Đăng ký Đăng nhập
Trang chủ Nghiên cứu tổng hợp bột huỳnh quang phát ánh sáng vùng đỏ trên cơ sở các oxit ki...

Tài liệu Nghiên cứu tổng hợp bột huỳnh quang phát ánh sáng vùng đỏ trên cơ sở các oxit kim loại pha tạp ion kim loại chuyển tiếp mn4+ và cr3+ nhằm ứng dụng trong chiếu sáng rắn (tt)

.PDF
27
43
56

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Nguyễn Thị Kim Chi NGHIÊN CỨU TỔNG HỢP BỘT HUỲNH QUANG PHÁT ÁNH SÁNG VÙNG ĐỎ TRÊN CƠ SỞ CÁC OXIT KIM LOẠI PHA TẠP ION KIM LOẠI CHUYỂN TIẾP Mn4+ VÀ Cr3+ NHẰM ỨNG DỤNG TRONG CHIẾU SÁNG RẮN Ngành: Khoa học Vật liệu Mã số: 9440122 TÓM TẮT LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội – 2020 Công trình được hoàn thành tại: Trường Đại học Bách khoa Hà Nội Người hướng dẫn khoa học: HD1: TS. Nguyễn Duy Hùng HD2: PGS. TS. Phương Đình Tâm Phản biện 1: Phản biện 2: Phản biện 3: Luận án được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Trường họp tại Trường Đại học Bách khoa Hà Nội Vào hồi …….. giờ, ngày ….. tháng ….. năm ……… Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tạ Quang Bửu - Trường ĐHBK Hà Nội 2. Thư viện Quốc gia Việt Nam A. GIỚI THIỆU VỀ ĐỀ TÀI 1. Lý do chọn đề tài Bóng đèn chiếu sáng dựa trên các điốt phát quang ánh sáng trắng (WLED) đã và đang thay thế hầu hết các loại bóng đèn truyền thống vì các đèn sử dụng WLED có những đặc tính vượt trội như tiết kiệm năng lượng, tuổi thọ cao và thân thiện với môi trường, dễ điều khiển, phổ ánh sáng có thể điều chỉnh cho phù hợp với các yêu cầu sử dụng khác nhau. Để chế tạo ra WLED có nhiều phương pháp khác nhau, tuy nhiên các sản phẩm WLED thương mại chủ yếu dựa trên phương pháp kết hợp của chíp LED phát ánh sáng xanh lam với bột huỳnh quang phát ánh sáng vàng và đỏ. Trong thời gian gần đây, các bột huỳnh quang phát xạ đỏ được sản xuất dựa trên các vật liệu kim loại chứa gốc nitric pha tạp ion đất hiếm. Tuy nhiên các bột huỳnh quang phát ánh sáng đỏ trên trong chế tạo sử dụng các nguyên vật liệu ban đầu rất đắt và quá trình chế tạo vật liệu phải được giữ trong môi trường khí bảo quản nghiêm ngặt nhằm tránh sự ôxy hóa, nhiệt độ tạo thành pha tinh thể mạng nền cũng rất cao trên 1500 0C, vì vậy bột huỳnh quang phát ánh sáng đỏ thường có giá thành khá cao. Để giảm giá thành sản phẩm, các WLED trên thị trường thương mại hiện nay thường được sản xuất bằng cách sử dụng chíp LED xanh lam kết hợp với bột huỳnh quang YAG: Ce3+ phát quang phổ rộng trong vùng ánh sáng màu vàng. Do các WLED thiếu vùng ánh sáng màu đỏ nên các WLED có nhiệt độ màu (CCT) cao và hệ số hoàn màu (CRI) thấp dẫn tới nguồn sáng sử dụng WLED có chất lượng ánh sáng kém. Do đó cần nghiên cứu tổng hợp các loại bột huỳnh quang phát ánh sáng đỏ có giá thành thấp nhằm bổ sung vùng ánh sáng đỏ để tăng chất lượng ánh sáng cho các WLED. Cùng với sự thay thế các bòng đèn truyền thống trong chiếu sáng dân dụng, các bóng đèn sử dụng LED đã dần thay thế các bóng đèn chiếu sáng chuyên dụng. Một trong lĩnh vực chiếu sáng chuyên dụng đang được quan tâm mạnh mẽ hiện nay là chiếu sáng trong nông nghiệp công nghệ cao. Việc thay thế đèn chiếu sáng truyền thống bằng các đèn LED đã được các nhà khoa học chứng minh rằng các sản phẩm nông nghiệp sẽ giảm thành phần nitrat và các chất chống ôxi hóa, làm tăng chất lượng của sản phẩm nông nghiệp. Ngoài ra, đèn LED có thể điều chỉnh được bước sóng phù hợp với các loại cây trồng, giai đoạn phát triển khác nhau nên hiệu quả chiếu sáng tốt hơn so với đèn truyền thống. Bên cạnh đó, sử dụng các đèn LED cũng giúp 1 môi trường nuôi, trồng trong nhà kính ổn định nhiệt độ hơn và tiết kiệm năng lượng điện do đèn LED tiết kiệm năng lượng, bức xạ nhiệt thấp hơn so với đèn truyền thống. Do đặc thù hấp thụ ánh sáng của lá cây chủ yếu trong vùng từ ánh sáng tử ngoại tới xanh lam và đỏ xa tới hồng ngoại gần (< 750 nm) nên các đèn LED chuyên dụng chiếu sáng trong nông nghiệp chủ yếu được chế tạo hoặc sản xuất dựa trên các chíp LED phát xạ trong vùng từ tử ngoại tới xanh lam kết hợp với bột huỳnh quang phát quang trong vùng từ đỏ xa tới hồng ngoại gần. Do sử dụng bột huỳnh quang phát quang từ vùng đỏ xa tới hồng ngoại gần nên các sản phẩm đèn LED sử dụng trong chiếu sáng nông nghiệp công nghệ cao thường có giá thành khá cao so với các đèn WLED sử dụng trong chiếu sáng dân dụng. Mặt khác các LED chiếu sáng trong nông nghiệp công nghệ cao hiện nay chủ yếu sử dụng bột huỳnh quang phát ánh sáng đỏ (< 630 nm) sử dụng trong chế tạo và sản suất WLED nên chưa đáp ứng được hiệu quả chiếu sáng đối với một số cây trồng cũng như các giai đoạn phát triển của cây. Do đó cần nghiên cứu và chế tạo một số bột huỳnh quang phát quang trong vùng đỏ xa nhằm chế tạo được các LED chiếu sáng nông nghiệp có giá thành rẻ, phổ phát quang phù hợp với phổ hấp thụ của cây trồng tốt hơn. Trong thời gian qua, bột huỳnh quang phát ánh sáng vùng đỏ xa chủ yếu dựa trên mạng nền chứa các gốc ôxít kim loại pha tạp ion kim loại chuyển tiếp vì giá thành các nguyên liệu đầu vào rẻ, môi trường chế tạo không cần khí bảo vệ, nhiệt độ phản ứng thấp, chế tạo bằng các phương pháp hóa học đơn giản. Do đó việc nghiên cứu tìm ra được bột huỳnh quang phát ánh sáng đỏ xa có tiềm năng thay thế các bột huỳnh quang thương mại hiện nay có giá thành cao và có phổ phát quang phù hợp cho các chiếu sáng chuyên dụng đang là một đề tài rất được các nhà khoa học trong và ngoài nước quan tâm. Do đó trong nghiên cứu này chúng tôi đã lựa chọn đề tài là: “Nghiên cứu tổng hợp bột huỳnh quang phát ánh sáng vùng đỏ trên cơ sở các ôxít kim loại pha tạp ion kim loại chuyển tiếp Mn4+ và Cr3+ nhằm ứng dụng trong chiếu sáng rắn” Trong khuôn khổ nghiên cứu của luận án này chúng tôi tập trung vào nghiên cứu tổng hợp một số bột huỳnh quang phát ánh sáng vùng đỏ dựa trên các gốc ôxít kim loại như SrO, Al2O3, MgO pha tạp ion kim loại chuyển tiếp là Mn4+ và Cr3+. Với tiêu chí chế tạo được vật liệu bột huỳnh quang phát ánh sáng vùng đỏ có giá thành thấp, chúng tôi đã lựa chọn phương pháp chế tạo là đồng kết tủa kết hợp với ủ nhiệt. 2 2. Mục tiêu nghiên cứu Mục tiêu chung của luận án là tổng hợp thành công bột huỳnh quang phát ánh sáng vùng đỏ, giá thành rẻ, có tiềm năng ứng dụng trong chế tạo LED phát ánh sáng trắng và LED chiếu sáng chuyên dụng trong nông nghiệp công nghệ cao. Cụ thể như sau:  Tổng hợp được các vật liệu SrAl2O4, SrMgAl10O17 pha tạp ion Mn4+; MgAl2O4 pha tạp ion Cr3+ bằng phương pháp đồng kết tủa kết hợp với ủ nhiệt.  Bột huỳnh quang chế tạo được phát ánh sáng vùng đỏ, có hiệu suất phát quang tốt và có tiềm năng ứng dụng được trong chế tạo nguồn chiếu sáng rắn  Thử nghiệm thành công các bột huỳnh quang trên trong chế tạo WLED và LED chiếu sáng chuyên dụng trong nông nghiệp công nghệ cao. 3. Phương pháp nghiên cứu Luận án được thực hiện trên cơ sở các kết quả nghiên cứu thực nghiệm và hệ thống các công trình nghiên cứu đã được công bố. Trong đó phương pháp đồng kết tủa kết hợp ủ nhiệt được sử dụng trong chế tạo. Các phương pháp khảo sát, phân tích vi cấu trúc như FESEM, XRD; PL, PLE dùng để khảo sát tính chất quang của hệ vật liệu thu được; Đặc trưng quang điện của LED thử nghiệm được khảo sát bằng hệ kiểm tra các thông số điốt phát quang LED Tester. 4. Các đóng góp mới của luận án  Chế tạo thành công bột huỳnh quang trên cơ sở vật liệu oxit kim loại SrO, MgO, Al2O3 pha tạp ion kim loại chuyển tiếp Mn4+ và Cr3+ bằng phương pháp đồng kết tủa kết hợp với ủ nhiệt. Khảo sát và đưa ra các tham số công nghệ chế tạo như là nhiệt độ thiêu kết, thời gian thiêu kết, nồng độ pha tạp.  Vật liệu huỳnh quang SrAl2O4 pha tạp Mn4+ và vật liệu SrMgAl10O17 pha tạp Mn4+ cho phát xạ đỏ tại 658 nm. Vật liệu huỳnh quang MgAl2O4 pha tạp Cr3+ cho phát xạ đỏ xa với đỉnh phát quang mạnh nhất tại 687 nm. Chúng tôi cũng làm sáng tỏ vùng kích thích và vùng phát xạ của vật liệu.  Thử nghiệm chế tạo LED từ vật liệu huỳnh quang chế tạo được mở ra khả năng ứng dụng của bột huỳnh quang trong chiếu sáng rắn. 5. Ý nghĩa khoa học và thực tiễn của luận án Đề tài góp phần phát triển và hoàn thiện thêm các cơ chế để giải thích các hiện tượng phát quang và các tính chất vật lý của vật liệu bột 3 huỳnh quang. Kết quả nghiên cứu của đề tài cũng góp phần thúc đẩy nhanh quá trình phát triển các loại bột huỳnh quang dựa trên mạng nền ôxít pha tạp các ion kim loại chuyển tiếp nhằm tìm ra được bột huỳnh quang có đặc tính tốt, giá thành rẻ, góp phần giảm giá thành sản phẩm đèn LED. Những đóng góp về khoa học của đề tài này đã được ghi nhận bởi 2 công trình đăng trên tạp chí chuyên ngành và một số công trình đăng trên các tạp chí, hội nghị và hội thảo khoa học chuyên ngành trong nước. Bột huỳnh quang phát ánh sáng đỏ dựa trên gốc ôxít, chế tạo bằng phương pháp đơn giản, tiêu tốn ít năng lượng nên giá thành sản phẩm sẽ rẻ, do đó sản phẩm chế tạo được có tiềm năng ứng dụng vào thực tế sản xuất. Đặc biệt là tại Việt Nam, một số công ty sản xuất bóng đèn LED đã và đang nghiên cứu thử nghiệm sản suất LED, để chủ động trong sản xuất và tăng phần trăm nội địa các sản phẩm đèn LED sản suất trong nước, đồng thời góp phần làm giảm giá thành so với sản phẩm ngoại nhập thì việc nghiên cứu và tổng hợp các vật liệu bột huỳnh quang phát quang ánh sáng đỏ là cần thiết và có tính thực tiễn. 6. Bố cục của luận án Trong luận án này, chúng tôi trình bày tổng quan lý thuyết, công việc nghiên cứu chế tạo, khảo sát cấu trúc và tính chất quang của ba hệ vật liệu bằng phương pháp đồng kết tủa kết hợp với ủ nhiệt. Các nội dung chính được đưa ra như sau: Chương 1: Giới thiệu tổng quan về cơ chế phát quang của vật liệu huỳnh quang; tính chất quang của ion Mn4+ và Cr3+ trong trường tinh thể; tổng quan về vật liệu huỳnh quang phát xạ đỏ, đỏ xa trên cơ sở mạng nền là các gốc oxit kim loại pha tạp ion kim loại chuyển tiếp; giới thiệu về các phương pháp chế tạo vật liệu huỳnh quang; giới thiệu một số tính toán để giải thích cơ chế dập tắt huỳnh quang theo nồng độ, tính toán hiệu suất lượng tử của bột huỳnh quang. Chương 2: Mô tả chi tiết các quy trình chế tạo vật liệu SrAl2O4: Mn4+, 3+ SrMgAl10O17: Mn4+, MgAl2O4: Cr bằng phương pháp đồng kết tủa kết hợp ủ nhiệt. Trình bày một số phép đo cơ bản trong quá trình phân tích cấu trúc và tính chất quang của vật liệu như XRD, FESEM, EDS, PL, PLE và Raman. Chương 3: Trình bày kết quả, thảo luận về cấu trúc và tính chất quang của vật liệu SrAl2O4: Mn4+, giải thích thỏa đáng cơ chế phát quang của bột 4 huỳnh quang. Thử nghiệm ứng dụng bột huỳnh quang chế tạo được vào trong WLED. Chương 4: Trình bày kết quả, thảo luận về cấu trúc và tính chất quang của vật liệu SrMgAl10O17: Mn4+, giải thích thỏa đáng cho cơ chế phát quang của bột huỳnh quang. Khảo sát thời gian sống của bột huỳnh quang chế tạo. Chương 5: Trình bày kết quả, thảo luận về cấu trúc và tính chất quang của vật liệu MgAl2O4: Cr3+, giải thích thỏa đáng cho cơ chế huỳnh quang của bột huỳnh quang. Thử nghiệm ứng dụng bột huỳnh quang chế tạo được vào trong WLED. B. NỘI DUNG LUẬN ÁN Chương 1: TỔNG QUAN 1.1. Cơ chế phát quang của vật liệu huỳnh quang Vật liệu huỳnh quang thường được cấu tạo từ hai phần chính là chất nền và chất pha tạp hay còn gọi là các tâm phát quang. Chất nền được chọn thường là các vật liệu có độ bền cơ học, hóa học, bền nhiệt tốt, cấu trúc ổn định và trong suốt đối với các bức xạ trong vùng nhìn thấy. Chất pha tạp, thường là đất hiếm hoặc ion kim loại chuyển tiếp, có cấu trúc và bán kính nguyên tử phù hợp với mạng nền. Các ion pha tạp đóng vai trò là các tâm phát quang. 1.2. Tính chất quang của ion Mn4+ và Cr3+ trong trường tinh thể 1.2.1. Tính chất quang của ion Mn4+ trong trường tinh thể Ion Mn4+ có cấu hình điện tử 3d3, khi pha tạp vào trong mạng nền, 4+ Mn đóng vai trò là tâm kích hoạt phù hợp trong chế tạo các bột huỳnh quang phát xạ đỏ. Theo giản đồ Tanabe-Sugano cho thấy ion Mn4+ có ba dịch chuyển hấp thụ chủ yếu (theo chiều tăng năng lượng hấp thụ): 4A2 → 4T2 (thuộc vùng ánh sáng xanh lam), 4A2 → 4T1 (4F) và 4A2 → 4T2 (4P) (thuộc vùng ánh sáng tử ngoại). Vùng phát xạ của ion Mn4+ được tạo nên do chuyển dời điện tử từ 2E → 4A2 (thường thuộc vùng đỏ, đỏ xa hoặc hồng ngoại gần, tùy thuộc độ mạnh trường tinh thể). 5 Nghiên cứu sự phát quang cho thấy khi pha tạp ion Mn4+ vào trong mạng nền chứa các gốc oxit kim loại như SrO, Al2O3, MgO, các ion Mn4+ sẽ chiếm các vị trí Al3+ trong trường tinh thể mạnh do sự tương ứng của bán kính ion của Mn4+ (0,530 Å) và bán kính ion của Al3+(0,535 Å). 1.2.2. Tính chất quang của ion Cr3+ trong trường tinh thể Ion Cr3+ cũng có cấu hình điện tử 3d3 , khi pha tạp vào trong mạng nền, Cr3+ đóng vai trò là tâm kích hoạt phù hợp trong chế tạo các bột huỳnh quang phát xạ đỏ xa. Theo giản đồ Tanabe-Sugano cho thấy ion Cr3+ có ba dịch chuyển hấp thụ chủ yếu: 4A2 → 4T2 (thuộc vùng ánh sáng xanh lam), 4A2 → 4T1 (4F) và 4A2 → 4T2 (4P) (thuộc vùng ánh sáng tử ngoại). Vùng phát xạ của ion Cr3+ được tạo nên do chuyển dời 2 E → 4A2 (thường thuộc vùng đỏ, đỏ xa hoặc hồng ngoại gần, tùy thuộc độ mạnh trường tinh thể). Nghiên cứu sự phát quang cho thấy khi pha tạp ion Cr3+ vào trong mạng nền chứa các gốc oxit kim loại như SrO, Al2O3, MgO, các ion Cr3+ sẽ chiếm các vị trí Al3+ trong trường tinh thể mạnh do sự tương ứng của bán kính ion của Cr3+ (0,615 Å) và bán kính ion của Al3+(0,535 Å). 1.3. Vật liệu huỳnh quang phát xạ đỏ, đỏ xa trên cơ sở mạng nền chứa các gốc oxit kim loại pha tạp ion Mn4+, Cr3+ 1.3.1. Tình hình nghiên cứu vật liệu huỳnh quang phát xạ đỏ ứng dụng cho WLED dựa trên mạng nền chứa các gốc oxit kim loại Trong nước, hiện nay có các nhóm nghiên cứu chế tạo vật liệu huỳnh quang dựa trên mạng nền là các gốc oxit kim loại ứng dụng trong chiếu sáng trắng. Tuy nhiên các nghiên cứu này đa số chế tạo các bột phát xạ màu xanh và ion kim loại pha tạp đa số là ion kim loại đất hiếm. Phương pháp chế tạo chủ yếu là phương pháp nổ, phản ứng pha rắn và phương pháp solgel. Hiện nay trên thế giới đã có một số công trình nghiên cứu chế tạo bột huỳnh quang phát xạ đỏ dựa trên mạng nền là các gốc oxit kim loại pha tạp đất hiếm bằng phương pháp phản ứng pha rắn. Tuy nhiên bột huỳnh quang có mạng nền pha tạp các ion kim loại đất hiếm Eu có giá thành khá cao, các nghiên cứu gần đây đã nghiên cứu và phát triển các bột huỳnh quang phát xạ đỏ dựa trên các gốc oxit kim loại pha tạp ion kim loại chuyển tiếp Mn4+, Cr3+. 6 1.3.2. Vật liệu huỳnh quang phát xạ đỏ ứng dụng cho WLED dựa trên mạng nền chứa các gốc oxit kim loại pha tạp Mn4+ Một số công trình công bố trong trên thế giới cho thấy vật liệu huỳnh quang dựa trên mạng nền là các gốc oxit kim loại SrO, MgO, Al2O3 pha tạp Mn4+. Cụ thể hệ vật liệu SrAl2O4 pha tạp Mn4+, SrMgAl10O17 pha tạp Mn4+ cho phát xạ đỏ với bước sóng khoảng 660 nm, bước sóng kích thích 320 nm, được chế tạo bằng phương pháp phản ứng pha rắn. Bước đầu thử nghiệm trên chip LED cho CRI > 80. Tuy nhiên chưa có công trình nào nghiên cứu một cách hệ thống về ảnh hưởng của nhiệt độ nung thiêu kết, nồng độ pha tạp lên tính chất quang của hệ, khảo sát thời gian phân rã, hiệu suất lượng tử của bột huỳnh quang. 1.3.3. Vật liệu huỳnh quang phát xạ đỏ xa ứng dụng trong chiếu sáng rắn dựa trên mạng nền chứa các gốc oxit kim loại pha tạp ion Cr3+ Một số công trình công bố trên thế giới cho thấy vật liệu huỳnh quang dựa trên mạng nền là các gốc oxit kim loại MgO, Al2O3 pha tạp Cr3+. Cụ thể hệ vật liệu MgAl2O4 pha tạp Cr3+ cho phát xạ đỏ xa với bước sóng khoảng 694 nm được chế tạo bằng phương pháp phản ứng pha rắn. Tuy nhiên chưa có công trình nào nghiên cứu một cách hệ thống về ảnh hưởng của nhiệt độ nung thiêu kết, nồng độ pha tạp lên tính chất quang của hệ, khảo sát cường độ PL hệ ở nhiệt độ thấp, hiệu suất lượng tử của vật liệu cũng như thử nghiệm trên chip LED. 1.4. Các phương pháp tổng hợp bột huỳnh quang 1.4.1. Phương pháp gốm 1.4.2. Phương pháp sol-gel 1.4.3. Phương pháp đồng kết tủa kết hợp ủ nhiệt Ưu điểm của phương pháp này là dễ làm, tạo ra vật liệu có kích thước đồng đều, không bị lẫn tạp chất từ môi trường ngoài. Phương pháp này cho phép khuếch tán các chất tham gia phản ứng khá tốt, tăng đáng kể diện tích bề mặt tiếp xúc của các chất phản ứng. Tuy nhiên phương pháp này gặp khó khăn là phải đảm bảo tỉ lệ hợp thức của các chất trong hỗn hợp kết tủa đúng với sản phẩm mong muốn. Do các ưu điểm của phương pháp đồng kết tủa kết hợp ủ nhiệt nên chúng tôi lựa chọn phương pháp này để chế tạo các hệ bột huỳnh quang trong luận án. Thực nghiệm chế tạo các mẫu nghiên cứu sẽ được trình bày cụ thể trong chương 2 của luận án. 7 1.5. Một số tính toán 1.5.1. Sự suy giảm cường độ phát quang của vật liệu huỳnh quang theo nồng độ Để làm sáng tỏ cơ chế dập tắt huỳnh quang theo nồng độ, chúng tôi tiến hành tính toán khoảng cách truyền năng lượng tới hạn Rc. Khoảng cách tới hạn Rc là khoảng cách mà xác suất truyền năng lượng gần bằng xác suất phát xạ của các tâm kích hoạt. Theo công thức Blasse: - Nếu RC > 5Å: tương tác lưỡng cực điện đóng vai trò chính - Nếu RC < 5Å: tương tác trao đổi đóng vai trò chính trong quá trình truyền năng lượng giữa các ion kích hoạt 1.5.2. Hiệu suất huỳnh quang Hiệu suất lượng tử trong IQE của bột huỳnh quang được tính bằng công thức sau: 1.6. Kết luận chương 1 Đã tổng quan về tình hình nghiên cứu vật liệu huỳnh quang phát xạ đỏ, đỏ xa trên cơ sở mạng nền là các gốc oxit kim loại pha tạp ion kim loại chuyển tiếp; giới thiệu các phương pháp chế tạo; một số tính toán để giải thích cơ chế dập tắt huỳnh quang theo nồng độ; tính toán hiệu suất lượng tử của bột huỳnh quang. Chương 2: QUY TRÌNH THỰC NGHIỆM CHẾ TẠO VÀ ĐO ĐẠC 2.1. Quy trình chế tạo bột huỳnh quang bằng phương pháp đồng kết tủa 2.1.1. Tổng hợp vật liệu SrAl2O4 pha tạp Mn4+ Các tiền chất được sử dụng trong chế tạo là: Sr(NO3)2; Al(NO3)3.9H2O; Mn(NO3)2, pH của hỗn hợp bằng 10. Mẫu sau khi chế tạo được sấy ở nhiệt độ 150 ℃ trong 5 giờ, sau đó tiến hành nung thiêu kết từ 900 ℃ đến 1300 ℃ trong 6 giờ, nồng độ pha tạp từ 0,006 mol% đến 0,1 mol% Mn4+. 8 2.1.2. Tổng hợp vật liệu SrMgAl10O17 pha tạp Mn4+ Các tiền chất được sử dụng trong chế tạo là: Sr(NO3)2, Mg(NO3)2.6H2O, Al(NO3)3.9H2O, Mn(NO3)2, NH4OH và H2O, pH bằng 10. Mẫu sau khi chế tạo được sấy ở nhiệt độ 200 ℃ trong 3 giờ, sau đó tiến hành nung thiêu kết từ 900 ℃–1500℃ trong 6 giờ, nồng độ pha tạp từ 0,3 mol% đến 2,1 mol% Mn4+. 2.1.3. Tổng hợp vật liệu MgAl2O4 pha tạp Cr3+ Các tiền chất được sử dụng trong chế tạo là: Mg(NO3)2.6H2O, Al(NO3)3.9H2O, Cr(NO3)3.9H2O, dung môi NH4OH và H2O, pH bằng 10. Mẫu sau khi chế tạo được sấy ở nhiệt độ 200 ℃ trong 3 giờ, sau đó tiến hành nung thiêu kết từ 900–1500 oC trong 6 giờ, nồng độ pha tạp từ 0,02 mol% đến 2,2 mol% Cr3+. 2.2. Các phương pháp khảo sát tính chất vật liệu 2.2.1. Phương pháp khảo sát cấu trúc tinh thể và thành phần pha của bột huỳnh quang Ảnh nhiễu xạ XRD thu được từ hệ D8 Advance, Brucker. 2.2.2. Phương pháp khảo sát hình thái bề mặt và kích thước hạt Chúng tôi sử dụng kính hiển vi điện tử quét phát xạ trường FESEM – JSM - 7600F (Jeol, Nhật bản) 2.2.3. Phương pháp khảo sát thành phần các nguyên tố vật liệu Chúng tôi sử dụng thiết bị EDS tích hợp trong kính hiển vi điện tử phân giải cao FESEM-JSM-7600F. 2.2.4. Các phương pháp khảo sát tính chất quang Chúng tôi sử dụng thiết bị thiết bị Nanolog, Horiba Jobin Yvon, nguồn kích thích là đèn Xenon công suất 450 W có bước sóng từ 250 ÷ 800 nm. 2.2.5. Đo các đại lượng quang và thử nghiệm trên chip LED Chúng tôi sử dụng quả cầu tích phân GS-IS500-TLS-H, Gamma Scientific . 2.3. Kết luận chương 2 Chúng tôi đã tóm lược quy trình chế tạo vật liệu và các phép đo để nghiên cứu cấu trúc tinh thể, thành phần pha, hình thái bề mặt, kích thước hạt, khảo sát tính chất quang và khả năng ứng dụng của bột huỳnh quang chế tạo được trên chip LED. 9 Chương 3: CẤU TRÚC VÀ TÍNH CHẤT QUANG BỘT HUỲNH QUANG SrAl2O4 PHA TẠP Mn4+ 3.1. Cấu trúc tinh thể và ảnh hưởng của nhiệt độ thiêu kết lên pha của của mạng nền SrAl2O4 Kết quả phân tích phổ XRD ở Hình 3.1 đối với mẫu được thiêu kết tại 1200 ℃ - 6 giờ trong không khí cho thấy mẫu sau khi nung đã hình thành pha tinh thể của hợp chất dạng SrAl2O4 Hình 3.1 Phổ XRD của mẫu nung thiêu kết tại 1200 ℃- 6 giờ và phổ thẻ chuẩn của mạng nền SrAl2O4 Hình 3.2 Phổ XRD của vật liệu sau khi nung thiêu kết từ 900 ℃ đến 1300 ℃ trong 6 giờ. Ở Hình 3.2, phổ XRD cho thấy ở nhiệt độ 900 ℃ bên cạnh pha mạng nền SrAl2O4 còn quan sát thấy pha tinh thể Sr4Al2O25 và Al2O3 ứng với dữ liệu JCPDS tiêu chuẩn. Khi nhiệt độ nung thiêu kết tăng đến 1200 ℃ các pha phụ biến mất. Như vậy, pha tinh khiết của SrAl2O4 được tổng hợp thành công khi nhiệt độ nung từ 1200 ℃ trở lên. Tại nhiệt độ 1300 ℃ cường độ đỉnh nhiễu xạ là mạnh nhất. Hình 3.3 (a) Phổ Raman của vật liệu sau khi được nung thiêu kết từ 900 ℃ đến 1300 ℃ trong 6 giờ và (b) Phổ Raman của vật liệu với tỷ lệ phối trộn SrO và Al2O3 khác nhau Phổ Ranman cho thấy, đỉnh tại 467 cm-1 là vị trí đỉnh phổ Raman đặc trưng của các liên kết O - Al – O của cấu trúc bát diện [AlO4] 10 trong tinh thể SrAl2O4. Khi nhiệt độ nung mẫu tăng từ 1000 ℃ lên 1300 ℃, cường độ đỉnh Raman tại 467 cm-1 tăng lên theo nhiệt độ trong khi các đỉnh khác giảm và mất hẳn ở 1300 ℃, điều này cho thấy vật liệu có độ kết tinh tăng lên. Kết quả này hoàn toàn phù hợp với kết quả phân tích của phổ XRD. 3.2. Ảnh hưởng nhiệt độ nung thiêu kết lên hình thái bề mặt của vật liệu Hình 3.4 Hình ảnh FESEM của SrAl2O4 pha tạp Mn4+ với độ phóng đại thấp sau khi nung thiêu kết tại a) 1000 ℃, b) 1300 ℃ và độ phóng đại cao sau khi nung thiêu kết c) 1000 ℃, d) 1100 ℃, e) 1200 ℃ và f) 1300 ℃ trong 6 giờ. Quan sát ảnh FESEM chụp ở chế độ phân giải thấp trong Hình 3.4 (a,b) cho thấy mẫu ở nhiệt độ 1000 ℃ và 1300 ℃ có hình dạng không xác định rỏ ràng, kích thước mẫu bột khoảng từ 5 µm đến 10 µm. Ảnh FESEM với độ phân giải cao hơn ở Hình 3.4 (c,d,e,f) cho thấy bề mặt của khối vật liệu khi nung ở 1000 ℃ bao gồm các hạt đồng nhất với hình dạng gần với hình cầu hoặc que và kích thước vào khoảng 300 400 nm. Khi nhiệt độ thiêu kết tăng lên từ 1100 ℃ đến 1300 ℃, các hạt hình dạng hình cầu có xu hướng tan chảy và kết đám với nhau để tạo thành hạt lớn hơn. Với kích thước mẫu vật liệu từ 5 µm đến 10 µm là phù hợp khi sử dụng trong chế tạo LED cho hiệu suất cao. 3.3. Phân tích thành phần các nguyên tố của vật liệu Hình 3.5 Phổ tán sắc năng lượng EDS của SrAl2O4 pha tạp 0,04mol%Mn4+ được nung thiêu kết ở 1300 ℃. Kết quả Hình 3.5 cho thấy không có nguyên tố nào khác ngoài Sr, Al, O trong phổ EDS. Đồng thời, phổ cho thấy tỉ lệ thành phần gần đúng với tỉ lệ hỗn hợp của các hợp chất ban đầu. Tuy nhiên, kết quả 11 trên cho thấy không ghi nhận được tín hiệu của nguyên tố Mn, có thể do hàm lượng pha tạp quá nhỏ so với bộ phận ghi của máy nên không nhận được tín hiệu. 3.4 Tính chất quang của bột huỳnh quang SrAl2O4: Mn4+ 3.4.1. Đặc trưng phổ PL và PLE của vật liệu SrAl2O4:Mn4+ Ở Hình 3.6, phổ PL cho thấy có 2 đỉnh tại vị trí 644 nm, 669 nm và đỉnh phổ phát xạ mạnh tại 658 nm. Trong đó đỉnh phổ tại 658 nm được cho là chuyển dời của các điện tử từ trạng thái 2Eg→4A2g. Các đỉnh phát quang còn lại tại 644 nm và 669 nm đặc trưng cho các chuyển dời của điện tử liên quan tới dao động phonon Stoke và phản Stoke của các điện tử tại lớp 3d3 trong hốc bát diện [MnO4]. Hình 3.6 Phổ PL và PLE của bột SrAl2O4: Mn4+ đo tại với các đỉnh phát xạ 653 nm và 659 nm ở nhiệt độ phòng. Phổ PLE được thể hiện trong Hình 3.6 chỉ ra rằng vật liệu SrAl2O4: Mn4+ có khả năng hấp thụ mạnh nhiều bước sóng ánh sáng, từ tia tử ngoại cho đến ánh sáng có bước sóng xanh. Ba đỉnh này xuất hiện là do sự chuyển dời electron của ion Mn4+ từ trạng thái 4 A2 → 4T1, 4A2 → 2T1 và 4A2 → 4T2 trong trường bát diện. 3.4.2. Ảnh hưởng của nhiệt độ nung thiêu kết lên cường độ PL của vật liệu Hình 3.7 Phổ PL của bột SrAl2O4: Mn4+ được nung từ 900 - 1300 ℃ trong 6 giờ, λex = 320 nm, đo ở nhiệt độ phòng. Hình 3.8 Phổ PL của bột SrAl2O4:Mn4+ được nung 1300 ℃ trong 6 giờ, dưới bước sóng kích thích 320 nm, đo ở nhiệt độ 10 K. 12 Phổ PL ở Hình 3.7 cho thấy, khi tăng nhiệt dộ nung thiêu kết từ 900 ℃ đến 1300 ℃, cường độ PL tăng đều nhưng cường độ của đỉnh tại 658 nm tăng cao hơn so với các đỉnh còn lại. Tại 1300 ℃ cho cường độ huỳnh quang mạnh nhất. Khi đo ở nhiệt độ thấp 10 K, phổ PL cho gồm 3 đỉnh phổ tại 652 nm, 654 nm, 657 nm và vùng phổ đám trong khoảng từ 660 nm đến 700 nm. Các đỉnh này được cho là do chuyển dời của điện tử liên quan tới các zero-phonon R1, R2 và 2E → 4A2 + ν (ν: Stoke phonon) của Mn4+ trong mạng nền SrAl2O4. 3.4.3. Ảnh hưởng của nồng độ pha tạp lên cường độ PL Hình 3.9 a) Phổ PL của bột SrAl2O4 pha tạp ion Mn4+ với nồng độ 0,006 đến 0,1 mol% được nung ở nhiệt độ 1300 ℃ trong 6 giờ, b) Đồ thị phụ thuộc cường độ PL vào nồng độ Mn4+. Hình 3.9 cho thấy đỉnh phát xạ cực đại của SrAl2O4: Mn4+ nằm ở bước sóng 658 nm ứng với nồng độ pha tạp 0,04 mol% Mn4+. Kết quả tính toán RC = 97.2 Å cho thấy hiện tượng dập tắt huỳnh quang theo nồng độ chủ yếu diễn ra thông qua tương tác lưỡng cực điện giữa các ion Mn4+ trong mạng nền SrAl2O4. 3.4.4. Sự suy giảm cường độ PL theo nhiệt độ và tọa độ màu của bột huỳnh quang SrAl2O4 pha tạp Mn4+ Hình 3.10a cho thấy khi gia tăng nhiệt độ, tất cả các đỉnh phổ đều hiển thị một sự dịch chuyển về vùng phổ màu đỏ do sự giãn nở ô mạng cơ sở của mạng nền và sự tăng cường của các dao động ở nhiệt độ cao hơn. Hình. 3.10b cho thấy, khi nhiệt độ tăng từ 10K đến 120K, cường độ PL tích phân giảm do quá trình chuyển đổi không bức xạ. Khi nhiệt độ tăng hơn nữa, cường độ PL tích phân tăng cường và đạt cao nhất ở nhiệt độ khoảng 210K, và sau đó giảm dần khi nhiệt độ tăng. Tại nhiệt độ 300 K, tích phân cường độ PL đạt 78% so với tại nhiệt độ 10 K. 13 Hình 3.10 (a) Phổ PL đo theo nhiệt độ và Hình 3.12 Bảng tọa độ (b) Cường độ PL tích phân của SrAl2O4 pha màu CIE của SrAl2O4: tạp 0,04 mol% Mn4+ được nung 1300 ℃ - 6h. Mn4+ Hình 3.11 (a) cho thấy ở cường độ PL của mẫu giảm đều khi gia nhiệt độ của mẫu từ 300 K đến 473 K. Quan sát cường độ PL tích phân theo nhiệt độ ở Hình 3.11(b) cho thấy khi nhiệt độ tăng từ 300 K tới 473 K thì cường độ PL tích phân giảm đều và tại nhiệt độ 353 K cường độ PL tích phân đạt khoảng 50 % so với tại nhiệt độ 300 K. Như vậy tại nhiệt độ cao cường độ PL tích phân cho thấy vật liệu chưa được ổn định về nhiệt. Hình 3.11 (a) Phổ PL của Sr0.96Al2O4:0,04Mn4+ đo theo nhiệt độ cao và (b) Tích phân cường độ PL theo nhiệt độ mẫu. Hình 3.12 cho thấy ánh sáng đỏ phát ra từ bột huỳnh quang SrAl2O4: Mn4+ được nung thiêu kết ở 1300 ℃ trong 6 giờ lên chip LED 310 nm có tọa độ màu (x = 0,6959; y = 0,2737). 3.5. Kết luận chương 3 Tổng hợp thành công vật liệu SrAl2O4: Mn4+ bằng phương pháp đồng kết tủa kết hợp ủ nhiệt. Điều kiện tổng hợp: 0,04 mol% Mn4+, nhiệt độ thiêu kết 1300 ℃ trong 6 giờ trong không khí. Vật liệu SrAl2O4: Mn4+ cho phát xạ mạnh ở vùng ánh sáng đỏ với bước sóng 659 nm. Phổ PLE cho thấy có ba đỉnh cực đại tại 320 nm, 405 nm và 470 nm phù hợp với UV LED và blue LED. Tại nhiệt độ 300 K, tích phân cường độ PL đạt 78% so với tại nhiệt độ 10 K. 14 Chương 4: CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA BỘT HUỲNH QUANG SrMgAl10O17 PHA TẠP Mn4+ 4.1. Cấu trúc tinh thể vật liệu SrMgAl10O17: Mn4+ Hình 4.1 cho thấy phổ ở nhiệt độ nung 1100 ℃, mẫu đã hình thành pha tinh thể nhưng đỉnh phổ thấp. Tuy nhiên, cường độ của các đỉnh nhiễu xạ được cải thiện khi tăng nhiệt độ nung từ 1100 ℃ đến 1400 ℃. Tiếp tục tăng nhiệt độ lên 1500 ℃, cường độ của đỉnh nhiễu xạ dường như không thay đổi. Hình 4.1 Phổ XRD của SrMgAl10O17: Mn4+ được nung thiêu kết ở các nhiệt độ khác nhau. 4.2. Hình thái bề mặt và kích thước hạt Hình ảnh FESEM với độ phân giải thấp cho thấy các hạt có hình dạng không đều. Kích thước của mẫu bột nằm trong khoảng từ 5 µm đến 30 µm. Hình ảnh FESEM với độ phân giải cao hơn cho thấy bề mặt hạt mịn, kích thước của các hạt nhỏ được xác định khoảng 1 µm với nhiệt độ nung ở 1400 ℃ trong 6 giờ. Các hạt nhỏ được cho là các hạt tinh thể của SrMgAl10O17. Kết quả này chỉ ra rằng bột huỳnh quang SrMgAl10O17 khi nung thiêu kết khoảng 1400 ℃ trong 6 giờ đã được kết tinh tốt. Hình 4.2 Ảnh FESEM với độ phân giải thấp của mẫu được nung ở 1000 ℃ (a), 1100 ℃ (b), 1200 ℃ (c), và 1400 ℃ (d) Hình 4.3 Ảnh FESEM với độ phân giải cao mẫu được nung ở 1000 ℃ (a), 1100 ℃ (b), 1200 ℃ (c), và 1400 ℃ (d) 15 4.3. Phân tích các thành phần nguyên tố của vật liệu Kết quả Hình 4.4 cho thấy không có nguyên tố nào khác ngoài Sr, Mg, Al, O trong phổ EDS vì vậy có thể kết luận mẫu được chế tạo có độ tinh khiết cao. Tuy nhiên phổ cho thấy tỉ lệ thành phần chưa đúng với tỉ lệ hỗn hợp của các hợp chất ban đầu. Bên cạnh đó, kết quả trên cho thấy không ghi nhận được tín hiệu của nguyên tố Mn, điều này có thể giải thích là do hàm lượng pha tạp là nhỏ so với độ phân giải và sai số của phép đo này. Hình 4.4 Phổ tán sắc năng lượng EDS của SrMgAl10O17: 1,2mol%Mn4+ được nung thiêu kết ở 1400 ℃ trong 6 giờ. 4.4 Tính chất quang của bột huỳnh quang SrMgAl10O17: Mn4+ 4.4.1 Ảnh hưởng của nhiệt độ nung thiêu lên tính chất quang của vật liệu Mẫu SrMgAl10O17: Mn4+ nung ở 1400 ℃ cho cường độ PL mạnh nhất. Phổ PLE cho thấy có ba đỉnh cực đại ở bước sóng 320, 400 và 470 nm. Sự xuất hiện của ba đỉnh này là do sự chuyển dời electron của ion Mn4+ từ 4A2  4T1, 4A2  4T1 và 4A24T2 trong phối trí bát diện. Hình 4.4 Phổ PLE của SrMgAl10O17: Mn4+ ứng với bước sóng phát xạ ở 658 nm. Hình 4.5 Phổ PL của SrMgAl10O17: Mn4+ khi nung ở các nhiệt độ khác nhau. Hình 4.6 cho thấy khi tăng nhiệt độ nung từ 1100 ℃ đến 1200 ℃, cường độ PL và thời gian sống của các mẫu cũng được tăng lên. Các kết quả có thể được giải thích bởi sự gia tăng kết tinh của tinh thể. Tuy nhiên khi tăng nhiệt độ nung từ 1300 ℃ đến 1400 ℃, cường độ PL 16 tăng nhưng thời gian sống giảm đáng kể. Kết quả nghiên cứu cho thấy phù hợp với kết quả được công bố trước đây. Việc thời gian sống của bột huỳnh quang SrMgAl10O17 pha tạp Mn4+ giảm có thể là do sự sai hỏng của mạng nền khi gia tăng nhiệt độ nung và sự di chuyển năng lượng không bức xạ giữa các cặp Mn4+- Mn4+ trở nên nhanh hơn. Hình 4.6 Các đường cong phân rã của SrMgAl10O17 pha tạp Mn4+ khi nung thiêu kết ở các nhiệt độ khác nhau. 4.4.2. Ảnh hưởng của nồng độ pha tạp lên tính chất quang của vật liệu Hình 4.7 (a) Phổ PL của mẫu theo các nồng độ từ 0,3 – 2,1 mol%; (b) Sự phụ thuộc của cường độ PL vào nồng độ Mn4+. Hình 4.7 cho thấy đỉnh phát xạ cực đại của vật liệu nằm ở bước sóng 658 nm ứng với nồng độ pha tạp Mn4+ là 1,2 mol%. Khoảng cách tới hạn RC là 28,1 Å cho thấy hiện tượng dập tắt huỳnh quang theo nồng độ chủ yếu diễn ra thông qua tương tác lưỡng cực điện giữa các ion Mn4+ trong mạng nền SrMgAl10O17. 4.4. Kết luận chương 4 Chúng tôi đã tổng hợp thành công vật liệu SrMgAl10O17: Mn4+ bằng phương pháp đồng kết tủa kết hợp ủ nhiệt. Điều kiện tổng hợp: 1,2 mol% Mn4+, nhiệt độ nung thiêu kết 1400 ℃ trong 6 giờ trong không khí. Vật liệu SrMgAl10O17: Mn4+ cho phát xạ mạnh ở vùng ánh sáng đỏ với bước sóng 658 nm. Phổ PLE cho thấy có ba đỉnh cực đại tại 320 nm, 400 nm và 470 nm phù hợp với UV LED và blue LED. 17 Chương 5: CẤU TRÚC VÀ TÍNH CHẤT QUANG CỦA BỘT HUỲNH QUANG MgAl2O4 PHA TẠP Cr3+ 5.1. Cấu trúc tinh thể của mạng nền MgAl2O4 Hình 5.1 cho thấy đối với mẫu bột khi nung thiêu kết tại 900 ℃ vật liệu đã hình thành pha tinh thể mạng nền MgAl2O4. Khi tăng nhiệt độ thiêu kết từ 900 ℃ đến 1400 ℃, cường độ của các đỉnh XRD tăng cùng với sự tăng cường của nhiệt độ thiêu kết. Tiếp tục tăng nhiệt độ thiêu kết lên đến 1500 ℃ thì cường độ của các đỉnh XRD của mẫu dường như không thay đổi so với mẫu được nung thiêu kết ở 1400 ℃. Tuy nhiên, bên cạnh các đỉnh nhiễu xạ của pha mạng nền MgAl2O4, phổ XRD còn xuất hiện một số đỉnh của pha tạp MgO. Theo như quan sát trên phổ XRD của các mẫu nung thiêu kết theo nhiệt độ thì cường độ các đỉnh của MgO cũng tăng theo. Hình 5.1 Phổ XRD của MgAl2O4: Hình 5.2 Phổ XRD của MgAl2O4: Cr3+ được nung ở các nhiệt độ khác Cr3+ được nung ở 1500 ℃ ứng với nhau trong 6 giờ. thời gian nung khác nhau Hình 5.2 là phổ XRD cho thấy mẫu nung tại nhiệt độ nung thiêu kết 1500 ℃ trong thời gian từ 6 giờ, pha MgO giảm mạnh. Khi pha tạp Cr3+ trong mạng nền ứng với nồng độ pha tạp khác nhau được thể hiện trong Hình 5.3. Quan sát phổ XRD cho thấy mẫu pha tạp ở nồng độ cao hơn 0,6 mol% thì không còn quan sát thấy các đỉnh XRD của MgO. Điều này cho thấy ion Cr3+ khi pha tạp vào mạng nền đã làm tăng cường kết tinh của pha tinh thể mạng nền. Kết quả phổ XRD của các mẫu pha tạp khác nhau cho thấy không có sự dịch chuyển đỉnh phổ của mạng nền có thể là do sự chênh lệch giữa bán kính ion Al3+ (0,53 Å) và Cr3+ (0,62 Å) chưa đủ lớn để gây nên sự dịch đỉnh phổ XRD của mạng nền MgAl2O4. 18
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất