Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Nghiên cứu tổng hợp vật liệu xốp mao quản trung bình tiên tiến (cấu trúc khung c...

Tài liệu Nghiên cứu tổng hợp vật liệu xốp mao quản trung bình tiên tiến (cấu trúc khung cacbon hoặc silic), biến tính bề mặt bằng các kim loại hoặc oxit kim loại chuyển tiếp để chuyển hóa hydrocacbon và xử lý môi trường

.PDF
96
165
96

Mô tả:

ĐẠI HỌC QUÓC GIA HÀ NỘI T R Ư Ờ N G ĐẠI HỌC KHOA HỌC T ự NHIÊN ********* N G H IÊN CỬ U T Ô N G HỌP VẬT LIỆU XỐP M A O Q U Ả N TRƯNG BÌNH TIÊN T IÊ N (CÁU T R Ú C KHỪNG C A C BO N H O ẠC SILIC), BIÉN TÍNH BÈ M Ạ T BẢNG CÁC KIỊVl LOẠI H O Ặ C Ỏ XIT KIM LOẠI C H U Y Ê N T IẾP Đ Ẻ CH UYÊN HÓA H Y D R O C A C B O N VÀ x ủ LÝ MÔI TRƯ Ờ NG MÃ SÓ: Q G - 0 9 - 16 CHỦ TRÌ ĐẺ TÀI : PGS. TS. Lê Thanh Son ...... Y OOO&GOOCUGO HÀ NỘI -2011 ĐẠI HỌC QUÓC GIA HÀ NỘI T R Ư Ờ N G ĐẠI HỌC KHOA HỌC T ự NHIÊN ********* NG H IÊN C Ử U T Ổ N G H Ọ P VẶT LIỆU XỐP M A O Q U Ả N TRƯNG BÌNH T IÊN T IẾ N (C Á U T R Ú C K H ỦNG C A C B O N H O Ặ C SILIC), BIÉN TÍNH BÈ M Ạ T B Ằ N G CÁC KIM LO ẠI H O Ậ C Ỏ X IT KIM LOẠI C H U Y É N T IẾP Đ Ê CH U Y ÊN H Ó A H Y D R O C A C B O N VÀ x ử LÝ M Ô I TRƯ Ờ NG MÃ SÓ: Q G - 0 9 - 1 6 CHỦ TRÌ ĐẺ TÀI: PG S. TS. Lê Thanh Sơn CÁC CÁN B ộ THAM GIA: PGS. TS. Hoa Hữu Thu TS. N guyễn Thị M inh Thư CN. Đ ặn? Văn Lonẹ HÀ N Ộ I -2011 Mục lục M ục 1.1 1 .2 1 .2 .1 1 .2 . 2 1.2.3 1.2.4 1.2.5 1.3 2 .1 2 .2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5 3.6 3.7 T ên đề m ục M ục lục Giải thích từ ngữ viết tắt Mở đầu Chương 1 Tổng quan Vật liệu mao quản trung bình Cấu trúc và sự phát triển của vật liệu cacbon Các dạng thù hình của cacbon Kim cương Graphit Fullehrenes Cacbon nano dạng ống Phản ứng oxi đề hydro hóa ankan nhẹ Chương 2 Thực nghiệm Tổng hợp vật liệu MCM-41 Tổng hợp vật liệu SBA-15 Tổng hợp vật liệu cacbon mao quản trung bình Xác định đặc trưng cấu trúc của các vật liệu tổne; hợp Nghiên cứu phân hủy kháng sinh nuôi tôm bằng T i0 2/SBA-15 Chương 3 Ket quả và thảo luận Nhận dạng cấu trúc vật liệu bằng kỹ thuật XRD Phương pháp phổ IR Phươns pháp SEM Phương pháp TEM Phương pháp hấp phụ giải hấp Nitơ Đặc điếm cấu trúc và hình thái tập hợp các vật liệu cacbon tông hợp Kết quả xử lý nước ô nhiễm thuốc kháne sinh sử dụne TiO; Kết luận Tài liệu tham khảo Phiếu đăng kí kết quả nghiên cứu KHCN 1 T ra n g 1 2 3 7 7 12 12 13 13 14 15 18 25 25 28 29 31 31 32 32 37 39 41 42 54 61 68 69 76 GIẢI THÍCH TỪ NGỮ - TỪ VIÉT TẮT BET: Brunauer-Emmelt-Teller CTAB: Cetyltrimethylammonium bromide HĐBM: Hoạt động bề mặt TEM: Transmission Electron Microscopy IR: Inírared Spectroscopy MQTB: Mao quàn trung bình ODH: Oxi-dehidro hóa SEM: Scanning Electron Microscopy TEOS: Tetraethylorthoxysilicate XRD: X-ray Diffraction LPG: Khí dầu mò hoá lòng DSC: Diferential scanning calorimetry TG: Thermogravimetry TGA: Thermogravimetric analysis DTG: Derivative thermoeravimetry DTA: Differential thermal analysis DMC: Disorder Mesoporous Carbon OMC: Order Mesoporous Carbon M ở đầu Trong thê kỉ 21 với sự ra đời và phát triển của vật liệu có kích thước nano đã tạo nên những bước nhảy vọt trong sự phát triển của khoa học công nghệ thônơ qua những tính chât ưu việt của nó, góp phần thay đổi và từng bước nâna cao chất lượne cuộc sống. Công nghệ nano là quá trình tổns họp và kiềm soát các vật liệu có kích thước phân tỉ mét (10 9m). Xu hướng nghiên cứu của khoa học nói chung và khoa học vật liệu nói riêng là hướng đến các vật liệu có kích thước nano. Cùng với sự phát triển của công nghiệp, nền kinh tế thế giới ngày càng phụ thuộc nhiêu hơn vào các sản phẩm dầu mỏ và hóa dầu, cùng với đó là yêu cầu ngày càng tăng về việc sử dụng hiệu quà và tiết kiệm nguồn tài nguyên thiên nhiên đang ngày càng khan hiếm này. Do yêu cầu chuyển hóa chọn lọc các hợp chất hydrocacbon trong phân đoạn dầu nặng và các hợp chất hữu cơ có phân tử lượne lớn. kích thước công kênh ngày càng tăng mà các vật liệu vi mao quản trờ nên khôna đáp ứng được nhu cầu đó. Do vậy, việc điều khiển kích thước mao quản để tạo ra các vật liệu có mao quản rộng là một trong nhũn? lĩnh vực đang được quan tâm nghiên cứu. Ngoài ra, xu hướng phát triển của hóa học hiện đại là naày càng hướna; tới thân thiện hơn với môi trường, với nhữne quy trình hầu như không có sản phẩm thải, hiệu suất cao và nguyên nhiên liệu gần gũi với tự nhiẻn, đó là Hóa học xanh. Cùng với đó là yêu cầu phải tìm ra những xúc tác chuyển hóa mang lại hiệu suất cao, chọn lọc tốt và thân thiện với môi trường. Dầu mỏ đă được tìm thấy và sư dụn» tronơ hàng ngàn năm trước công nguyên. Tuy nhiên công cuộc khai thác dầu theo quy mô công nghiệp chi được bắt đầu từ thế kỷ 19. Và cũng từ đã công nghệ xúc tác trong hóa dầu cũng băt đâu và không ngừng phát triền. Tuy nhiên chỉ từ thập ký 70 xúc tác mới trở nên quen thuộc với cộng đông. Ngày nay người ta biết được trong tự nhiên cả các xúc tác chọn lọc và hiệu quà nhất cho một số quá trình hóa học. Các nhà khoa học và công nghiệp còn lâu mới đạt 3 được sự tinh tế trong tồng hợp xúc tác. Trong nhiều thập kì, các xúc tác được điều chế theo kinh ngiệm và hiểu biết của giai đoạn lịch sử đó. Gần như ngoại lệ, chất xúc tác là trung tâm của một quá trình hóa học và vì vậy các chiến lược tổng hợp xúc tác công nghiệp là kiến thức chủ đạo của nhà sản xuất xúc tác. Hiện nay, nhu cầu sử dụng oleíin nhẹ (etylen, propylen, buten) trong các ngành công nghiệp ngày càng tăng mà năng suất hiện tại không đủ đáp ứng. Oleíin là nguyên liệu ban đầu quan trọng cho quá trình tổng hợp hữu cơ, hoá dầu. Nguồn oleíĩn nhẹ chủ yếu là sản phẩm phụ của quá trình cracking. Đe đáp ứng nhu cầu sử dụnơ oleíìn, người ta thường sản xuất các oleíĩn nhẹ bằns phương pháp dehydro hoá các alkan tương ứng (etan, propan, butan, iso-butan,...)- Tuy nhiên, quá trình này có những nhược điểm dẫn đến hiện quả kinh tế kém như phản ứng thu nhiệt mạnh nên phải thực hiện phản ứng ờ nhiệt độ cao (khoảna 600°C); dễ sinh ra phản ứne phụ dẫn đến sự hình thành cốc trên bề mặt xúc tác làm giâm hoạt tính xúc tác. Nhằm mục đích khắc phục những hạn chế trên, các nhà khoa học đã bắt đầu nghiên cứu phản ứng dehvdro hoá các ankan nhẹ đồnơ thời với việc oxi hoá hydro sinh ra từ phàn ứns bằng các haloeen hoặc 0 ; với mone muốn: có thể thực hiện phản ứng ở nhiệt độ thấp; hạn chế quá trình hình thành cốc trên bề mặt xúc tác; cho độ chuyển hoá ankan và độ chọn lọc oleíìn cao. Ke từ khi hệ xúc tác V 2O 5/T 1O 2 được ứng dụns; thành công cho phàn ứns oxi hoá o-xylen để tạo thành anhydric phtalic vào cuối những năm 1960, hệ xúc tác này đã trỏ' thành đối tượng nshiên cứu cho rất nhiều phàn ứng oxi hoá chọn lọc khác, như phản ứnơ oxi-dehydro hoá paraíln thành oleíĩn, 0 X1 hoá metanol thành formalđehìt,...Tính chất của hệ xúc tác này phụ thuộc vào phương pháp điều chế xúc tác, nhiệt độ nuns xúc tác, bản chất của chất mang sừ dụng, hàm lượng xúc tác,...Một trons những phương pháp có hiệu quả là mang các oxit kim loại của titan và vanadi lên vật liệu mao quàn trung bình (MQTB), sự tổ hợp hai oxit kim loại này trên nền vật liệu mao 4 quàn trung bình tạo ra vật liệu mới mang các ưu điểm của từng loại vật liệu riêng rẽ, tạo nên nhiều tính năng và các hiệu ứng mới. Đầu thập niên 90, một phát minh mang tính đột phá của hãng Mobil là tồng hợp thành công vật liệu MQTB M41S đã mở ra cơ hội đầy triển vọng trong lĩnh vực tổng hợp xúc tác. Đây là loại vật liệu có bề mặt riêng rất lớn (đến 1400m2/g), kích thước mao quản rộng và khả năng có thề tạo ra các nhóm chức bề mặt khác nhau. Vì thế, vật liệu MQTB đã trờ thành chất nền tốt cho nhiều loại xúc tác và MCM-41 là một trong những thành viên của họ M 41s. Đe tài còn đặt ra nhiệm vụ nghiên cứu tổng hợp vật liệu với cấu trúc nano cacbon. Sự phát hiện ra các phân tử íullenrene lần đầu vào nãm 1985 bởi Kroto và các cộng sự cũng như vật liệu cacbon nano dạng ống đa lớp (Multiwall cacbon nanotubesMWCNTs) bởi Iijima năm 1991 và tiếp đến là cacbon nano dạng ống đơn (Single vvall cacbon nanotubes — SWCNTs) bởi Iijima, Bethune và các cộng sự năm 1993 [4,11,12,16,42] thực sự là cuộc cách mạng trong lịch sử nghiên cứu và phát triển về vật liệu, mở ra những hướng đi mới trong việc nghiên cứu chế tạo và ứng dụng loại vặt liệu này, thu hút được sự quan tâm của nhiều nhà khoa học thuộc nhiéu lĩnh vực khác nhau trên toàn thẻ giới. Fullenrenes là các phân tử hình cầu, phân tử nhỏ nhất được cấu thành từ 60 nguyên tử cacbon, các nguyên tử được sắp xếp có hình dạns giông như các hình lục giác và ngũ giác hình thành trên một trái bóng. Trong khi đó vật liệu cacbon nano dạng ốns (CNTs) được xem như nhũng ốna hình trụ tạo thành từ những tấm mạng nguyên tử cacbon cuộn lại, đường kính của ốna chỉ cỡ vài nano met (nm). Thôn? thường, ống cacbon nano (CNTs) được tạo thành từ nhiều ống trụ như thế, và đường kính của một ống cacbon nano đa lớp (MWCNTs-Multi-wall cacbonnano tubes) có thể lèn tới lOOnm trong khi đường kính của một ống đơn lớp (SWCNT - Single wall cacbonnano tubes) chỉ vào khoản? 0.4 - 3nm. Do tính định hướn? một chiều đặc biệt ấy mà vật liệu CNTs có những tính chất vật lí hết sức thú vị. Nhữns tính chất này thay đổi tuỳ thuộc vào sự định hirớns; của vector bất đối (chirality), khi ấy các ống nano cacbon sẽ mang bản chất bán dẫn hay kim loại. 5 Hiện tại, vật liệu cacbon nano dạng ống chỉ được tổng hợp với sô lượng hạn chê nên giá thành khá cao gây hạn chế trong việc triển khai ứng dụng rộng rãi. Giá của lg cacbon nano dạng ống đơn (SWCNTs) vào khoảng 50-100Euro [15]. Tại Việt Nam việc nghiên cứu ứng dụng vật liệu kích thước nano nói chung và vật liệu cacbon nanno nói riêng đã tổng bước được triển khai tuy nhiên việc nghiên cứu tổng hợp các loại vật liệu này vẫn còn là điều mới mẻ hấp dẫn nhiều nhà nghiên cứu. Trên tinh thần đó luận văn này tập trunơ vào việc nghiên cứu khả năn 2 tổng hợp vật liệu cacbon mao quản trung bình (MQTB), một dạng cacbon nanotube bằng phương pháp hoá học, xác định các đặc trưna cấu trúc và ứn? dụng nhằm xác định khả năng tổng hợp loại vật liệu này tại Việt Nam. Ngoài ra, đề tài còn tổng họp T i0 2 mang trên vật liệu mao quản truns bình SBA-15 để xử lý nước đầm hồ nuôi tôm có chứa thành phần chất khána sinh khó phân hủy do người nuôi tôm sừ dụng khôns; theo liều lượnơ trong quá trình sản xuất, nuôi Chính vì vậy, chúna; tôi tiến hành nghiên cứu đề tài: “Nghiên cứu tône hợp vật liệu xốp mao quản truna bình tiên tiến (cấu trúc khunơ cacbon hoặc silic), hiến tính bề mặt bănơ các kim loại hoặc oxit kim loại chuyên tièp đẽ chuyên hóa hydrocacbon và xử lý môi trường”. 6 C h ư ou g 1 - T Ỏ N G Q UAN 1. 1 Vật liệu mao quản trung bình (MQTB) Giới thiệu về vật liệu mao quản trung bình Hiện nay, vật liệu xốp diện tích bề mặt riêng lớn được mở rộng nghiên cứu (với sự quan tâm đến những tiềm năng ứng dụng) trone nhiều lĩnh vực như: chất hấp thụ, chất mang, công nghệ cảm biến, sắc ký ... Theo sự phân loại của IUPAC (phân loại theo đường kính mao quàn) thì vật liệu xốp được chia làm 3 nhóm chính: > Vật liệu vi mao quản (Microporous): có đường kính nhò hơn 2nm. > Vật liệu MQTB (Mesoporous): có đường kính khoảng 2 - 50nm. > Vật liệu mao quản rộng (Macroporous): có đường kính lớn hơn 50nm. Bảng 1: Phản loại vật liệu mao quản rắn theo kích thước mao quản Vật liệu Mao quản rộn» Mao quản trung bình Vật liệu trụ lớp Vi mao quản zeolit Đường kính lỗ Ví dụ 5 00AO Glasses 500AŨ 20-500A0 Aerro^els 100A° 10- 100A0 14.2A0 M41S 16-100AU Sợi cacbon 6 Au Các ống cácbon nano đơn có đường kính ống 3-4 nm nên cũng được xếp vào loại vật liệu này. Zeolit là thành viên quan trọng nhất trona, nhóm vật liệu vi mao quản. Chúne; là nhũng Composit vô cơ, có cấu trúc tinh thể, là mạng không gian ba chiều. Với các ưu điểm như bề mặt riêng lớn, khả năng hấp thụ cao. bền nhiệt... làm cho nó nhiều ứng dụng trong lọc hóa dầu và tổng hợp hữu cơ. Tuy nhiên, ngoài những ưu điềm đó. zeolit với kích thước mao quản nhỏ các hốc lỗ chi phù họp với các phân từ có kích cỡ từ 5 A° đến 12 A° nên zeolit tò ra hạn chế với trường hợp chất tham gia phản ứnR có kích thước phân tử lớn. 7 Còn với vật liệu mao quản rộng không được ứng dụng nhiều trong xúc tác cũn° như hấp phụ vì nó có mao quản lớn nên không đủ lực mao quản để hấp phụ, với những phân từ có đường kính nhỏ hơn thì vật liệu loại này tò ra không có tác dụne;. Trong khi đó, do yêu cầu chuyển hóa chọn lọc các hợp chất hidrocacbon trong phân đoạn dầu nặng và hợp chất hữu cơ có phân từ lượng cồng kềnh ngày càna tăn 2 mà các vật liệu vi mao quản và vật liệu mao quản rộng không đáp ứng được công nghiệp lọc hoá dầu. Công nghiệp tổng hợp hữu cơ và tồng hợp tinh vi ngày càng yêu cầu phải chuyển hoá sâu hơn, vì vậy việc tìm ra các vật liệu mới có hoạt tính xúc tác, đồng thời có cấu trúc mao quản với kích thước trung gian giữa vật liệu vi mao quản và vật liệu mao quản rộng là một yêu cầu khách quan. Vì vậy, việc điều khiển kích thước mao quản để tạo ra các vật liệu có mao quản trung bình là một trong những lĩnh vực đang được quan tâm đầu tư nghiên cứu. Trong những năm 1991-1992 các nhà khoa học hãns Mobil Oil bằng con đường tổng hợp sừ dụna chất tạo cấu trúc đã tổng hợp được một số vật liệu mao quản trung bình họ M41S, nhữne; vật liệu này có cấu trúc mao quàn sắp xếp với độ trật tự rất cao và kích thước mao quản đồng đều. Vật liệu rắn xốp với mao quản trung bình gồm nhiều dạng như: MCM-41, SBA-15, MCM-48, MCM-56... Trên cơ sở MCM-41 người ta thay thế đồns hình Si4+ bằng một số các kim loại khác như: Ti, Al, M o... hoặc mang oxit kim loại chuyên tiếp lẻn thành mao quản tạo ra các loại xúc tác biến tính của MCM-41 có khả năna; xúc tác cho phản ứng oxy hóa, oxi hóa khử, epoxi hóa, trons chuyên hóa hidrocacbon có trong phân đoạn dầu nặng và các hợp chất hữu cơ có phân tử cồng kềnh. Vật liệu MQTB phân loại theo cấu trúc gồm cả 3 nhóm tuỳ thuộc bản chất chất hoạt động bề mặt, bản chất chất phản ứns ban đầu, nhiệt độ phản ứng: Nhóm M41S: *> MCM-41 có hệ thốns mao quản hai chiều trật tự. xếp khít với nhau dạne lục lăng (hexagonal) và nhóm câu tróc làpómm. •> MCM-48 với cấu trúc lập phương (cubic), hệ mao quan ba chiều, nhóm cấu trúc là Ia3d. ❖ MCM-50 với cấu trúc lớp (lamellar) tươne tự như c c loại đất sét, gồm các pha bản mỏng song song với nhau, nhóm cấu trúc là p2. Chún£ được tạo ra do ion chất hoạt động bề mặt kết hợp với nguồn Si. Hình 1 : c ấ u trúc của vật liệu M 41S: ci-M CM -41; b-M C M -48; c-M C M -50 Nhóm thứ 2: (HMS và HMU): Nhóm này có độ trật tự cấu trúc kém hơn và cả đườno kính mao quản không đều nhưng thành mao quản dàv hơn vì vậy độ bền nhiệt lớn hơn nhóm M41S. Tạo thành do chất hoạt độnơ bề mặt trung hòa điện kết hợp với nguồn silic trung hòa điện. Nhóm thứ 3: Sử dụng các chất hoạt động bề mặt là các khối Copolime, đại diện tiêu biểu là SBA-15. Vật liệu nhóm này có độ trật tự cao hơn. phân bố mao quản đồna đều hoai, thành mao quản dày nên có độ bền cao. Vật liệu mao quản trune bình đầu tiên được tôna hợp là MCM-41 (Mobil Composition o f Mattel'), nó có đặc điêm là: diện tích bề mặt lớn. hệ thône mao quàn trật tự cao. kích thước mao quản đồn? đều. Nghiên cứu nhiều x ạ tia Diffraction) trên vật liệu MCM-41 cho thấy có 3 đến 5 tia phán xạ 9 X (XRD - X-ray điên hình ờ 2ÓC 20 = 10 đến 50. Sự xuất hiện các tia phan xạ này (dl00=47.3; d l 10=27.2; d200= 23.6) là dấu hiệu đặc trưng cho cấu trúc của vật liệu mao quản trung bình, ờ các góc lớn hơn không có sự hiện pick. Để làm rõ hơn cấu trúc của MCM-41, một phương pháp phân tích được dùne là phương pháp hiển vi điện tù truyền qua (TEM). Phương pháp này cho biết kích thước mao quản và độ trật tự của vật liệu. Vật liệu mao quản trung MCM-41 là một vật liệu có tính axit rất thấp tạo ra bời các nhóm Silanol trên bề mặt vật liệu, Một chức nâng khác của vật liệu là chức năng oxi hóa khử. Khi đưa một số kim loại chuyến tiếp trên vật liệu MQTB có độ phân tán cao, bề mặt lớn đang được chú ý đến. Chính sự tồn tại của các phân tử kim loại chuyển tiếp là nguyên nhân gây ra tính oxi hóa khử cho vật liệu, vật liệu MQTB mang các kim loại chuyển tiếp có ímg dụnạ rất rộng rãi tronơ các quá trình chuvển hóa hóa học. Hiện nay, cơ chế hình thành vật liệu MQTB còn chưa được rõ rànơ, nhiều tác eià đã đề xuất ra cơ chế như Beck và các cộng sự đã đưa ra cơ chế tạo cấu trúc tinh thê lỏng bằng cách coi các chất hoạt động bề mặt tự sẳp xếp thành pha tinh thê lòng có dạng mixen hình ống tạo nên cấu trúc của vật liệu, các đạns Silicat polime hóa thành màns; cứng bao quanh phân ưa nước của mixen. Các tác giả khác đã đề xuất cơ chế khác nhau như: cơ chế sắp xếp ống Silicat cùa David, cơ chế lớp Silicat nhãn của Steel; Monnier thì đưa ra cơ chế phù hợp mật độ điện tích. Nhưng các cơ chế này vẫn chưa có sự thống nhất với nhau. Tuy nhiên khác với nhữns lí thuyết chưa được khám phá vê vật liệu này thì việc ứnơ dụng chúng trons thực tế là rất phổ biên. Hình 2: Minh họa cấu trúc cùa MCAÍ-48 10 MCM-48 là một trong những vật liệu có nhiều đặc tính thú vị nhất trong tất ca các vật liệu MQTB mới đuợc tìm ra gần đây. Hệ thống mạng không gian ba chiều đan xen nhau của các kênh trong MCM-48 được coi là nguyên nhân làm giảm bớt việc nghẽn các kênh dẫn. c ấ u trúc của MCM48 gồm các ông hình trụ có đường kính mặt cắt ngang đặc trưna là 3nm, chia làm 3 nhánh, các nhánh này nối liền với nhau trong phạm vi một hệ thống kênh chung (hình 1.2). Ngoài ra nó còn được cấu thành bời các bức tường silica dày 1 nm, giữa các bức tường đó các nguyên tử Si được sấp xếp hỗn loạn. Các phân tử trong MCM-48 đều có cấu trúc tinh thể, tuy nhiên lại không có một hình dạng chung nhất định. Theo nhiều tài liệu thì đại đa số các phân tử có hình bát diện cụt. MCM-48 có cấu trúc cặp đôi liên tục, ở giữa có mặt “gyroid 7 rất nhỏ có tác dụng phân chia khoảng không gian lỗ có sẵn thành 2 vùng nhỏ hơn không giao nhau. Hình 3: Mặt “gyroid" cùa MCM-48 MCM-48 được tìm ra đồns thời với MCM-41 bởi Kresge vào năm 1992. tuy nhiên các nghiên cứu ứng dụng của hệ vật liệu MQTB vẫn chù yêu thiên vê MCM-41. nguyên nhân ià do việc tôns hợp MC'M-48 đòi hòi những điêu kiện đặc biệt. Hiện nay, MCM-48 cũng đã được nhiều nhà nghiên cứu quan tâm đến. Nó có thể được tổns hợp bằng nhiều cách khác nhau do đó có đặc trưng bê mặt cao. thẻ tích lỗ riêng, và sự phân bố kích thước lỗ hẹp. Các tính chất trên được thể hiện ơ độ bền 11 thuỷ nhiệt cao, lên tới 750 °c. Việc thêm các kim loại khác nhau vào mạng lưới làm cho tính chất xúc tác của MCM-48 trở nên phong phú. Một vài ứng dụng xúc tác được chỉ ra trong các tài liệu, ví dụ: phản ứng chuyển vị n-decan, khử c o . Với hệ thống lỗ được sắp xếp một cách có hệ thống, cân đối, MCM-48 được đánh giá cao hơn hệ thống các lỗ theo một phương duy nhất như ở MCM-41. MCM-48 được coi là một ứng cử viên sáng giá ứng dụng trong xúc tác và kỹ thuật phân chia, ví dụ như sắc ký lỏng siêu tới hạn HPLC (Hieh Períormance Liquid Chromatography), SFC (Supercritical Fluid Chromatography). 1. 2. Cấu trúc và sự phát triển của vật liệu nano cacbon 1. 2.1 Các dạng thù hình cacbon Nguyên tố cacbon có thể kết hợp với chính nó hay với các nguyên tố khác nhờ sự lai hoá. Điều này tạo ra sự đa dạng về mặt cấu trúc rắn của cacbon và là nhântố cơ bản của hoá học hữu cơ cũng như sự sống [22, 43]. Nguyên tử cacbon có cấu hình điện tử ls 22s22p 2 và có thể tạo ra các dạng lai hoá sp3,sp2,sp'. Trong lai hoá sp3 bốn obital lai hoá 2sp 3 định hướn 2 về bốn đỉnh của một tứ diện đều và có thể tạo thành bốn liên kết ơ xen phủ với các nauyên tử khác. Lai hoá sp2 tạo ra 3 orbital lai hoá 2sp 2 được tạo thành và một orbital 2p chưa lai hoá. Các orbital này định hướng tạo thành các góc liên kết 120° khi tạo thành các liên kết ơ xen phủ với các neuyên tử khác (Ví dụ phân tử C;H4). Orbital p còn lại trên mỗi nguyên tử cacbon xen phủ với nhau tạo thành liên kết 71. Lai hoá sp' tạo ra hai orbital lai hoá 2sp' dạn 2 thẳng và hai orbital 2p chưa lai hóa. Các orbital lai hóa spl có thể xen phủ với các orbital khác tạo thành liên kết G (Ví dụ như phán tử axetilen C 2H; ). Hai liên K được tạo thành bời sự xen phủ giữa các orbital n chưa lai hóa còn lại. 12 Lin e ar T rg o n g l P la n a r T Tstrahedral strahedral Hình 4: Các dạng lai hoá của cacbon a) sp1; b) sp ■ / c) sp1 1.2.2 Kim cương Kim cương tồn tại ở dạng lập phươn? và sáu phương (Lonsdaleite). ở cấu trúc tứ diện đều mỗi nguyên tử cacbon liên kết với bốn nguyên tử cacbon khác có lai hóa sp3, mỗi nguyên tử nằm trên đỉnh của tứ diện đều, độ dài liên kết C-C là 1,54A°, nsắn hơn 10% so với graphit. Tuy nhiên mật độ nguyên tử ( 1.77.10 23 cm'3) lại lớn hơn 56% so với graphit. Cấu trúc này ảnh hưởng lớn đến tính chất vật lí của kim c ư ơ n ơ 5 trên thực tế kim cương là loại bán dẫn có khe rộng (5.47eV) và là vật liệu cứng nhất trong tự nhiên (độ cứng 10 theo thans Mohr) và có mật độ nguyên tử lớn nhất, giống như graphit có độ dẫn nhiệt cao nhất (» 25 W.cm‘1.K'1) và điểm nóns chảy cao nhất (4500K) [13, 29]. Kim cương dạng sáu phương (Lonsdaleite) có cấu trúc tinh thể dạng wurzite, độ dài liên k ế t c - c i à 1,52A°. Hình 5: K im cương câu trúc lập phương (trái) và sáu phương Lonsdaleite (phải) 1.2.3 Graphit Các nguyên tử trona graphit sắp xếp thành các lớp theo kiểu tổ on 2 bao eồm các liên kết ơ tạo bời các orbital lai hoá sp2 và các liên kết 71 không có định, ở dạns cấu trúc tinh thẻ lục phưons phổ biến nhất các lớp được sắp xếp theo trật tự ABAB...(được gọi là trật tự Bemal). Khoảng cách giữa hai nguyên tử cacbon trong mạnơ là 1.421 A°, khoảng cách giữa hai lớp m ạns là c0= 6.708A0. Hình 6: Mạng tinh thểgraphit cấu trúc 6 phương ( xếp ỉớp kiểu ABAB) 1.2.4 Fullehrenes Những tính toán về lí thuyết cũng như kiểm chứng về thực nghiệm cho thấy cacbon tồn tại bền vữnơ nhất ở những dạng chuỗi thẳng, mỗi nhóm có khoảne 10 nguyên tử cacbon. Khi số nguyên tử cacbon vượt lên 10-30 nguyên tử thì dạng bền vững nhất là dạng vòng. Khi số nguyên tử cacbon trong mạch lên tới 30-40 nauyên tử thì chúng có cấu trúc dạng khung lồng ( caơe structures), trong đó C60 có cấu trúc đặc biệt bền vững được phát hiện lần đầu bởi Kroto và các cộns sự vào năm 1985 [13, 21, 29]. Các nguyên tử cacbon chiêm giữ các vị trí tại 60 đình của một khối cầu bị cắt vát gồm 90 cạnh, 32 mặt trong đó có 12 mặt là ngũ giác, 20 mặt là lục giác tuân theo lí thuyết của Euler: f + Trons đó f, V, V = e+ 2 e là số mặt, cạnh và đình của đa diện. Khoảng cách truno bình giữa hai nguyên tử cacbon aC-C =1.44A° tương tự như trong graphit, mỗi nguyên tử cacbon liên kết với ba nauyên tử cacbon khác nhờ lai hoá sp2, sự uốn con? của liên kết ba phương trong C60 tạo ra một vài liên kết kiểu lai hoá sp3 giống như trong kim cương. Một vài dạna íullerene bền vững khác là C70. C78, C80... Hình 7: Cấu trúc íullerene C60 14 1.2.5 Cacbon nano dạng ống (CNTs) Vật liệu cacbon nano dạng ống (CNTs) được tạo thành từ nhiều ốnơ trụ, và đường kính của một ống cabon nano đa lớp (MWCNTs-Multi-wall cacbonnano tubes) có thể lên tới lOOnm trong khi đường kính của một ống đơn lớp (SWCNT - Sinale wall cacbonnano tubes) chỉ vào khoảng 0.4 - 3nm [15, 25]. H ình 8: Cấu trúc cacbon nanotube dạng đa lớp Sự tạo thành của một ống đơn cacbon nano có thể xem như sự cuộn lại của các tấm graphen. Một ống nano được đặc trưng bởi đườns kính của nó d, và góc bất đối ớ (0 < / ỡ / < 300). Vectơ bất đối Ch được đặc trưng bởi hai giá trị nguyên (n,m) và vectơ gốc của mạns sraphene: ch= naỊ + ma2 = (n,m ) Góc bất đối 9 là góc định giữa vectơ bất đối Ch và vectơ chỉ phương 'zic zăc" (n,0). Cặp số nguyên (n ,m ) xác định các giá trị d, và 6 : 1 Z7 ; dt = — í?v nn — + Ì131 — + nm 7Ĩ : Sinc7— -— 2 m m + nm Các tấm oraphene được cuộn lai theo hướng của vectơ bất đối Ch. đặc trưng bời giá trị (n,m ). Những dang đặc biệt của ôn 2 nano ơọi ià ống nano 'dạng ghê (n.n) và dang ‘zic zac” (n,0). Các dạng khác đều có tính bất đối khi m i^n và ỉĩĩtO. Hình chữ 15 nhật tạo bởi sự chuyển dịch vectơ T và vectơ bất đối Ch được xem như một đơn vị càu trúc của ống nano cacbon theo một phương. - - T -" Hình 9: Đơn vị cấu trúc của ống nano cacbon theo m ột phương Hình 10: Các d ạ m ống cacbon nano „ T=t,a, + t^ìy . 2m + n tl= ——— , d) - 2 ìi + m t2 =— dF Trong đó dR là thừa số chung lớn nhất của (2n +m, 2 m +n) Thực nghiệm cũns cho thấy một ốns đơn nano cacbon (SWCNT) có thể có đường kính aần bằna một nửa của C60 với giá trị d, = 6,78A°. Đỗ dẫn điện của CNTs phụ thuộc vào tính bất đối xứng cùa nó. Nếu giá trị (n-m )/3 la một số nguyên thì 16 CNTs mang tính chất của kim loại, trong trường hợp khác nó mang tính chất của bán dẫn [17,19,26,30]. •• J'V .cc - ỉ - s. A •; ' : '•- • ■ *"r .* Hình 11: Cắc vectơbất đối khác nhau và số lượng các khe íullenrene Các ống đơn nano cacbon có thể nàm ờ dạn° các bó do sự xắp xếp theo kiểu tam giác của các ốns riêng rẻ. Các ống xích lại nhau do tác dụng của lực liên kết Van der Waals yếu. Ống nano cacbon đa lớp là các ống hình trụ gồm nhiều lớp graphene bọc vào nhau. Theo cách tiếp cận về vùna tạo nếp (zone-foldinơ), sự xuất hiện của vật liệu cacbon nano dạng ống với tính chất điện cùa chúng đã thu hút được nhiểu mối quan tầm đặc biệt, trạng thái cấu trúc của chúns được chuyển từ dạns graíit sang cấu trúc dẫn điện tựa như kim loại hay chất bán dẫn tuỳ thuộc vào vecto bất đối của chúns. Trons một mẫu thu được thì một phần ba mans bản chất kim loại, hai phần ba còn lại giống như chất bán dẫn. Thêm vào đó nhũng giải khe hẹp trong ống bán dẫn được nhận định có kích thước tỉ lệ nghịch với đường kính của chúns. Nhữna nhận định trên đều được kiểm chứng qua hàng loạt các thí nghiệm. Những sai lệch đáng kể từ giản đồ vùng tạo nếp chỉ mâu thuẫn duy nhất đối các SYVCNTs có đường kính nhò nhất (# 0.5nm). Khi làm lạnh điện trở của các ống cacbon nano giảm, điều này có thể giải thích bời sự si ảm sự nhảy của các electron nhờ dao động mạng lưới. Các ống nano dạng bán dẫn, thì ngược lại khi nhiệt độ giảm, điện trờ cùa chúng tăng do sự giảm sỏ lượng phân 17 ỉih Ti! O O O tC O O C M O O tử mang điện có khả năng vượt qua dải khe hẹp. Độ dẫn điện của ống bán dản có thể điều chỉnh được thông qua một điện trường ngoài, tạo ra khả năng ứng dụng làm các transitor hiệu nãng cao. Các ốne cacbon nano bán dẫn được điều chế theo phương pháp trên không nhằm mục đích xử lí đặc biệt để tạo thành chất bán dẫn loại p. có phần tử mang điện chủ yếu là các lỗ trống. Qua so sánh, độ dẫn điện của các ống cacbon nano dạng kim loại ít bị ảnh hường khi sử dụng cổng thế, ngoại trừ ốna chứa một số lượng đáng kể khuyết điểm. Các phương pháp đo điện do đó được sử dụns để phân biệt ống bán dẫn cacbon nano dạng kim loại và dạna bán dẫn [24]. 1.3 Phản ứng Oxi Dehydro hóa (ODH) ankan nhẹ Định nghĩa Phản ứng oxydehydro hoá là phản ứng dehydro kết hợp với oxi hoá, H 2 sinh ra từ phàn ứng bằna các chất oxi hoá như 0-», CO: với mục đích làm chuyên dịch cân bàna: của phàn ứns theo chiều thuận C„H2n€ CnH 2n+H2 Với sự hiện diện cùa 0 ; : 0 2+H2€ H20 C„Hĩn+ị o 2€ CnHZn+ H 20 Với sự hiện diện của C 0 2: C0 2+H2€ C0 + H20 c / / . , . + C02€ C bH 2u+2 +C0 + H20 Nhiệt động học của phản ứng: Nhiệt độno học cùa phản ứne ODH n-butan:
- Xem thêm -

Tài liệu liên quan