưỡng Ith và hiệu suất độ dốc . Cách hoạt động theo nhiệt độ của chúng như công thức 1.11 có thể được biểu diễn lại bởi mối quan hệ của dòng ngưỡng và hiệu suất độ dốc theo hàm mũ như sau [3]: ( +Δ ) = Và Luận văn thạc sỹ ( ) (1.12) ( +Δ )= ( ) (1.13) Nguyễn Thị Ngoan
- Xem thêm -

Tài liệu liên quan