Đăng ký Đăng nhập
Trang chủ Giáo án - Bài giảng Sáng kiến kinh nghiệm Skkn một số ứng dụng tính chất nghiệm của đa thức hệ số thực...

Tài liệu Skkn một số ứng dụng tính chất nghiệm của đa thức hệ số thực

.DOC
66
180
103

Mô tả:

Sáng kiến kinh nghiệm Nguyễn Hoàng Cương THÔNG TIN CHUNG VỀ SÁNG KIẾN ********** 1. Tên sáng kiến: MỘT SỐ ỨNG DỤNG TÍNH CHẤT NGHIỆM CỦA ĐA THỨC HỆ SỐ THỰC 2. Lĩnh vực áp dụng sáng kiến: - Chương trình Toán lớp 10 THPT chuyên, 11 THPT chuyên. - Chuyên đề bồi dưỡng học sinh giỏi Quốc gia. 3. Thời gian áp dụng sáng kiến: Từ 8 - 2015 đến 5 - 2016 4. Tác giả: Họ và tên: Nguyễn Hoàng Cương Năm sinh: 1980 Nơi thường trú: 239 đường Hưng Yên, phường Quang Trung, TP Nam Định Trình độ chuyên môn: Thạc sĩ Chức vụ công tác: Giáo viên Nơi làm việc: Trường THPT chuyên Lê Hồng Phong – Nam Định Địa chỉ liên hệ: Trường THPT chuyên Lê Hồng Phong – Nam Định Điện thoại: 0914.521.894 5. Đồng tác giả: Họ và tên: Nguyễn Trung Sỹ Năm sinh: 1982 Nơi thường trú: Nam Tân, Nam Trực, Nam Định Trình độ chuyên môn: Thạc sĩ Chức vụ công tác: Giáo viên Nơi làm việc: Trường THPT chuyên Lê Hồng Phong – Nam Định Địa chỉ liên hệ: Trường THPT chuyên Lê Hồng Phong – Nam Định Điện thoại: 0125.459.1182 6. Đơn vị áp dụng sáng kiến Tên đơn vị: Trường THPT chuyên Lê Hồng Phong – Nam Định Địa chỉ: 76 đường Vị Xuyên, TP Nam Định Điện thoại: 03503.640297 1 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương NỘI DUNG CỦA SÁNG KIẾN I. ĐIỀU KIỆN, HOÀN CẢNH TẠO RA SÁNG KIẾN Đa thức là nội dung rất quan trọng trong chương trình toán học phổ thông và bắt đầu được giảng dạy trong chương trình đại số ở cấp THCS. Các bài toán về đa thức cũng xuất hiện nhiều trong các kì thi học sinh giỏi Quốc gia và Quốc tế. Kiến thức liên quan để giải các bài tập đa thức cũng rất đa dạng và phong phú. Đa thức nói chung và nghiệm của đa thức nói riêng có nhiều tính chất quan trọng và có nhiều ứng dụng về mặt đại số và giải tích. Trong các kì thi học sinh giỏi, những tính chất này được áp dụng rất nhiều. Trong quá trình giảng dạy, đặc biệt sau một thời gian nghiên cứu và giảng dạy cho các đội tuyển học sinh giỏi, tôi nhận thấy nếu học sinh được cung cấp những kiến thức về đa thức và các tính chất nghiệm; đồng thời biết được một số ứng dụng cơ bản thì sẽ có thể vận dụng để giải quyết các bài tập lớn. Báo cáo sáng kiến này ngoài việc trình bày lại một số kiến thức cơ bản về mặt đại số và giải tích của đa thức và nghiệm đa thức; báo cáo cũng đưa ra một số ứng dụng của tính chất nghiệm trong các bài toán thi học sinh giỏi các cấp. II. CÁC GIẢI PHÁP THỰC HIỆN A. Các kiến thức chuẩn bị: 1. Định nghĩa: Cho hàm số f : � �. Ta gọi f là một đa thức nếu f là hằng số hoặc tồn tại n  �* và các số thực a0 , a1 , ..., an với a0  0 sao cho f  x   a0 x n  a1 x n1  ...  an1 x  an . +) a0 , a1 , ..., an được gọi là các hệ số của đa thức; a0  0 được gọi là hệ số cao nhất; an được gọi là hệ số tự do. +) Đặc biệt khi a0  1 thì f được gọi là đa thức chuẩn tắc hoặc đa thức monic. 2 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương 2. Bậc của đa thức: Cho đa thức f  x   a0 x n  a1 x n1  ...  an1 x  an +) Nếu f  x   0, x  � thì đa thức f không có bậc. +) Nếu f là hằng số khác 0 thì bậc của f bằng 0; kí hiệu deg f  0 . +) Nếu a0  0 thì bậc của f bằng n ; kí hiệu deg f  n . 3. Nghiệm của đa thức: 3.1. Định nghĩa: Cho đa thức f  � x  và số   �. Ta gọi  là nghiệm của đa thức f nếu f    0 . 3.2. Định lý Bezout: Cho đa thức f  � x  . Số thực  là nghiệm của đa thức f khi và chỉ khi f  x  chia hết cho  x    . *) Một số hệ quả: +) Hệ quả 1: Phần dư của phép chia đa thức f  x  cho đa thức  x    là f  a  . +) Hệ quả 2: Nếu x1 , x2 , ..., xm là các nghiệm phên biệt của đa thức f  x  thì f  x  chia hết cho  x  x1   x  x2  ... x  xm  . 3.3. Nghiệm bội: * Cho đa thức f  � x  ,   � và k  � . Ta gọi  là nghiệm bội của đa thức f nếu f  x  chia hết cho  x    nhưng k f  x  không chia hết cho  x    k 1 , nghĩa là f  x    x  a  g  x  , x  � và k g    0 . 3.4. Nghiệm hữu tỉ, nghiệm nguyên: n n 1 Cho đa thức f  x   a0 x  a1 x  ...  an1x  an , ai  �, i  0, n, a0  0 . 3 Sáng kiến kinh nghiệm Nếu x Nguyễn Hoàng Cương p , q với  p, q   1 là nghiệm của f  x  thì p là ước của an và q là ước của a0 . Nếu a0  1 thì các nghiệm hữu tỉ của f  x  đều là nghiệm nguyên, với f  x   � x  . 3.5. Nghiệm với yếu tố giải tích: 3.5.1. Tính liên tục: Cho đa thức f  � x  , deg f  n . Nếu tồn tại hai số a, b mà f  a  . f  b   0 thì đa thức f  x  có ít nhất một nghiệm x  c   a; b  . 3.5.2. Nghiệm bội: * Cho đa thức f  � x  ,   � và k  � . Ta gọi  là nghiệm bội của đa  f  a   f '  a   ...  f  k 1  a   0   k f  a  0 thức f nếu  . *) Kết quả: Nếu f  x  có nghiệm bội k  1 thì f '  x  có nghiệm bội k  1. 3.5.3. Định lý Lagrange: Nếu hàm số f  x  liên tục trên đoạn  a; b  và có đạo hàm trên khoảng f  b  f  a   f ' c  .  a; b  thì tồn tại số c   a; b  sao cho ba *) Định lý Rolle: Nếu f có hai nghiệm x  a, x  b và có đạo hàm trên đoạn  a; b  thì tồn tại số c   a; b  sao cho f '  c   0. *) Áp dụng vào đa thức: +) Đa thức f  x  liên tục trên � và có đạo hàm f '  x  , nếu f  a   f  b  hoặc f  a   f  b   0 thì tồn tại số c   a; b  sao cho f '  c   0. +) Nếu đa thức f  x  có k nghiệm thì f '  x  có k  1 nghiệm; f ''  x  có k  2 nghiệm, ... 3.5.4. Khải triển Taylor: Cho đa thức f  x   � x  ,deg f  x   n . Với mọi số x0  �, ta có khai triển 4 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương f ' x0  f ''  x0  f    x0  f    x0  2 k n f  x   f  x0    x  x0    x  x0   ...   x  x0   ...   x  x0  1! 2! k! n! k n Khai triển trên được gọi là khai triển Taylor của đa thức P  x  . 4. Quan hệ giữa số nghiệm và bậc của đa thức: Cho đa thức f  � x  , deg f  n , xi là các nghiệm bội ki , i  1; m . Khi đó ta có k1  k2  ...  k m  deg f  n . Đặc biệt, nếu k1  k2  ...  km  n , thì ta có phân tích đầy đủ theo các nghiệm x1 , x2 ,..., xn (có thể trùng nhau) của f  x  bậc n f  x   a  x  x1   x  x2  ... x  xn  . n n1 *) Định lý: Cho đa thức f  � x  , f  x   a0 x  a1 x  ...  an1 x  an , a0  0 . Nếu f  x  có nhiều hơn n nghiệm thì ai  0, i  0, n , tức là f  0, x  �. 5. Định lý Viet: 5.1. Định lý Viet thuận: n n 1 Cho đa thức f  � x  , f  x   a0 x  a1 x  ...  an1 x  an , a0  0 . Nếu f có n nghiệm x1 , x2 , ..., xn (phân biệt hay trùng nhau) thì: n S1   xi  x1  x2  ...  xn   i 1 S2   1 i  j  n a1 a0 xi x j  x1 x2  x1 x3  ...  xn1 xn  a2 a0 .......................................................... Sk   1 i1 i2 ...ik  n xi1 xi2 ...xik   1 Sn  x1 x2 ...xn   1 n k ak a0 an a0 . 5.1. Định lý Viet đảo: Nếu có có n số x1 , x2 , ..., xn thỏa mãn 5 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương n a1   S1   xi  x1  x2  ...  xn   a i 1 0   a2  S2   xi x j  x1 x2  x1 x3  ...  xn1 xn  a0 1 i  j  n   ..........................................................  k a  Sk  xi1 xi2 ...xik   1 k  a0  1 i1 i2 ...ik  n  a  Sn  x1 x2 ...xn   1 n n a0  thì x1 , x2 , ..., xn là nghiệm (nếu có) của phương trình: X n  S1 X n1  S2 X n2  ...   1 S k X nk  ...   1 k n 1 S n1 X   1 S n  0 . n B. Các bài toán áp dụng: B.1. Ứng dụng tính chất đại số của nghiệm đa thức: B.1.1. Chứng minh đa thức có nghiệm và tìm nghiệm của đa thức: Bài 1: Cho đa thức P  x   � x  thỏa mãn P  0  , P  1 đều là các số nguyên lẻ. Chứng minh rằng đa thức P  x  không có nghiệm nguyên. Giải: Giả sử P  x  có nghiệm nguyên x  a . Khi đó tồn tại đa thức Q  x   � x  sao cho P  x    x  a  Q  x  . Từ đó ta có P  0   aQ  0  ; P  1   1  a  Q  1 . Vì P  0  , P  1 đều là các số nguyên lẻ nên suy ra a; 1  a là các số nguyên lẻ. Điều này mâu thuẫn vì a; 1  a là 2 số nguyên liên tiếp. Vậy đa thức P  x  không có nghiệm nguyên. *) Nhận xét: Đây là bài toán quen thuộc về nghiệm nguyên của đa thức. Ta nhận thấy các số 0, 1 trong đề bài không ảnh hưởng đến kết quả của bài toán mà điểm quan trọng ở đây chính là tính chất của chúng, ta thấy rằng hai số đó chỉ cần khác tính chẵn lẻ là đã đủ để đảm bảo kết quả của bài toán. Từ đó, ta xét một vài trường hợp đặc biệt để che giấu đi bản chất của vấn đề này. Ta có các bài toán sau: 6 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương Bài 1.1. Cho đa thức P  x   � x  thỏa mãn: tồn tại số k nguyên sao cho P  2015k  .P  2016k   2017k . Chứng minh rằng đa thức P  x  không có nghiệm nguyên. Giải: Giả sử P  x  có nghiệm nguyên x  a . Khi đó tồn tại đa thức Q  x   � x  sao cho P  x    x  a  Q  x  . Từ đó ta có Suy ra Hay P  2015k    2015k  a  Q  2015k  ; P  2016 k    2016 k  a  Q  2016 k  . P  2015k  .P  2016k    2015k  a  Q  2015k   2016k  a  Q  2016k  2017 k   2015k  a  Q  2015k   2016k  a  Q  2016k  k  2015k  a  ;  2016k  a  là các số nguyên lẻ. Vì 2017 là số nguyên lẻ nên suy ra k Nếu a chẵn thì 2016  a chẵn (mâu thuẫn) k Nếu a lẻ thì 2015  a chẵn (mâu thuẫn). Điều này chứng tỏ giả sử sai. Vậy đa thức P  x  không có nghiệm nguyên. Bài 1.2. .Cho đa thức P  x   � x  thỏa mãn: tồn tại các số nguyên dương phân a, b, c, d biệt không đồng P  a  P  b  P  c  P  d   20162016  1 thời chia hết cho 4 và . Chứng minh rằng đa thức P  x  không có nghiệm nguyên. Bài 2. Cho đa thức f ( x)  x 2016 2015   ai x i i 0 trong đó ai   1;1 i  0;2015 không có nghiệm thực .Tìm số lớn nhất các hệ số bằng 1 của f ( x). Giải: Gọi m là số các hệ số bằng -1 của f ( x) Số hệ số bằng 1 của f ( x) là 2017  m  f (1)  2017  2m Mà lim f ( x)   x   ; f ( x) không có nghiệm thực nên f ( x)  0x  ℝ m 1008  2016 2015 2014 2013 2 Với m  1008 , xét f ( x)  x  x  x  x  ...  x  x  1 x  0 thì f ( x)  0 7 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương 2014 2012 x  1 thì f ( x)  ( x  1)( x  x  ...  1)  1  0 x   0;1 thì f ( x)  (1  x)( x 2014  x 2012  ...  1)  x 2016  0  f ( x)  0x  ℝ  f ( x) không có nghiệm thực. Vậy, số lớn nhất các hệ số bằng -1 của f ( x) là 1008. Bài 3. Cho a �ℝ\  0;1 . Tìm tất cả các nghiệm của đa thức f ( x)   a 2  a  . x 2  x  1   a 2  a  1 . x 2  x  2 3 3 2 Giải: Vì deg f ( x )  6 nên f ( x) không có quá 6 nghiệm. Vì f (a)  0 nên x  a là một nghiệm của f ( x) Mặt khác nếu x0 là nghiệm của phương trình đã cho thì 2 2 f (1  x0 )   a 2  a  .  1  x0    1  x0   1   a 2  a  1  1  x0   (1  x0 )      3 2 3 2   a 2  a  . x0 2  x0  1   a 2  a  1 . x0 2  x0   f ( x0 )  0 2 3 3 3 2 2 2  1 2  1   3  1  1  1  2 2 f     a  a  .       1   a  a  1       1 f ( x )  0 0  x0   x0    x0   x0  x06  x0  Và 2 Do đó, với x  a là một nghiệm của đa thức f ( x) , ta còn có thêm hai nghiệm nữa 1 1 1 1 ; ; 1 a 1 a 1 1 1  a; a . Đến đây, ta suy ra f ( x) lại có thêm 3 nghiệm nữa là a là 1 1 1 1 a;1  a; ;1  ; ; a a 1 a 1 1 a. Tóm lại, đa thức đã cho có 6 nghiệm là Nhận xét: Ý tưởng trên là vét cạn các nghiệm của đa thức với một kiến thức quen thuộc: phương trình đa thức bậc n có không quá n nghiệm. Dễ thấy rằng nói chung thì các nghiệm này phân biệt, nếu với một vài giá trị a làm cho chúng trùng nhau thì giá trị a đó cũng làm đa thức đã cho có nghiệm bội; do đó, điều này không ảnh hưởng đến sự đầy đủ của các nghiệm của đa thức như đã nêu. 8 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương Bài 4: Cho hai đa thức bậc 4 P( x) và Q( x) có hệ số hữu tỉ. Chứng minh rằng nếu hai đa thức P( x) và Q( x) có một nghiệm chung vô tỉ và hai nghiệm chung hữu tỉ thì P( x) và Q( x) còn có một nghiệm chung vô tỉ nữa. 4 4 P ( x)   ai x i Q( x)   bi x i i 0 i 0 Giải: Giả sử ; với a4b4  0 ; ai ; bi �� i  1;4 Gọi nghiệm chung vô tỉ là 1 ; 2 nghiệm chung hữu tỉ là  2 và  3 . Gọi nghiệm còn lại của P( x) và Q( x) lần lượt là  và  . Theo định lý Viètte, ta có: 1   2   3     a3 a4 �� 1 2  1 3  1   2 3   2   3  a2 a4 �� Suy ra 1   �� và 1 �� Tương tự, ta cũng có 1   và 1 là các số hữu tỉ.         1   (  1 ) �� và  1      �� Do đó       0 do 1 là số vô tỉ. (đpcm). Bài 5: Tồn tại hay không ba số khác không a; b; c sao cho đa thức sau có n n nghiệm nguyên không nhất thiết phân biệt n  3 : P ( x)   x i  ax 2  bx  c i 3 ? Giải: Giả sử tồn tại 3 số khác không a; b; c thỏa mãn yêu cầu bài toán. Gọi x1; x2 ;...; xn là các nghiệm của đa thức đã cho. n Áp dụng định lí Viètte, ta có:  n  n 1  n 1   xi   x    1 .b   i 1  i 1 i   1 n2  i 1 n   n  1 .a    xi .   i 1  1 i  j  n xi x j i 1 xi   1  .c n 0 xi 0 i 1; n 1 b  xi c 2 n  1  n   n 1  1     xi      2 2 x  i  1 i  1   i   i 1 xi    9 Sáng kiến kinh nghiệm   1 n2 n  i 1 Mà lim n n n   1 .a  Nguyễn Hoàng Cương n .c  b 2 n 1  . 2   2   2 i 1 xi  c n 1 1 1  nn  2  nn 2 2 xi c i 1 xi nên n  i 1 1 b 2  2ac  xi2 c2 b 2  2ac 1 n  n n  3 c2 c2 (vô lí vì 1   c2 ) Do đó, điều giả sử là sai. Vậy, không tồn tại các số a; b; c thỏa mãn đề bài. Bài 6: (Vietnam TST 1992) ns n1 2 9 1992 Cho đa thức P( x)  1  x  x  x  ...  x  x với n1; n2 ;...; ns là các số tự nhiên cho trước thỏa mãn 9  n1  ...  ns  1992 . Chứng minh rằng nghiệm của 1 5 đa thức P( x) (nếu có) không thể lớn hơn 2 ns n1 2 9 1992 Giải: Ta có: P( x)  1  x  x  x  ...  x  x 1  5  x   ;0  2 P ( x )  1  0 P ( x )  0   Với x  0 thì . Ta sẽ chứng minh Thật vậy, với x  0 và x  1 , ta có: P ( x)  1  x  x 3  x 5  ...  x 2 k 1  ...  x1991 1  5  x996  1 x 2  1  x997  x  x  ;0    1  x. 2  0 2 2   x 1 x 1 1  5 P ( x)  0x   ;  2  Vậy,    (đcm). Bài 7: (IMO 1976) 2 P ( x ) P ( x )  x  2, Pi 1 ( x)  Pi ( Pi ( x)), i  1;2;3;... k 1 Cho dãy các đa thức xác định bởi n Chứng minh rằng phương trình Pn ( x)  x có 2 nghiệm thực phân biệt nhau. Giải: Xét nghiệm của phương trình trên đoạn  2;2 .Đặt x  2cos t 10 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương nt Bằng quy nạp ta chứng minh được: Pn ( x)  2cos 2 và phương trình Pn ( x)  x trở nt thành cos t  cos 2 Từ đó, ta được 2n nghiêm t 2 k 2 k , t  n ; k  1;2;3;...; n n 2 1 2 1 Suy ra phương trình Pn ( x)  x có đúng 2n nghiệm thực phân biệt.(đpcm) n Bài 8: Cho đa thức f ( x)   ai x i 0 có n nghiệm thực. Chứng minh p  n  1 thì đa 2 n thức g ( x)  a0  a1. p.x  a2 . p.( p  1).x  ...  an . p.( p  1)...( p  n  1) x cũng có n nghiêm thực. Giải: Nếu f (0)  0 , ta chứng minh bằng phương pháp quy nạp. Với n  1 , bài toán hiên nhiên đúng. Giả sử bài toán đúng với n  k , ta chứng minh đúng với n  k  1 , tức là k 1 f ( x)   ai x i Nếu đa thức 0 có k  1 nghiệm thực khác 0 thì đa thức g ( x)  a0  a1. p.x  a2 . p.( p  1).x 2  ...  ak 1. p.( p  1)...( p  k ) x k 1 cũng có k 1 nghiệm thực p  k . Gọi c là một nghiệm của f ( x) thì f ( x)  ( x  c).q( x) với q( x) là một đa thức bậc k k của x : q( x)   bi x i 0 trong đó a0  c.b0 ; ai  c.bi  bi1i  1; k ; ak 1  bk . k 1 Do đó g ( x)  a0  p.a1.x  ...  p ( p  1)...( p  k ).ak 1.x  c.b0  p.(c.b1  b0 ).x  ...  p( p  1)...( p  k ).bk .x k 1  c.q ( x)  px.q ( x)  x 2 .q ( x) Do f ( x) có k  1 nghiệm thực khác 0 nên q ( x) có k nghiệm thực khác 0 và p  k  k  1 nên theo giả thiết quy nạp, đa thức q( x) có k nghiệm thực. Do đó, g ( x ) có k  1 nghiệm thực. (đpcm) Nếu f (0)  0 và x  0 là nghiệm bội k của f ( x) . 11 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương n Khi đó: f ( x)   ai x i k  x k .H ( x) và n g ( x)   p( p  1)...( p  1  i )ai x i k  p ( p  1)...( p  k  1).x k [ak  ...  ( p  k )...( p  1  n).an x nk ]  p( p  1)...( p  k  1).x k .R  x  Do f ( x) có n nghiệm thực nên H ( x) có n  k nghiệm thực khác 0 . Áp dụng kết quả trường hợp 1 cho H ( x) và p '  p  k  n  k  1 thì R  x  có n  k nghiệm thực  g ( x) có n nghiệm thực (đpcm). Vậy, bài toán được chứng minh. 3 2 Bài 9: Cho đa thức P  x   x  ax  bx  c có ba nghiệm phân biệt. Chứng minh rằng đa thức Q  x   x3  ax 2   4b  a 2  x   4ab  a3  8c  cũng có 3 nghiệm phân biệt. Giải: Gọi x1 , x2 , x3 là 3 nghiệm của đa thức P  x  . Theo định lý Viete, ta có:  x1  x2  x3   a   x1 x2  x2 x3  x3 x1  b  x x x  c  1 2 3 Đặt y1  x1  x2  x3 ; y2  x2  x3  x1; y3  x3  x1  x2 . Ta chứng minh đa thức Q  x  có 3 nghiệm là y1 , y2 , y3. Thật vậy, ta có: +) y1  y2  y3  x1  x2  x3  a +) y1 y2  y2 y3  y3 y1   x1  x2  x3   x2  x3  x1    x2  x3  x1   x3  x1  x2    x3  x1  x2   x1  x2  x3   4  x1 x2  x2 x3  x3 x1    x1  x2  x3   4b  a 2 2 3 y y y  x  x  x x  x  x x  x  x  4  a b   a  8  c  a  8c  4ab             1 2 3 1 2 3 2 3 1 3 1 2 +) 3 Theo định lý Viete đảo thì y1 , y2 , y3 là 3 nghiệm của đa thức Q  x  (đpcm). 12 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương n Bài 10: Chứng minh rằng các nghiệm của đa thức không vượt quá: a  1  max  k  k 1;n  a0  a)  ak p  max  k 1 k 1;n  a0 . p b)  a  2max  k k  k 1;n  a0  c)  a a1  max  k 1 k a0 k 2;n  a1  d) f ( x)   ai x ni 0 có modun    với p là số dương tùy ý.     a a  f ( x)  a0 x n  ...  an1 x  an  a0 x n 1  1  ...  n n  a0 x   a0 x Giải: a) Ta có a  A  max  k  k 1;n  ao  Gọi Với nghiệm x mà x  1 thì ta có đpcm. Với nghiệm x mà x  1 , ta có 1 1 n n x ak 1 A A 1 f ( x)  0  1    A  .  .  k k x 1 1 x 1 1 k 1 a0 x k 1 x x x n  1 A x 1 A x 1 x A 1 (đcm) n i n 1 ai  x  . f ( x )  .   i  pn i 0 p  p  b) Ta có 13 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương x 1 g ( x )  n . f ( x) p Theo kết quả câu a, nếu p là một nghiệm của đa thức thì  a  x 1 max  k k  k 1;n p  a0 p   x  ak  p max  k 1  k 1;n  a0 p  (đcm).  a  p  max  k k  k 1;n  a0  c) Dễễ dàng được suy ra từ kễết quả câu b khi chọn  a  p  max  k 1 k  k 1;n  a1  , khi đó d) Đặt ak a1. p k 1 ak a0 p k 1 a1 a0  ak  max  k 1  k 1;n  a0 p  a1 a0 Theo câu b, nghiệm của đa thức có modun không vượt quá  ak  a1  ak  x  p  max    max  k 1  k 1  k 1;n k 1;n a p a a1   0  0  (đcm). *Nhận xét: Kết quả của bài 10 là một kết quả quen thuộc và có rất nhiều ứng dụng. Sau đây, ta sẽ xét một vài ví dụ về ứng dụng của kết quả này. n n 1 Bài 11: Cho đa thức có các hệ số thực P ( x)  x  a1 x  ...  an1 x  an chia hết m m 1 cho đa thức Q( x)  x  b1 x  ...  bm1 x  bm . Chứng minh rằng nếu Q( x) có một k k hệ số bk thỏa mãn bk  2016 .Cm thì P( x) có một hệ số ai thỏa mãn ai  2015 . Giải: Gọi các nghiệm (thực hoặc phức) của đa thức Q( x) là x1; x2 ;...; xm A Áp dụng định lí Viète, ta có  1 i1 i2 ...ik  m xi1 xi2 ...xik  bk  2016k.Cmk k Mà trong tổng A có Cm số hạng nên tồn tại một nghiệm xi của Q( x) mà xi  2016 . Áp dụng câu a) của bài 10, ta có: 1  max  ai   xi  2016  max  ai   2015 i 1;n i 1;n (đpcm). 14 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương 2020 2019 2018 Bài 12: Cho P( x)  x  a1 x  a2 x  ...  a2019 x  a2020 có 2020 nghiệm thực. Biết a2015  2015; a2017  2017 . Chứng minh a2016  2016 . Giải: P( x) có 2020 nghiệm thực nên P '( x) có 2019 nghiệm thực  P ''( x) có 2018 nghiệm thực  P  3 ( x ) có 2017 nghiệm thực  P   ( x )  2020.2019.2018 x 2017  2019.2018.2017 a1 x 2016  ...  3.2.1.a2017 3 1  Q( x)  x 2017 .P    6a2017 x 2017  24a2016 x 2016  60a2015 x 2015  ...  b1 x  b0 x Đặt Khi đó Q( x) cũng có 2017 nghiệm thực x1; x2 ;...; x2017 . 2017 Theo định lí Viète, ta có: 2  2017    xi   i 1  2.  1 i  j  2017  i 1 xi  4a2016 a2017 ;  1 i  j  2017 20.a2015 .a2017 16 xi x j a 2 2016 xi x j  10a2015 a2017 a2016 2016 (đcm) Vậy, a2016  2016 . Bài 13: (VMO 2012) Cho các cấp số cộng (an ),(bn ) và số nguyên m > 2. Xét m tam thức bậc hai Pk ( x )  x 2  ak x  bk , k  1,2,..., m. Chứng minh rằng nếu hai tam thức P1 ( x), Pm ( x ) đều không có nghiệm thực thì tất cả các đa thức còn lại cũng không có nghiệm thực. Giải: Ta chứng minh bổ đề sau: 2 2 Bổ đề: Nếu a1  4b1  0, am  4bm  0 thì với mọi   [0;1] ta có   a1  (1   )am  2  4   b1  (1   )bm   0 . Chứng minh. Ta có   a1  (1   )am  2  4   b1  (1   )bm    2 (a12  4b1 )  (1   ) 2 (am2  4bm )   (1   )  2a1am  4(b1  bm )  . 2 2 2 Mà 4(b1  bm )  a1  am  2a1am  4(b1  bm )  (a1  am )  0 . Kết hợp với giả thiết ta có điều phải chứng minh. 15 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương P1 ( x), Pm ( x) Trở lại bài toán, do đều không có nghiệm thực nên 1  a12  4b1  0, 1  am2  4bm  0 . Công sai của cấp số cộng  an  ,  bn  Với mỗi k = 1, 2, …, m ta có am  a1 bm  b1 , m  1 m 1 . lần lượt là ak  a1  (k  1) bk  b1  ( k  1) Áp dụng bổ đề trên với  am  a1 m  k k 1  a1  am ; m 1 m 1 m 1 bm  b1 m  k k 1  b1  bm . m 1 m 1 m 1 mk 2 m  1 ta có  k  ak  4bk  0, k  1,2,..., m hay tất cả các đa thức cũng không có nghiệm thực. Bài 14: Giả sử P  x  là đa thức hệ số thực không đồng nhất bằng 0 thỏa mãn P  x  P  2 x 2   P  3x 3  x  . Chứng minh rằng đa thức P  x  không có nghiệm thực. Giải: Giả sử ngược lại, đa thức P  x  có nghiệm thực x0 nào đó. 3 Từ giả thiết, ta suy ra nếu x0 là nghiệm của đa thức P  x  thì 3x0  x0 cũng là nghiệm của P  x  . Vì vậy ta xây dựng được một dãy nghiệm của P  x  : x0 ; x1  3 x03  x0 ; ...; xn1  3 xn3  xn , n  0 xn1  3 xn3  xn  xn . 3 xn2  1  xn , n  0 x  0 x  0 0 n +) Nếu , ta có và . Suy ra đa thức P  x  có vô số nghiệm. Do đó P  x   0, x  �. Điều này mâu thuẫn với giả thiết.  P  x   x nQ  x   Q 0 0 P x x  0   +) Nếu 0 là nghiệm bội n của . Suy ra    16 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương  x3n 2n Q  x  Q  2 x 2   x n  3x 2  1 Q  3x 3  x   x 2 n 2n Q  x  Q  2 x 2    3x 2  1 Q  3x 3  x  , x  0 n n  x 2 n 2n Q  x  Q  2 x 2    3x 2  1 Q  3x 3  x  , x  �. n (vì hai đa thức bằng nhau tại vô hạn điểm thì trùng nhau) Thay x  0 ta có Q  0   0 (mâu thuẫn). Vậy điều giả sử sai. Do đó đa thức P  x  không có nghiệm thực. Bài 15: Cho P  x  và Q  x  là các đa thức hệ số thực, có bậc 2016 và hệ số cao nhất bằng 1. Chứng minh rằng nếu phương trình P  x   Q  x  không có nghiệm thực thì phương trình P( x  2015)  Q( x  2015) có nghiệm thực . Giải: Giả sử P( x)  x 2016  a2015 x 2015  a2014 x 2014  ...  a1 x  a0 ; Q( x)  x 2016  b2015 x 2015  b2014 x 2014  ...  b1x  b0 với ai , bi  �, i  1,2015 Ta có P ( x )  Q( x)   a2015  b2015  x 2015   a2014  b2014  x2014  ...   a1  b1  x  (a0  b0 )  0.  1 Nếu a2015  b2015  0 thì phương trình (1) có nghiệm thực. Do đó a2015  b2015  t . Khi đó P( x  2015)  Q( x  2015)  ( x  2015) 2016  t ( x  2015) 2015  a2014 ( x  2015) 2014  ...  a1 ( x  2015)  a0  ( x  2015) 2016  t ( x  2015) 2014  b2014 ( x  2015)2014  ...  b1 ( x  2015)  b0 1  2C2016 2015 x 2015  R ( x )  0. Trong đó R  x  là một đa thức có bậc nhỏ hơn 2015. 1 2015 2 C 2015 x  R( x) là đa thức bậc lẻ nên nó phải có nghiệm thực. Vậy 2016 Dễ thấy ta có điều phải chứng minh. B.1.2. Ứng dụng để chứng minh các hệ thức giữa các nghiệm, hệ thức giữa các hệ số của đa thức: Bài 1: Cho a, b, c, d  �, a 0 và thỏa mãn 4a  2b  c  d  0 . Chứng minh rằng 17 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương b2  4a  c  d  2 Giải: Xét đa thức bậc hai f  x   ax  bx   c  d  . Do 4a  2b  c  d  0  f  2   0 2 Do đó phương trình f  x   0 có nghiệm, suy ra   0  b  4 a  c  d   0 ۳ b2 4a  c  d  . 2 Tổng quát: Cho a, b, c, d  �, a 0 và thỏa mãn  a   .b  c  d  0 . Chứng minh rằng b2  4a  c  d  Bài 2: (Đề thi gặp gỡ toán học 2015 - khối 11) 3 Cho a  b  c là ba nghiệm của phương trình x  3x  1  0 (1). a) Hãy tính giá trị của biểu thức A 1 a 1 b 1 c   1 a 1 b 1 c 2 2 2 a  2, b  2, c 2 b) Lập phương trình bậc ba có ba nghiệm là 2 2 2 c) Chứng minh rằng a  c  b  a  c  b  2. Giải: b c   a  a  b  c  2(ab  bc  ca )  3abc  A  3  2     3  2  1  a 1  b 1  c   1  a  b  c  ab  bc  ca  abc  a) Ta có: Áp dụng định lí Viète ta có a  b  c  0, ab  bc  ca  3, abc  1 . Thay vào ta tính được A  3 2 2 2 2 b) Ta có S1  a  2  b  2  c  2  (a  b  c)  2(ab  bc  ca )  6  0. S2  (a 2  2)(b 2  2)  (b 2  2)(c 2  2)  (c 2  2)(a 2  2)   a 2b 2  b 2c 2  c 2 a 2   4(a 2  b 2  c 2 )  12   ab  bc  ca   2abc(a  b  c)  4 ( a  b  c) 2  2  ab  bc  ca    12  3 2 S3  (a 2  2)(b 2  2)(c 2  2)  (abc) 2  2  a 2b 2  b 2c 2  c 2 a 2   4(a 2  b 2  c 2 )  8  1 2 2 2 Theo định lí Viète đảo thì a  2, b  2, c  2 cũng là ba nghiệm của phương trình x3  3x  1  0 . 18 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương 2 2 2 c) Ta để ý là do các số ( a  2, b  2, c  2 ) cũng là nghiệm của (1) nên ta suy 2 2 2 ra bộ số ( a  2, b  2, c  2 ) là một hoán vị của bộ số (a, b,c) . 3 Xét hàm số f  x   x  3x  1 thì f ( x) liên tục trên � .  9 f  2   0, f     0, f  0   0, f  1  0, f  5 Ta có 8    0 5  9 8 2  a    0  b  1  5 5 Nên ta suy ra các nghiệm (a, b,c) thỏa mãn 2 2 2 2 2 2 Từ cách chỉ ra nghiệm ở trên ta suy ra b  c  a  b  2  c  2  a  2. 2 2 2 2 2 2 Do đó b  2  a, c  2  b, a  2  c . Suy ra a  c  b  a  c  b  2. 2 2 2 Nhận xét. Trong câu c) mấu chốt ở chỗ chỉ ra bộ số ( a  2, b  2, c  2 ) là một hoán vị của bộ số (a, b,c) . Áp dụng tính chất liên tục của hàm f ta chỉ ra được các khoảng chứa nghiệm. khi áp dụng định lí Viète kết hợp đánh giá bằng bất đẳng thức ta có nhiều bài toán thú vị. Bài 3: (Olympic 30 - 4 , THPT Chuyên Tiền Giang đề nghị) xi , i  1;2011 Gọi là các nghiệm P  x   x 2011  2011x 2010  a2009 x 2009  ...  a0 . của Biết đa rằng thức ta có 64 x164  x2 64  ...  x2011  2011 hãy xác định đa thức P  x  . 2011  xi  2011 Giải: Áp dụng định lí Viète ta có i 1 Áp dụng bất đẳng thức bunyakovky ta có 2  2011  2011   xi   i 1  2  2011  2011  xi 2   i 1  . 2 4 2011  2011  2011   xi 2   i1  2 Lại áp dụng bất đẳng thức bunyakovky ta có 2 4 2011  2011 2   2011 4   2011  4 3 4 x  2011 x  2011  x  2011  i   i   i    xi   i 1   i 1   i 1   i 1  8 2011  2011  7 8 x  2011 x   i i .   i  1 i  1     Biến đổi tương tự ta thu được 19 Sáng kiến kinh nghiệm Nguyễn Hoàng Cương 64 2011  2011  63  64  64   xi   2011   xi   2011  1 .  i 1  Cuối cùng đi đến  i 1  2011 Nhưng  i 1 xi  2011 nên từ (1) ta suy ra bất đẳng thức bunyakovky xảy ra dấu bằng. chứng tỏ các nghiệm bằng nhau và bằng -1. Do đó đa thức cần tìm là P  x   ( x  1) 2011 Nhận xét: Trong bài toán trên điều cốt lõi là việc chỉ ra các nghiệm bằng nhau. Ta cũng có thể dùng bất đẳng thức Holder để đánh giá bất đẳng thức (1). Bây giờ ta xét một dạng toán mà dấu đẳng thức không xảy ra. Bài 4: (Olympic 30 - 4 , THPT Chuyên Nguyễn Bỉnh Khiêm - Quảng Nam đề nghị) 2008 2007  a2 x 20086  ...  a2008 Cho đa thức P  x   a0 x  a1x có 2008 nghiệm phân 2 biệt. Chứng minh rằng 2007a1  4016a0 a2 . Giải: Vì đa thức có 2008 nghiệm nên ta có P  x   a0  x  x1   x  x2  ... x  x2008  ; a  0 2 a  a 2007  1   4016 2  1 a0  a0  BĐT tương đương với : Áp dụng định lí Viète ta có S1  x1  x2  ...  x2008   a1 a ; S 2  x1x2  ...  x1 x2008  ...  x2007 x2008  2 a0 a0 2008 Như vậy ta có S12   xi 2  2S 2 i 1 . Dễ thấy 20
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng