Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Công nghệ thông tin Nghiên cứu về đảm bảo chất lượng dịch vụ đa phương tiện trên mạng không dây ad h...

Tài liệu Nghiên cứu về đảm bảo chất lượng dịch vụ đa phương tiện trên mạng không dây ad hoc.

.PDF
115
167
70

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ Ngô Hải Anh NGHIÊN CỨU VỀ ĐẢM BẢO CHẤT LƯỢNG DỊCH VỤ ĐA PHƯƠNG TIỆN TRÊN MẠNG KHÔNG DÂY AD HOC Chuyên ngành: Cơ sở toán học cho tin học Mã số: 9.46.01.10 LUẬN ÁN TIẾN SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS. TS Phạm Thanh Giang 2. PGS. TS Nguyễn Văn Tam Hà Nội - 2020 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các kết quả được công bố với các tác giả khác đều được sự đồng ý của các đồng tác giả trước khi đưa vào luận án. Các kết quả nêu trong luận án là trung thực và chưa từng được công bố trong bất kỳ công trình nào khác. Hà Nội, ngày 30 tháng 10 năm 2020 NGHIÊN CỨU SINH Ngô Hải Anh 1 LỜI CẢM ƠN Luận án được thực hiện tại Học viện Khoa học và Công nghệ – Viện Hàn lâm Khoa học và Công nghệ Việt Nam, dưới sự hướng dẫn của PGS. TS. Phạm Thanh Giang và PGS. TS. Nguyễn Văn Tam. Tôi xin bày tỏ lòng biết ơn sâu sắc đến hai Thầy về định hướng khoa học, người đã động viên, trao đổi nhiều kiến thức và chỉ bảo tôi vượt qua những khó khăn để hoàn thành luận án này. Đồng thời, tôi cũng xin chân thành cảm ơn tới các nhà khoa học, tác giả của các công trình công bố đã được trích dẫn trong luận án, đây là những tư liệu quý, kiến thức liên quan quan trọng giúp Nghiên cứu sinh hoàn thành luận án. Xin cảm ơn đến các nhà khoa học đã phản biện các công trình nghiên cứu của Nghiên cứu sinh. Tôi trân trọng cảm ơn Phòng Tin học viễn thông, Viện Công nghệ Thông tin – Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã tạo điều kiện thuận lợi cho tôi trong suốt quá trình nghiên cứu thực hiện luận án. Cuối cùng, tôi xin gửi lời cảm ơn sâu sắc tới gia đình, bạn bè, những người đã luôn ủng hộ, giúp đỡ và hỗ trợ tôi về mọi mặt để tôi yên tâm học tập đạt kết quả tốt. Hà Nội, ngày 30 tháng 10 năm 2020 NGHIÊN CỨU SINH Ngô Hải Anh 2 MỤC LỤC Lời cam đoan 1 Lời cảm ơn 2 MỤC LỤC 3 Danh mục từ viết tắt 6 Danh mục các bảng 9 Danh mục các hình vẽ, đồ thị 10 MỞ ĐẦU 11 1. NGHIÊN CỨU TỔNG QUAN 18 1.1. Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2. Chuẩn IEEE 802.11e cho dữ liệu đa phương tiện với các mạng không dây 23 1.3. Các vấn đề về tính công bằng trong các mạng không dây . . . . . . . . . . 25 1.3.1. Các vấn đề ở tầng MAC . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.1.1. Vấn đề EIFS . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.1.2. Vấn đề trạm ẩn . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.3.2. Vấn đề ở tầng liên kết . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.3. Vấn đề với lập lịch FIFO . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.4. Vấn đề với lập lịch Round Robin . . . . . . . . . . . . . . . . . . . . 30 1.4. Phương pháp đánh giá hiệu năng mạng không dây . . . . . . . . . . . . . 30 1.4.1. Đánh giá bằng công cụ mô phỏng . . . . . . . . . . . . . . . . . . . 31 1.4.2. Đánh giá bằng công cụ testbed . . . . . . . . . . . . . . . . . . . . . 32 1.5. Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2. PHÂN TÍCH THÔNG LƯỢNG MẠNG KHÔNG DÂY CHUẨN IEEE 802.11 39 2.1. Phân tích thông lượng lý thuyết của IEEE 802.11 . . . . . . . . . . . . . . 39 3 2.1.1. IEEE 802.11b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1.2. IEEE 802.11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2. Nhận xét các kết quả tính thông lượng lý thuyết . . . . . . . . . . . . . . . 50 2.3. Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3. ĐỀ XUẤT PHƯƠNG PHÁP ĐIỀU KHIỂN CÁC LUỒNG DỮ LIỆU CÓ ĐỘ ƯU TIÊN KHÁC NHAU 52 3.1. Đặt vấn đề . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2. Một số nghiên cứu liên quan . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3. Phân tích thông lượng của IEEE 802.11e EDCA . . . . . . . . . . . . . . 56 3.4. Phương pháp cải tiến tỷ lệ phân chia thông lượng cho các luồng dữ liệu có độ ưu tiên khác nhau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1. Đề xuất phương pháp phân chia thông lượng theo tỷ lệ của các luồng dữ liệu có độ ưu tiên khác nhau . . . . . . . . . . . . . . . . . 61 3.4.2. Đề xuất phương pháp điều khiển động CW nhằm đạt được thông lượng theo nhu cầu của các luồng dữ liệu có độ ưu tiên khác nhau . 63 3.5. Đánh giá giải pháp đề xuất bằng mô phỏng . . . . . . . . . . . . . . . . . 68 3.5.1. Thước đo dùng để đánh giá . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2. Các kịch bản mô phỏng . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.2.1. Kịch bản ba nút . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.2.2. Kịch bản ba cặp nút mạng . . . . . . . . . . . . . . . . . . . 73 3.5.2.3. Kịch bản ngẫu nhiên . . . . . . . . . . . . . . . . . . . . . . 75 3.6. Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4. ĐỀ XUẤT PHƯƠNG PHÁP ĐÁNH GIÁ GIẢI PHÁP ĐIỀU KHIỂN THÔNG LƯỢNG BẰNG TESTBED 78 4.1. Xây dựng hệ thống testbed phục vụ đánh giá hiệu năng mạng . . . . . . . 78 4.1.1. Một số phương pháp đánh giá hiệu năng mạng không dây . . . . . . 79 4.1.2. Những ưu điểm của testbed và mô hình hoạt động của một hệ thống testbed cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1.3. Thiết lập hệ thống testbed . . . . . . . . . . . . . . . . . . . . . . . 84 4.2. Phương pháp đánh giá mạng bằng testbed . . . . . . . . . . . . . . . . . . 87 4 4.3. Đánh giá tỷ lệ thông lượng đề xuất bằng testbed . . . . . . . . . . . . . . . 89 4.4. Đánh giá mô hình ad hoc đa chặng . . . . . . . . . . . . . . . . . . . . . . 91 4.4.1. Đánh giá ảnh hưởng của các tham số chất lượng dịch vụ . . . . . . . 91 4.4.1.1. Đánh giá ảnh hưởng của tham số CW . . . . . . . . . . . . 94 4.4.1.2. Đánh giá ảnh hưởng của tham số TXOP . . . . . . . . . . . 96 4.4.1.3. Đánh giá ảnh hưởng của tham số AIFS . . . . . . . . . . . . 98 4.4.2. Nhận xét ảnh hưởng của các tham số QoS đến hiệu năng mạng . . . 100 4.5. Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 DANH MỤC CÔNG TRÌNH ĐÃ CÔNG BỐ 5 104 DANH MỤC TỪ VIẾT TẮT AC Access Category (Phân loại truy cập) Active_Time Thời gian truyền dữ liệu thực sự của một trạm không dây AIFS Arbitrary InterFrame Space Number (Số khoảng cách giữa các frame xen kẽ) BE Best Effort (Nỗ lực tối đa, ký hiệu một kiểu dữ liệu đa phương tiện trong IEEE 802.11e) BK BacKground (nền, ký hiệu một kiểu dữ liệu đa phương tiện trong IEEE 802.11e) CW Contention Window (Cửa sổ tương tranh) DCF Distributed Coordination Function (chức năng cộng tác phân tán) DIFS DCF InterFrame Space (Khe trống thời gian DCF) DSSS Direct Sequence Spread Spectrum (Trải phổ chuỗi liên tiếp trực tiếp) EDCA Enhanced Distributed Channel Access (Truy cập kênh truyền phân tán nâng cao EIFS Extended InterFrame Space (Khe trống thời gian mở rộng) EP Estimation Period (Khoảng thời gian ước tính, dùng để quan sát việc truyền dữ liệu) HCCA HCF Controlled Channel Acesss (Điều khiển truy cập tập trung không có tranh chấp) HCF Hybrid Coordination Function (Chức năng cộng tác lai) HR/DSSS High Rate Direct Sequence Spread Spectrum (DSSS tốc độ cao) 6 NAV Network Allocation Vector (Véc-tơ cấp phát mạng) OFDM Ortogonal Frequency Division Multiplexing (Ghép kênh phân chia theo tần số trực giao) PCF Point Coordination Function (Chức năng cộng tác điểm) PIFS PCF Interframe Space (Khe trống thời gian PCF) QoS Quality of Service (Chất lượng dịch vụ) SIFS Short InterFrame Space (Khe trống thời gian ngắn) TXOP Tranmission Opportunity (Cơ hội truyền) UP User Priority (Ưu tiên người dùng) VI VIdeo (video, ký hiệu một kiểu dữ liệu đa phương tiện trong IEEE 802.11e) VO VOice (voice, ký hiệu một kiểu dữ liệu đa phương tiện trong IEEE 802.11e) WME Wireless Multimedia Extensions (Phần mở rộng đa phương tiện không dây) WMM WiFi Multimedia (Mạng không dây đa phương tiện) 7 DANH MỤC CÁC BẢNG Bảng 1.2.1. Độ ưu tiên và các mức truy cập . . . . . . . . . . . . . . . . . . . 24 Bảng 1.2.2. Các tham số EDCA mặc định . . . . . . . . . . . . . . . . . . . . 25 Bảng 2.1.1. Các thông lượng lý thuyết trung bình (backoff counter là 15.5 và 0) đối với 802.11b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Bảng 2.1.2. Các thông lượng lý thuyết trung bình (backoff counter là 15.5 và 0) đối với 802.11g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Bảng 2.1.3. Các tham số điều chế độc lập . . . . . . . . . . . . . . . . . . . . . 50 Bảng 2.2.1. Hiệu quả của thông lượng lý thuyết tại tầng Ứng dụng của 802.11b 50 Bảng 2.2.2. Hiệu quả của thông lượng lý thuyết tại tầng Ứng dụng của 802.11g 51 Bảng 3.3.1. User Priority và Access Category [1]. . . . . . . . . . . . . . . . . 57 Bảng 3.3.2. Giới hạn giá trị cửa sổ tương tranh (CW). . . . . . . . . . . . . . . 57 Bảng 3.3.3. Các tham số mô phỏng. . . . . . . . . . . . . . . . . . . . . . . . . 59 Bảng 3.4.1. Trọng số cho tỷ lệ thông lượng của các kiểu dữ liệu khác nhau. . . 63 Bảng 3.5.1. Trọng số của ba loại dữ liệu (Voice, Video, Best-effort) dùng trong mô phỏng. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Bảng 4.4.1. Các tham số QoS mặc định . . . . . . . . . . . . . . . . . . . . . . 91 Bảng 4.4.2. Kết quả mô phỏng ở chế độ DCF . . . . . . . . . . . . . . . . . . 92 Bảng 4.4.3. Kết quả mô phỏng ở chế độ EDCA . . . . . . . . . . . . . . . . . 92 Bảng 4.4.4. Các giá trị giống nhau cho các tham số WMM. . . . . . . . . . . . 93 Bảng 4.4.5. Kết quả mô phỏng chế độ EDCA với các tham số QoS giống nhau 94 8 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1.1. Quá trình phát triển của họ tiêu chuẩn IEEE-802.11. . . . . . . . . 20 Hình 1.3.1. Mô hình ba trạm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Hình 1.3.2. M1 và M2 đang truyền thông trong khi GW trì hoãn. . . . . . . . . 27 Hình 1.3.3. M1 và GW đang truyền thông trong khi M2 từ chối. . . . . . . . . 27 Hình 1.3.4. Vấn đề trạm ẩn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Hình 1.3.5. Một mô hình mạng không dây đa chặng cơ bản. . . . . . . . . . . 29 Hình 2.1.1. Các bước truyền dữ liệu trong IEEE 802.11b/g . . . . . . . . . . . 39 Hình 2.1.2. PPDU dài (Long PPDU) . . . . . . . . . . . . . . . . . . . . . . . 42 Hình 2.1.3. PPDU ngắn (Short PPDU) . . . . . . . . . . . . . . . . . . . . . . 42 Hình 2.1.4. MAC Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Hình 2.1.5. MAC Header frame control . . . . . . . . . . . . . . . . . . . . . . 43 Hình 2.1.6. Định dạng của PHY PDU . . . . . . . . . . . . . . . . . . . . . . . 46 Hình 2.1.7. Thời lượng phần mào đầu (Preamble duration) . . . . . . . . . . . 46 Hình 3.3.1. Kịch bản hai nút mạng với ba luồng dữ liệu. . . . . . . . . . . . . . 58 Hình 3.3.2. Kết quả mô phỏng cho kịch bản đơn chặng với ba luồng dữ liệu. . 60 Hình 3.3.3. Thông lượng ước tính theo mức độ ưu tiên (CWmin ) giữa dữ liệu Voice và Video so với dữ liệu Background. . . . . . . . . . . . . . . . . 61 Hình 3.4.1. Thông lượng được chia sẻ theo trọng số đạt tỷ lệ kỳ vọng. . . . . . 62 Hình 3.4.2. Điều khiển kích thước CW để thích nghi các tỷ lệ thông lượng khác nhau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Hình 3.5.1. Kịch bản ba nút mạng. . . . . . . . . . . . . . . . . . . . . . . . . 70 Hình 3.5.2. Fairness Index trong mô hình ba nút mạng. . . . . . . . . . . . . . 71 Hình 3.5.3. Tổng thông lượng trong kịch bản ba nút mạng. . . . . . . . . . . . 72 Hình 3.5.4. Kịch bản ba cặp nút mạng. . . . . . . . . . . . . . . . . . . . . . . 73 Hình 3.5.5. Fairness Index trong mô hình ba cặp nút mạng. . . . . . . . . . . . 74 Hình 3.5.6. Tổng thông lượng trong kịch bản ba cặp nút mạng. . . . . . . . . . 75 Hình 3.5.7. Fairness Index trong kịch bản ngẫu nhiên. . . . . . . . . . . . . . . 76 9 Hình 3.5.8. Tổng thông lượng trong kịch bản ngẫu nhiên. . . . . . . . . . . . . 76 Hình 4.1.1. Wireless node trong hệ thống testbed được xây dựng . . . . . . . . 84 Hình 4.1.2. Sơ đồ tổng quan của hệ thống testbed được xây dựng . . . . . . . . 85 Hình 4.1.3. Sơ đồ logic của hệ thống testbed được xây dựng . . . . . . . . . . 86 Hình 4.1.4. Sơ đồ cài đặt của testbed . . . . . . . . . . . . . . . . . . . . . . . 87 Hình 4.2.1. Thông tin WiFi tại môi trường thiết lập mô phỏng. . . . . . . . . . 87 Hình 4.2.2. Phương pháp nghiên cứu thực nghiệm. . . . . . . . . . . . . . . . . 88 Hình 4.3.1. Tỷ lệ thông lượng của dữ liệu Voice và Video so với dữ liệu Best effort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Hình 4.3.2. Chỉ số đánh giá tỷ lệ (càng lớn càng đúng với tỷ lệ mong muốn). . 90 Hình 4.4.1. Mô hình mạng ad hoc đa chặng . . . . . . . . . . . . . . . . . . . . 91 Hình 4.4.2. So sánh thông lượng theo CWmin của dữ liệu Video . . . . . . . . 95 Hình 4.4.3. So sánh jitter theo CWmin của dữ liệu Video . . . . . . . . . . . . . 95 Hình 4.4.4. So sánh tỷ lệ mất gói theo CWmin của dữ liệu Video . . . . . . . . 96 Hình 4.4.5. So sánh thông lượng theo TXOPlimit của dữ liệu Voice . . . . . . 97 Hình 4.4.6. So sánh jitter theo TXOPlimit của dữ liệu Voice . . . . . . . . . . 98 Hình 4.4.7. So sánh tỷ lệ mất gói tin theo TXOPlimit của dữ liệu Voice . . . . 98 Hình 4.4.8. So sánh thông lượng theo AIFSN của dữ liệu Video . . . . . . . . 99 Hình 4.4.9. So sánh jitter theo AIFSN của dữ liệu Video . . . . . . . . . . . . 100 Hình 4.4.10.So sánh tỷ lệ mất gói theo AIFSN của dữ liệu Video . . . . . . . . 100 10 MỞ ĐẦU 1. Tính cấp thiết của luận án Ngày nay, mạng không dây ngày càng trở nên phổ biến. Ưu điểm của mạng không dây là tính di động và sự giải phóng khỏi giới hạn của các kết nối có dây hoặc cố định. Rất đơn giản để hai hoặc nhiều máy tính kết nối với nhau nhờ sóng rađiô nhằm mục đích truyền dữ liệu hoặc chia sẻ tài nguyên. Tuy nhiên, có rất nhiều công nghệ phức tạp nằm phía sau mạng không dây, trong đó chất lượng dịch vụ (Quality of Service – QoS) là một lĩnh vực quan trọng với mục tiêu gia tăng hiệu năng của mạng không dây. Trong các thành phần của mạng không dây, chuẩn IEEE 802.11 [2] đóng vai trò quan trọng nhất, nó bao gồm nguyên lý hoạt động của cả hai tầng MAC và PHY. Tuy nhiên, chuẩn IEEE 802.11 – chuẩn không chính thức cho các mạng không dây ad hoc hoạt động chưa tốt nếu xét trên các yếu tố trễ (delay), thông lượng (throughput), và đặc biệt là yếu tố công bằng (fairness) trong các mạng ad hoc. Mạng không dây ad hoc là một mạng phân tán di động trong đó các trạm trong mạng có thể di chuyển tùy ý. Việc các trạm di chuyển không những gây trễ trong việc thiết lập cấu hình mạng mới mà còn thay đổi điều kiện truyển thông ảnh hưởng đến thông lượng mạng. Truyền thông đa phương tiện (multimedia communications) bao gồm nhiều phương thức có hiệu quả và năng suất cao dùng cho việc trao đổi thông tin, vấn đề này ngày càng trở nên cần thiết trong bối cảnh tiến bộ nhanh chóng của các công nghệ mạng tiên tiến như mạng băng thông rộng, mạng không dây,. . . Do giới hạn của công nghệ, truyền thông giữa các máy tính ban đầu chỉ phục vụ cho các dữ liệu văn bản thuần túy, nhưng âm thanh, hình ảnh tĩnh và động, hoạt hình mới phù hợp với giác quan của con người. Như vậy, nhu cầu truyền thông dữ liệu dạng đa phương tiện là tất yếu trong xã hội ngày nay. Việc truyền thông có thể dựa trên mạng máy tính có dây truyền thống hoặc mạng không dây, trong đó mạng không dây có nhiều ưu điểm như 11 tính di động, khả chuyển, hỗ trợ được nhiều dạng thiết bị, nhiều địa hình khác nhau. Tuy nhiên, mạng không dây với những đặc điểm di động, phụ thuộc nhiều vào các yếu tố nhiệt độ, độ ẩm, nhiễu sóng,. . . luôn tồn tại vấn đề đảm bảo chất lượng dịch vụ (QoS), đối với dữ liệu dạng đa phương tiện, vấn đề này càng trở nên khó khăn. Trên Internet, đã tồn tại 3 mô hình QoS phổ biến là IntServ [3], DiffServe [4] và MPLS [5], tuy nhiên các mô hình QoS này không phù hợp với loại hình mạng không dây và dữ liệu đa phương tiện. Mạng không dây, đặc biệt là mạng không dây Ad hoc tồn tại trong tình huống không có một cơ sở hạ tầng cụ thể nhưng QoS phải đảm bảo tính phân cụm (Clustering), duy trì các kênh ảo (Virtual Circuit), quản lý sự lưu động (mobility) cũng như điều khiển điện năng. Với dữ liệu đa phương tiện, mạng còn phải đảm bảo các tương tác theo thời gian thực, vận chuyển đa hướng (many-tomany) với nhiều kiểu dữ liệu (âm thanh, hình ảnh), đòi hỏi thông lượng cao đồng thời các thông số chịu trễ (delay tolerance), biến đổi gói tin (jitter), mất mát và sai lệch thông tin,. . . phải ở mức thấp nhất có thể. Các ứng dụng truyền giọng nói (voice applications) có những đặc điểm khác biệt lớn so với những ứng dụng truyền dữ liệu truyền thống. Bản thân kiểu dữ liệu này luôn là thời gian thực, truyền thông dữ liệu dạng này phải có độ trễ tối thiểu khi truyền gói tin cũng như không chấp nhận việc mất gói tin, truyền sai thứ tự gói tin, biến đổi gói tin [6]. Đảm bảo chất lượng dịch vụ cho dữ liệu đa phương tiện trong mạng không dây là một chủ đề có tính thời sự và ý nghĩa thực tế và được nhiều tác giả phân tích và nghiên cứu. Một số nghiên cứu gần dây đưa ra một số phương pháp như đánh giá sự tranh chấp cả ở tầng liên kết và phân tầng MAC để đưa ra cải tiến bộ lập lịch để đạt được mức độ công bằng thích hợp giữa các luồng dữ liệu [7]. 2. Động lực nghiên cứu Hiện tại đã có một số giải pháp về chất lượng dữ liệu đa phương tiện trong mạng ad hoc. Tuy nhiên vẫn còn một số tồn tại cần tiếp tục nghiên cứu hoàn thiện, cụ thể như sau: Với bản chất luôn được chia sẻ và băng thông hạn chế của các liên kết không 12 dây đã chuyển sự cạnh tranh về băng thông từ hàng đợi bộ định tuyến sang thời gian truy cập kênh, vì thế giá trị cửa sổ tương tranh (CW) không xác định tốc độ truyền của nút không dây. Do đó, kết quả nghiên cứu đã có trong mạng có dây có thể được áp dụng trực tiếp vào mạng không dây. Như thể hiện bởi nghiên cứu [8], để mở rộng thuật toán điều khiển tốc độ Kelly [9] trên mạng không dây, các nút lân cận phải thường xuyên trao đổi thông tin cho nhau. Để tránh phụ phí thông điệp lớn, một số nghiên cứu tìm hiểu các phương pháp sử dụng thuật toán phân bổ cửa sổ tương tranh phân tán để hỗ trợ phân bổ băng thông công bằng và hiệu quả. Thách thức đối với các cách tiếp cận như vậy là trong các mạng không dây, tốc độ gửi của một nút được xác định bởi kích thước cửa sổ tương tranh của tất cả các nút cạnh tranh. Do không có nút nào kiểm soát hoàn toàn tốc độ gửi của nó, thuật toán điều khiển tốc độ Kelly [9] có thể được dịch trực tiếp sang điều khiển cửa sổ tương tranh và các thuật toán mới có thể được thiết kế để đạt được sự công bằng tùy ý và sử dụng kênh hiệu quả. Tuy nhiên, hầu hết các cách tiếp cận hiện tại chỉ tập trung vào các định nghĩa công bằng cụ thể chứ không đạt mức tùy ý, hoặc phân bổ băng thông theo phân phối tiêu chuẩn (uniform) hoặc theo tỷ lệ có trọng số (weighted proportional). Các cơ chế AOB [10], MFS [11] và Dynamic-802.11 [12, 13] chỉ tập trung vào phân bổ băng thông theo phân phối chuẩn. IEEE 802.11e [1, 14] và P-MAC [15] chỉ cung cấp sự công bằng theo tỷ lệ có trọng số. Một số thuật toán như vậy (Dynamic-802.11, MFS và P-MAC), cũng tạo ra sự mất ổn định mạng khi chúng cố gắng đạt được hiệu quả sử dụng kênh thông qua điều chỉnh CW động. Điều này là do các giải pháp yêu cầu một nút riêng lẻ để chạy các thuật toán lặp để ước tính cả các CW được sử dụng bởi các nút tranh chấp và số lượng các nút tranh chấp. Tuy nhiên, việc ước tính như vậy đòi hỏi tất cả các nút, có hoặc không có gói để truyền, đều phải bắt đầu đồng thời cả hai việc: điều chỉnh cửa sổ tranh chấp động và thuật toán ước lượng lặp, và chạy đồng bộ từng bước của các thuật toán này. Các nút có giá trị đã hết hạn về kích thước CW và số lượng nút tranh chấp, do thực thi thuật toán không đồng bộ hoặc có lỗi tạm thời (dễ xảy ra với mạng không dây), có thể khiến các thuật toán này thất bại. Từ những vấn đề đã phân tích ở trên, động lực của luận án nghiên cứu, cải tiến 13 các cơ chế điều khiển băng thông, sử công bằng trong mạng đã công bố. Mục đích là nâng cao hơn nữa chất lượng dịch vụ mạng không dây, đặc biệt với dữ liệu đa phương tiện. 3. Mục tiêu luận án Mục tiêu tổng quát của luận án là nghiên cứu, đề xuất giải pháp nâng cao chất lượng dịch vụ dữ liệu đa phương tiên trong mạng không dây ad hoc. Cải tiến cơ chế điều khiển tương tranh trong mạng thông qua việc điều chỉnh động giá trị tham số cửa sổ tương tranh (CW) nhằm đạt được tỷ lệ phân chia thông lượng linh hoạt cho các kiểu dữ liệu khác nhau. Đánh giá việc ảnh hưởng của các tham số chất lượng dịch vụ tới các kiểu dữ liệu đa phương tiện bằng hệ thống testbed. Cụ thể là: 1. Nghiên cứu, đề xuất phương pháp phân chia thông lượng theo tỷ lệ của các luồng dữ liệu có độ ưu tiên khác nhau trong mạng ad hoc. 2. Nghiên cứu, đề xuất phương pháp điều khiển động CW nhằm đạt được thông lượng theo nhu cầu của các luồng dữ liệu có độ ưu tiên khác nhau trong mạng ad hoc. 3. Nghiên cứu, đề xuất phương pháp đánh giá chất lượng dịch vụ mạng không dây sử dụng hệ thống đánh giá thực nghiệm (testbed). 4. Đối tượng và phạm vi nghiên cứu Chất lượng dịch vụ dữ liệu đa phương tiện trong mạng không dây là một chủ đề rất rộng và phức tạp. Để hoàn thành mục tiêu nghiên cứu, luận án xác định đối tượng và phạm vi như sau: a) Đối tượng: Các yếu tố ảnh hưởng tới chất lượng dịch vụ như chỉ số công bằng, tổng thông lượng, trễ, tỷ lệ mất gói tin đối với các loại dữ liệu đa phương tiện. b) Phạm vi: Giải pháp đảm bảo chất lượng dịch vụ cho các loại dữ liệu đa phương tiện (voice, video, background) về các yếu tố chỉ số công bằng và tổng thông lượng. 5. Phương pháp nghiên cứu Để thực hiện mục tiêu nghiên cứu đã đề ra, luận án sử dụng phương pháp 14 nghiên cứu lý thuyết, mô phỏng, và đánh giá thực nghiệm, cụ thể như sau: a) Nghiên cứu lý thuyết: luận án nghiên cứu và tổng hợp các công trình liên quan đến chất lượng dịch vụ mạng không dây ad hoc đã công bố trong và ngoài nước. Đồng thời luận án tập trung phân tích chi tiết ưu và nhược điểm để phát hiện vấn đề còn tồn tại nhằm đề xuất giải pháp cải tiến phù hợp. b) Mô phỏng: luận án đánh giá kết quả bằng mô phỏng sử dụng phần mềm NS2. Để kết quả được khách quan, luận án mô phỏng trên nhiều kịch bản khác nhau với nhiều tham số khác nhau, dựa trên kết quả mô phỏng, luận án đánh giá hiệu quả đạt được về mặt chỉ số công bằng và tổng thông lượng, đưa ra nhận định ưu điểm và nhược điểm của giải pháp đề xuất. c) Đánh giá bằng hệ thống thực nghiệm : luận án sử dụng phương pháp đánh giá dựa trên hệ thống thực nghiệm (testbed) nhằm đạt được tính thực tế do phương pháp này sử dụng các thiết bị thật, phần mềm sinh dữ liệu thật nên kết quả sẽ gần với thực tế hơn. 6. Bố cục luận án Luận án được bố cục gồm 3 phần là Mở đầu, Nội dung và Kết luận. Trong đó phần quan trọng nhất là Nội dung gồm các chương sau: • Chương 1: “Nghiên cứu tổng quan” tìm hiểu, phân tích vấn đề chính của luận án và các giải pháp đã có. • Chương 2: “Phân tích thông lượng mạng không dây chuẩn IEEE 802.11” thực hiện tính toán thông lượng lý thuyết tối đa của các mạng không dây IEEE 802.11. Trong các yếu tố ảnh hưởng tới QoS, thông lượng (througput) đóng một vai trò quan trọng. Tuy nhiên với chuẩn không dây IEEE 802.11, thông lượng là một yếu tố có nhiều “giá trị” khác nhau, ví dụ với 802.11b có thông lượng là 11 Mbps tuy nhiên đây là tốc độ dữ liệu của sóng vô tuyến (radio data rate) chứ không phải là tốc độ truyền các gói tin (yếu tố chính của thông lượng mạng). Thông lượng tối đa lý thuyết đóng vai trò quan trọng vì có thể được dùng để tạo điều kiện cung cấp mạng ở mức độ tối ưu nhất cho việc truyền dữ liệu, nhất là với các dữ liệu đa phương tiện. Họ tiêu chuẩn 802.11 [16] gồm nhiều công nghệ như 15 802.11a/b/g/n/ac, chương này của luận án thực hiện tính toán lý thuyết với hai chuẩn phổ biến 802.11b và 802.11g. • Chương 3: “Đề xuất phương pháp điều khiển các luồng dữ liệu có độ ưu tiên khác nhau nhau” thực hiện việc đánh giá dựa trên mô phỏng để chứng minh rằng mặc dù IEEE 802.11 có thể cung cấp sự phân chia băng thông cho các kiểu dữ liệu đa phương tiện khác nhau, tuy nhiên cách phân chia này không thực sự đảm bảo yêu cầu về chất lượng dịch vụ của các luồng dữ liệu. Ví dụ dữ liệu kiểu voice luôn nhận tỷ lệ cao nhất và dữ liệu background luôn là thấp nhất. Do đó, trong một số trường hợp ví dụ như với dữ liệu thời gian thực (real–time) mà cần sự khác biệt dịch vụ cho lưu lượng best effort và lưu lượng dữ liệu biến đổi theo thời gian thực thì IEEE 802.11 không thể cung cấp QoS tương xứng với yêu cầu như vậy. Và do đó là cần thiết phải có một cơ chế phân chia linh hoạt hơn. Trong khuôn khổ luận án, vấn đề được giải quyết bằng cách đo dữ liệu thực ở mỗi nút nhận dữ liệu trong một khoảng thời gian, rồi tiến hành so sánh với dữ liệu theo lý thuyết để xác định xem cần tăng hay giảm giá trị cửa sổ tương tranh (Contention Window – CW), thuật toán được đề xuất sẽ điều khiển việc tăng hay giảm giá trị CW này để đạt được tỷ lệ phân chia linh hoạt phù hợp với yêu cầu người dùng với nhiều kiểu dữ liệu khác nhau như voice, video và background, việc đánh giá đề xuất được thực hiện trên bộ mô phỏng mạng NS-2 theo nhiều kịch bản. • Chương 4 “Đề xuất phương pháp đánh giá giải pháp điều khiển thông lượng bằng testbed” phân tích ưu điểm của phương pháp đánh giá dựa trên thực nghiệm (testbed), sau đó xây dựng hệ thống đánh giá sử dụng testbed, đề xuất các bước đánh giá, rồi sử dụng để đánh giá ảnh hưởng của việc thay đổi giá trị của bộ tham số chất lượng dịch vụ dữ liệu đa phương tiện ảnh hưởng tới các yếu tố như thông lượng, độ trễ, tỷ lệ mất gói trong mô hình ad hoc đa chặng, kết quả chứng mình rằng việc sử dụng các thiết bị phần cứng thật sẽ có kết quả gần với thực tế hơn thay vì các giá trị mang tính lý tưởng trong các phương pháp mô hình hóa, mô phỏng hay phân tích lý thuyết. 7. Đóng góp của luận án Thông qua tổng hợp, phân tích ưu và nhược điểm của các nghiên cứu trước đây, 16 luận án đề xuất một số giải pháp nhằm phát huy ưu điểm, khắc phục những hạn chế. Sau đây là một số đóng góp chính của luận án: 1. Luận án đã đề xuất phương án cải tiến tỷ lệ chia sẻ băng thông nhằm đạt được một mức độ công bằng hợp lý cho các loại dữ liệu đa phương tiện.[CB1] 2. Luận án đã đề xuất phương pháp điều khiển các luồng dữ liệu có độ ưu tiên khác nhau nhằm đạt được mức độ công bằng và duy trì thông lượng cao khi mạng ở trạng thái bão hòa.[CB4][CB6][CB10] 3. Luận án đề xuất phương pháp đánh giá hiệu năng mạng không dây bằng hệ thống thực nghiệm testbed.[CB7][CB8][CB9] Từ kết quả đạt được, luận án thấy rằng việc đảm bảo chất lượng dịch vụ dữ liệu đa phương tiện trong mạng không dây ad hoc là phức tạp. Hướng tiếp cận dựa trên việc điều khiển động giá trị cửa số tương tranh cũng như thay đổi bộ tham số chất lượng dịch vụ được đánh giá theo bộ mô phỏng và hệ thống thực nghiệm đã cho thấy hiệu quả và tiềm năng ứng dụng để giải quyết bài toán chất lượng dịch vụ dữ liệu đa phương tiện trong mạng ad hoc. 17 CHƯƠNG 1. NGHIÊN CỨU TỔNG QUAN 1.1. Giới thiệu Vào năm 1997, Viện Kỹ nghệ điện và điện tử (Institute of Electrical and Electronics Engineers – IEEE) tạo ra chuẩn mạng không dây cục bộ (Wireless LAN – WLAN) đầu tiên, đó là chuẩn 802.11. Các tiêu chuẩn IEEE 802.11 đã trải qua quá trình phát triển lâu dài như Hình 1.1.1. Trong số nhiều tiêu chuẩn 802.11x thì chuẩn IEEE 802.11e được đề xuất năm 2005 [14] là đáng chú ý vì đưa ra các tập chất lượng dịch vụ (Quality of Service – QoS) tập trung vào các ứng dụng đa phương tiện như voice, video, và chuẩn IEEE 802.11e này đã được hợp nhất như một thành phần trong chuẩn WLAN IEEE 802.11 vào năm 2012 [16, 17]. Có thể khái quát quá trình phát triển của chuẩn không dây IEEE 802.11 cũng như các đề xuất bổ sung cho chuẩn này như sau: Bắt đầu từ năm 1997, tiêu chuẩn cho mạng WLAN đã được đề xuất và tiêu chuẩn (standard) không dây được ký hiệu IEEE 802.11, tuy nhiên do giới hạn băng tần cực đại chỉ ở mức 2 Mbps nên không đáp ứng được thực tế sử dụng, các thiết bị không dây theo chuẩn ban đầu này gần như không được sản xuất và nhu cầu cải tiến 802.11 được đặt ra. Một đề xuất mở rộng (amendment) cho IEEE 802.11 đã nhanh chóng được đề xuất vào tháng 7 năm 1999 và có tên IEEE 802.11b, hỗ trợ băng thông gần tương đương với Ethernet lúc đó là 11 Mbps. 802.11b sử dụng tần số 2.4 GHz vốn được dùng rộng rãi cho các thiết bị gia dụng như điện thoại không dây (kéo dài), lò vi sóng hoặc các thiết bị khác, do vậy các thiết bị 802.11b có thể bị xuyên nhiễu từ các thiết bị sử dụng cùng dải tần 2.4 GHz này, cách khắc phục có thể là đặt các thiết bị 802.11b cách xa các thiết bị cùng tần số để giảm được hiện tượng xuyên nhiễu. IEEE cũng trong năm 1999 này đã tạo ra mở rộng thứ hai cho chuẩn 802.11 có tên IEEE 802.11a, còn được coi là WiFi thế hệ thứ hai – WiFi 2, chuẩn này hỗ trợ băng thông lên đến 54 Mbps và tín hiệu trong một phổ tần số quy định quanh mức 5GHz. Tần số 18 của 802.11a cao hơn so với 802.11b, và với tần số này, các tín hiệu 802.11a cũng khó xuyên qua các vách tường và các vật cản khác hơn. Hai chuẩn a và b này thường được gọi chung là chuẩn IEEE-802.11 1999 [16]. Từ năm 2003, một loạt các mở rộng tiếp theo của IEEE 802.11 được đưa ra gồm: IEEE 802.11g, có thể nói 802.11g đã kết hợp các ưu điểm của cả 802.11 a và b trước đó nhằm hỗ trợ băng thông cao 54 Mbps và phạm vi tín hiệu tốt hơn và có khả năng tương thích ngược với các chuẩn trước đó. IEEE 802.11h là phiên bản nâng cao của 802.11a để hỗ trợ riêng cho các yêu cầu quy định của thị trường châu Âu. IEEE 802.11i tập trung cải tiến an toàn và bảo mật. IEEE 802.11e tập trung hỗ trợ các đáp ứng về yêu cầu chất lượng dịch vụ (QoS). Và đến năm 2007 thì các đề xuất mở rộng này đã được chính thức tích hợp vào chuẩn IEEE-802.11 2007 [16]. Vào năm 2009, một mở rộng tiếp theo cho mạng WLAN được phê chuẩn là IEEE 802.11n, hay Wireless N nhằm cải tiến 802.11g và có thể thu/phát tín hiệu của kết nối không dây bằng cách sử dụng nhiều ăng-ten (Multiple In, Multiple Out – MIMO), băng thông của chuẩn n này có thể lên đến 300 Mbps và tần số hoạt động 2.4/5 GHz cho phép phạm vi phủ sóng lớn và khả năng chống nhiễu tốt hơn, cũng như tương thích ngược với các mở rộng tiêu chuẩn 802.11 trước đó. Các năm tiếp theo có nhiều mở rộng được đề xuất như IEEE 802.11p năm 2010 tập trung cho môi trường mạng xe cộ (Vehicles Network); IEEE 802.11u năm 2011 cung cấp khả năng liên mạng với mạng viễn thông di động/mạng 3G. Đến năm 2012 thì các đề xuất mở rộng này đã được chính thức tích hợp vào chuẩn IEEE-802.11 2012. [16] Đến năm 2013, đề xuất mở rộng IEEE 802.11ac được đưa ra, 802.11ac sử dụng công nghệ không dây băng tần kép, hỗ trợ các kết nối đồng thời trên cả băng tần 2.4 GHz và 5 GHz. 802.11ac cung cấp khả năng tương thích ngược với các chuẩn 802.11b, 802.11g, 802.11n và băng thông đạt tới 1300 Mbps trên băng tần 5 GHz, 450 Mbps trên 2.4GHz. Cũng trong năm 2013, mở rộng IEEE 802.11af (còn có các tên gọi khác là Super WiFi hoặc White-Fi) dùng tần số thấp 1 GHz nhằm có bước sóng dài hơn để tín hiệu truyền đi xa hơn và lý thuyết có thể đến 10 km nhưng đổi lại băng thông chỉ ở mức quanh 20 Mbps. Chuẩn không dây có tích hợp các đề xuất mở rộng này đã được chính thức phê duyệt và được coi là chuẩn IEEE-802.11 2016 [16]. 19
- Xem thêm -

Tài liệu liên quan