Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Cao đẳng - Đại học Kỹ thuật - Công nghệ Luận văn nghiên cứu xây dựng mô hình đo và điều khiển nhiệt độ theo thuật toán p...

Tài liệu Luận văn nghiên cứu xây dựng mô hình đo và điều khiển nhiệt độ theo thuật toán pid với các cảm biến công nghiệp​

.PDF
76
111
58

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRẦN THỊ THU TRANG NGHIÊN CỨU XÂY DỰNG MÔ HÌNH ĐO VÀ ĐIỀU KHIỂN NHIỆT ĐỘ THEO THUẬT TOÁN PID VỚI CÁC CẢM BIẾN CÔNG NGHIỆP LUẬN VĂN THẠC SĨ Ngành: Công nghệ kỹ thuật Cơ điện tử HàNội – 2019 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRẦN THỊ THU TRANG NGHIÊN CỨU XÂY DỰNG MÔ HÌNH ĐO VÀ ĐIỀU KHIỂN NHIỆT ĐỘ THEO THUẬT TOÁN PID VỚI CÁC CẢM BIẾN CÔNG NGHIỆP Ngành: Công nghệ Kỹ thuật Cơ điện tử Chuyên ngành: Kỹ thuật Cơ điện tử Mã số: 8520114.01 LUẬN VĂN THẠC SĨ Ngành: Công nghệ kỹ thuật Cơ điện tử NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Phạm Mạnh Thắng HàNội – 2019 1 NGHIÊN CỨU XÂY DỰNG MÔ HÌNH ĐO VÀ ĐIỀU KHIỂN NHIỆT ĐỘ THEO THUẬT TOÁN PID VỚI CÁC CẢM BIẾN CÔNG NGHIỆP Trần Thị Thu Trang Khóa QH-2016-I, ngành Công nghệ Kỹ thuật Cơ điện tử Tóm tắt luận văn thạc sĩ Ngày nay, bộ điều khiển PID đóng vai trò quan trọng và được sử dụng rộng rãi trong các hệ thống điều khiển công nghiệp, đặc biệt trong điều khiển phản hồi.Mô–đun kiểm soát nhiệt độ chất lỏng RYC-TAG của hãng EDIBON được thiết kế cùng bộ điều khiển PID cho phép người dùng đo đạc nhiệt độ chất lỏng, điều khiển hoạt động mô– đun thông qua phần mềm RYC. Để tí nh toán các thông số 𝐾𝑃 , 𝑇𝐼 , 𝑇𝐷 của bộ điều khiển PID đưa vào hệ thống để tiến hành điều khiển, luận văn sử dụng phần mềm Matlab. Luận văn tập trung nghiên cứu, xây dựng bộ điều khiển PID điều khiển nhiệt độ chất lỏng. Việc đo đạc nhiệt độ vàtính toán các thông số dựa trên một số tài liệu được cung cấp từ nhàsản xuất vàquátrình thực nghiệm, từ đó kiểm chứng độ chí nh xác của thiết bị đo cũng như tác dụng của bộ điều khiển PID trong quá trình điều khiển nhiệt độ. Từ khóa: RYC-TAG, MATLAB, RYC Software, PID. 2 LỜI CAM ĐOAN Em xin cam đoan đề tài “Nghiên cứu xây dựng mô hình đo và điều khiển nhiệt độ theo thuật toán PID với các cảm biến công nghiệp” được hoàn thành dưới sự hướng dẫn của thầy PGS.TS Phạm Mạnh Thắng. Các nội dung nghiên cứu, kết quả trong đề tài này làtrung thực và chưa công bố dưới bất kỳ hì nh thức nào trước đây. HàNội, ngày 20 tháng 04 năm 2019 Sinh viên thực hiện Trần Thị Thu Trang 3 LỜI CẢM ƠN Để hoàn thành luận văn này, em xin bày tỏ lòng biết ơn đến thầy PGS.TS Phạm Mạnh Thắng người đã hướng dẫn, chỉ bảo vàtạo điều kiện tốt nhất cho em trong suốt quátrì nh thực hiện luận văn thạc sĩ, giúp em hoàn thành luận văn. Em cũng xin gửi lời cảm ơn tới các thầy cô khoa Cơ học kỹ thuật & Tự động hóa, trường Đại học Công nghệ, Đại học Quốc Gia HàNội đã tận tình giúp đỡ, cung cấp cho em những kiến thức quýgiávàtạo điều kiện cho em trong suốt quátrì nh học tập tại trường. Mặc dù đã hết sức cố gắng song luận văn không tránh khỏi những thiếu sót. Kí nh mong thầy côcùng toàn thể bạn bè đóng góp ýkiến để luận văn được hoàn thiện hơn. Em xin kính chúc thầy cô sức khỏe, thành công trong công việc đào tạo những thế hệ tri thức tương lai. Em xin chân thành cảm ơn! HàNội, ngày 20 tháng 04 năm 2019 Sinh viên thực hiện Trần Thị Thu Trang 4 MỤC LỤC NGHIÊN CỨU XÂY DỰNG MÔ HÌNH ĐO VÀ ĐIỀU KHIỂN NHIỆT ĐỘ THEO THUẬT TOÁN PID VỚI CÁC CẢM BIẾN CÔNG NGHIỆP ...................................... 1 LỜI CAM ĐOAN ............................................................................................................ 2 LỜI CẢM ƠN .................................................................................................................. 3 MỤC LỤC ....................................................................................................................... 4 DANH MỤC CÁC CHỮ KÝ HIỆU VÀ VIẾT TẮT ..................................................... 6 DANH MỤC CÁC BẢNG .............................................................................................. 7 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ.................................................................... 8 MỞ ĐẦU ....................................................................................................................... 10 1. CHƯƠNG 1: LÝ THUYẾT PID ............................................................................ 12 1.1. Khái quát bộ điều khiển PID ............................................................................ 12 1.1.1. 1.1.1.1. Hoạt động tỷ lệ ................................................................................... 12 1.1.1.2. Đáp ứng của hệ thống theo điều khiển tỷ lệ ....................................... 15 1.1.1.3. Các ứng dụng của điều khiển theo tỷ lệ ............................................. 19 1.1.2. Điều khiển tích phân ................................................................................. 22 1.1.2.1. Điều khiển thả nổi .............................................................................. 22 1.1.2.2. Hoạt động tích phân ........................................................................... 22 1.1.2.3. Đáp ứng của hệ thống điều khiển tí ch phân ....................................... 23 1.1.2.4. Điều khiển theo tỷ lệ kết hợp tí ch phân.............................................. 24 1.1.2.5. Đáp ứng của hệ thống điều khiển theo tỷ lệ kết hợp tí ch phân .......... 26 1.1.3. 1.2. Điều khiển tỷ lệ ......................................................................................... 12 Điều khiển vi phân .................................................................................... 29 1.1.3.1. Hoạt động vi phân .............................................................................. 29 1.1.3.2. Điều khiển theo tỷ lệ kết hợp vi phân ................................................ 30 Các phương pháp xác định tham số bộ điều khiển PID ................................... 33 1.2.1. Phương pháp Ziegler – Nichols ................................................................ 33 1.2.2. Phương pháp Chien – Hrones – Reswick.................................................. 35 1.2.3. Phương pháp lấy giátrị bằng phần mềm................................................... 37 1.3. Đánh giá chất lượng hệ thống điều khiển ........................................................ 37 1.3.1. Sai số xác lập ............................................................................................. 37 5 1.3.2. Đáp ứng quá độ ......................................................................................... 38 2. CHƯƠNG 2: KHẢO SÁT MÔ HÌNH VÀ NGUYÊN LÝ HOẠT ĐỘNG HỆ THỐNG ĐO NHIỆT ĐỘ NƯỚC .................................................................................. 40 2.1. Cấu tạo vànguyên lýhoạt động thiết bị điều khiển nhiệt độ RYC-TAG ........ 40 2.1.1. Cấu tạo....................................................................................................... 40 2.1.2. Nguyên lýhoạt động ................................................................................. 42 2.2. Mô–đun RYC ................................................................................................... 44 2.3. Phần mềm RYC ............................................................................................... 48 3. CHƯƠNG 3: NGHIÊN CỨU XÂY DỰNG VÀ KẾT QUẢ THỰC NGHIỆM MÔ HÌNH ĐO ĐIỀU KHIỂN NHIỆT ĐỘ NƯỚC .............................................................. 50 3.1. Mục tiêu nghiên cứu ........................................................................................ 50 3.2. Mô–đun RYC ................................................................................................... 50 3.2.1. Đáp ứng của hệ thống bậc nhất trong miền thời gian ............................... 50 3.2.2. Cấu trúc bộ điều khiển PID ....................................................................... 53 3.2.3. Điều khiển PID của hệ thống bậc nhất ...................................................... 58 3.3. Mô–đun RYC-TAG ......................................................................................... 60 3.3.1. Môhình toán học của hệ thống trao đổi nhiệt........................................... 60 3.3.2. Xác định đặc tính mô–đun điều khiển nhiệt độ dòng chất lỏng................ 63 3.3.3. Môphỏng trong Matlab ............................................................................ 65 3.3.3.1. Giới thiệu phần mềm Matlab .............................................................. 65 3.3.3.2. Sơ đồ môphỏng.................................................................................. 67 3.3.3.3. 3.3.4. Môphỏng với các giátrị 𝑲𝑷, 𝑻𝑰, 𝑻𝑫 ................................................... 68 Điều khiển nhiệt độ dòng chảy mô–đun RYC-TAG bằng PID ................ 70 4. KẾT LUẬN............................................................................................................. 73 5. TÀI LIỆU THAM KHẢO ...................................................................................... 74 6 DANH MỤC CÁC CHỮ KÝ HIỆU VÀ VIẾT TẮT PID Proportional Integral Derivative Bộ điều khiển tỷ lệ tí ch phân vi phân MATLAB MATrix LABoratory Phần mềm lập trì nh vàtí nh toán B.P BandPass Dải GUI Graphical User Interface Giao diện đồ họa người dùng CPU Central Processing Unit Bộ vi xử lýtrung tâm ST Sensor Temperature Cảm biến nhiệt độ AC Alternating Current Dòng điện xoay chiều LED Light Emitting Diode Điốt phát quang LAG/LEAD Hệ thống bù Cold Fluid Dòng nước lạnh Hot Fluid Dòng nước nóng 𝐾𝑃 Hệ số tỷ lệ 𝑇𝐼 Hệ số tí ch phân 𝑇𝐷 Hệ số vi phân IN Đầu vào OUT Đầu ra A Khu vực trao đổi nhiệt 𝐶𝑝,𝑐 Nhiệt dung riêng chất lỏng lạnh 𝐶𝑝,𝐻 Nhiệt dung riêng chất lỏng nóng 𝐹𝑐 Tốc độ dòng chảy chất lỏng lạnh 𝐹𝐻 Tốc độ dòng chảy chất lỏng nóng 𝑚̇ 𝑐 Khối lượng chất lỏng lạnh 𝑚𝐻 ̇ Khối lượng chất lỏng nóng 𝑇𝑐 Nhiệt độ đầu ra chất lỏng lạnh 𝑇𝑐0 Nhiệt độ đầu vào chất lỏng lạnh 𝑇𝐻 Nhiệt độ đầu ra chất lỏng nóng 𝑇𝐻0 Nhiệt độ đầu vào chất lỏng nóng U Hệ số truyền nhiệt 7 DANH MỤC CÁC BẢNG Bảng 1.1 Các tham số PID theo phương pháp Ziegler – Nichols thứ nhất ................... 34 Bảng 1.2 Các tham số PID theo phương pháp Ziegler – Nichols thứ hai ..................... 35 Bảng 1.3 Các tham số PID theo phương pháp Chien – Hrones – Reswick 1 ............... 36 Bảng 1.4 Các tham số PID theo phương pháp Chien – Hrones – Reswick 2 ............... 36 Bảng 1.5 Các tham số PID theo phương pháp Chien – Hrones – Reswick 3 ............... 36 Bảng 1.6 Các tham số PID theo phương pháp Chien – Hrones – Reswick 4 ............... 37 8 DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1 Điều khiển theo tỷ lệ.......................................................................................12 Hình 1.2 Thay đổi độ nghiêng đường hoạt động bộ điều khiển theo tỷ lệ ....................13 Hì nh 1.3 Sự biến thiên của dải tỷ lệ ..............................................................................14 Hình 1.4 Đáp ứng của bộ điều khiển theo tỷ lệ ............................................................. 15 Hình 1.5 Điều khiển tự động nhiệt độ đầu ra chất lỏng trong bộ trao đổi nhiệt[10, pp.28] ............................................................................................................................. 15 Hình 1.6 Đường tải quátrình .........................................................................................16 Hình 1.7 Các điều kiện hoạt động hệ thống theo số liệu thiết kế ..................................16 Hì nh 1.8 Hệ thống điều khiển theo tỷ lệ ........................................................................17 Hì nh 1.9 Sự biến thiên tải trong quátrình .....................................................................18 Hình 1.10 Điều chỉnh thủ công đối với biến thiên tải ...................................................18 Hì nh 1.11 Chuyển dịch pha giữa biến vàhoạt động hiệu chỉnh ...................................20 Hì nh 1.12 Hệ thống được điều khiển với độ trễ động học đáng kể............................... 20 Hình 1.13 Đồ thị dao động của biến điều khiển ............................................................ 21 Hình 1.14 Đáp ứng của bộ điều khiển tí ch phân ...........................................................23 Hình 1.15 Đáp ứng quátrình bằng điều khiển tí ch phân ..............................................24 Hình 1.16 Đáp ứng của bộ điều khiển theo tỷ lệ kết hợp tí ch phân .............................. 25 Hình 1.17 Đáp ứng quátrình với điều khiển theo tỷ lệ kết hợp tí ch phân ....................27 Hình 1.18 Tác động tỷ lệ đặt lại đến đáp ứng hệ thống điều khiển tỷ lệ kết hợp tí ch phân .28 Hình 1.19 Tác động biên độ dải tỷ lệ đến đáp ứng hệ thống điều khiển tỷ lệ + tí ch phân ...28 Hình 1.20 Đáp ứng của bộ điều khiển vi phân .............................................................. 30 Hì nh 1.21 Sự đáp ứng bộ điều khiển theo tỷ lệ kết hợp vi phân ...................................31 Hì nh 1.22 Thời gian tỷ lệ............................................................................................... 32 Hình 1.23 Tác động của hoạt động vi phân ...................................................................33 Hình 1.24 Đáp ứng nấc của hệ hở códạng S ................................................................ 34 Hình 1.25 Xác định hằng số khuyếch đại tới hạn..........................................................34 Hình 1.26 Đáp ứng nấc của hệ kí n khi k=𝑘𝑡ℎ .............................................................. 35 Hình 1.27 Đáp ứng nấc của hệ thí ch hợp theo phương pháp Chien – Hrones – Reswick .......................................................................................................................................35 Hì nh 1.28 Hệ thống hồi tiếp âm ....................................................................................37 Hì nh 1.29 Sai số xác lập ................................................................................................ 38 Hì nh 1.30 Hiện tượng vọt lố ..........................................................................................38 Hình 1.31 Độ vọt lố .......................................................................................................38 Hì nh 1.32 Thời gian quá độ ..........................................................................................39 Hì nh 1.33 Thời gian lên .................................................................................................39 Hì nh 2.1 Mô–đun RYC-TAG [12, pp.2] .......................................................................40 Hì nh 2.2 Mô–đun kiểm soát nhiệt độ chất lỏng ............................................................ 41 Hì nh 2.3 Cấu tạo hộp giao diện điều khiển ...................................................................42 Hình 2.4 Mô hình dòng trao đổi nhiệt ...........................................................................43 Hì nh 2.5 Mô–đun RYC [11, pp.2] .................................................................................44 Hì nh 2.6 Mô–đun tín hiệu tham chiếu ...........................................................................45 Hì nh 2.7 Mô–đun điều khiển PID vàLAG/LEAD .......................................................46 Hì nh 2.8 Mô–đun hệ thống bậc một ..............................................................................46 9 Hì nh 2.9 Mô–đun hệ thống bậc hai ...............................................................................47 Hì nh 2.10 Mô–đun hệ thống tích hợp............................................................................47 Hì nh 2.11 Mô–đun bù ....................................................................................................48 Hì nh 2.12 Mô–đun đầu vào [11, pp.11] ........................................................................48 Hì nh 2.13 Phần mềm RYC [11, pp.41] .........................................................................49 Hì nh 3.1 Kết nối bài thực hành hệ thống bậc nhất miền thời gian [11, pp.59] .............51 Hình 3.2 Đồ thị (1) thể hiện bước phản ứng hệ thống bậc nhất theo thời gian .............51 Hình 3.3 Đồ thị (2) thể hiện bước phản ứng hệ thống bậc nhất theo thời gian .............52 Hình 3.4Đồ thị (3) thể hiện bước phản ứng hệ thống bậc nhất theo thời gian ..............52 Hình 3.5 Đồ thị (4) thể hiện bước phản ứng hệ thống bậc nhất theo thời gian .............52 Hì nh 3.6 Cấu trúc bộ điều khiển PID [11, pp.75] .........................................................53 Hì nh 3.7 Kết nối bài thực hành cấu trúc bộ điều khiển PID [11, pp.75] .......................54 Hì nh 3.8 Phản ứng bộ P với 𝐾𝑐=0.5 .............................................................................54 Hì nh 3.9 Phản ứng bộ P với 𝐾𝑐=1 ................................................................................55 Hì nh 3.10 Phản ứng bộ P với 𝐾𝑐=1.5 ...........................................................................55 Hì nh 3.11 Phản ứng bộ P với 𝐾𝑐=2 ..............................................................................55 Hì nh 3.12 Phản ứng khi cóI và𝐾𝑐=2 ...........................................................................56 Hì nh 3.13 Phản ứng bộ D với 𝑇𝐷=10ms.......................................................................57 Hì nh 3.14 Phản ứng bộ D với 𝑇𝐷=80ms.......................................................................57 Hì nh 3.15 Phản ứng bộ D với 𝑇𝐷=150ms.....................................................................57 Hì nh 3.16 Kết nối điều khiển PID cho hệ thống bậc nhất [11, pp.78] ..........................58 Hì nh 3.17 Phản ứng hệ thống bậc nhất dùng PID với 𝐾𝑐= 1 ........................................59 Hì nh 3.18 Phản ứng hệ thống bậc nhất dùng PID với 𝐾𝑐= 1,𝑇𝐼 = 1𝑚𝑠 ......................59 Hì nh 3.19 Phản ứng hệ thống bậc nhất dùng PID với 𝐾𝑐= 1,𝑇𝐼 = 1𝑚𝑠 ......................60 Hì nh 3.20 Phản ứng hệ thống bậc nhất dùng PID với 𝐾𝑐= 1,𝑇𝐼 = 10𝑚𝑠, 𝑇𝐷 = 0𝑚𝑠 60 Hì nh 3.21 Hệ thống trao đổi nhiệt .................................................................................61 Hình 3.22 Sơ đồ khối đặc tính RYC-TAG ....................................................................63 Hình 3.23 Sơ đồ khối đơn giản RYC-TAG ...................................................................64 Hì nh 3.24 Kết nối bài thực hành đặc tính mô–đun kiểm soát dòng chất lỏng [12, pp.20] .......................................................................................................................................64 Hì nh 3.25 Phản ứng hệ thống điều khiển nhiệt độ dòng chất lỏng tần số 5Hz .............65 Hì nh 3.26 Giao diện Matlab ..........................................................................................66 Hì nh 3.27 Giao diện Simulink .......................................................................................67 Hình 3.28 Sơ đồ môphỏng mô–đun RYC-TAG ...........................................................67 Hì nh 3.29 Tính toán thông số PID bằng Matlab ...........................................................68 Hì nh 3.30 Tune PIDvới𝐾𝑃 = 1.43, 𝐾𝐼 = 236, 𝐾𝐷 = 0 ...............................................68 Hì nh 3.31 Thông số chất lượngvới 𝐾𝑃 = 1.43, 𝐾𝐼 = 236, 𝐾𝐷 = 0 ............................ 69 Hình 3.32 Đáp ứng đầu ra với 𝐾𝑃 = 1.43, 𝐾𝐼 = 236, 𝐾𝐷 = 0 ....................................69 Hình 3.33 Đáp ứng đầu ra với 𝐾𝑃 = 10, 𝐾𝐼 = 333, 𝐾𝐷 = 0 .......................................70 Hì nh 3.34 Mô–đun điều khiển dòng nước với bộ điều khiển PID [12, pp.22] .............71 Hình 3.35 Đồ thị (1) phản ứng của hệ thống điều khiển nhiệt độ nước ........................71 Hình 3.36 Đồ thị (2) phản ứng của hệ thống điều khiển nhiệt độ nước ........................72 Hình 3.37 Đồ thị (3) phản ứng của hệ thống điều khiển nhiệt độ nước ........................72 Hình 3.38 Đồ thị (4) phản ứng hệ thống điều khiển nhiệt độ nước............................... 72 10 MỞ ĐẦU Lýdo chọn đề tài Như chúng ta biết, nhiệt độ làmột trong những thành phần vật lýrất quan trọng. Việc thay đổi nhiệt độ của một vật chất ảnh hưởng đến cấu tạo, tí nh chất và các đại lượng vật lýkhác của vật chất. Vídụ, sự thay đổi nhiệt độ của một chất khísẽ làm thay đổi thể tích, áp suất chất khítrong bì nh. Vìvậy, trong nghiên cứu khoa học, trong công nghiệp và đời sống sinh hoạt, thu thập các thông số và điều khiển nhiệt độ làđiều cần thiết. Có nhiều phương pháp điều khiển nhiệt độ. Mỗi phương pháp đều mang đến một kết quả khác nhau thông qua các phương pháp khác nhau đó.Đối với các phương pháp điều khiển kinh điển, do cấu trúc đơn giản vàbền vững nên các bộ điều khiển PID (tỷ lệ, tích phân, đạo hàm) được dùng phổ biến trong các hệ điều khiển công nghiệp. Chất lượng hệ thống phụ thuộc vào các tham số 𝐾𝑃 , 𝑇𝐼 , 𝑇𝐷 của bộ điều khiển PID. Vìcác hệ số của bộ điều khiển PID chỉ được tí nh toán cho một chế độ làm việc cụ thể của hệ thống, do vậy trong quátrì nh vận hành luôn phải chỉnh định các hệ số này phùhợp thực tế để phát huy tốt hiệu quả bộ điều khiển. Mục tiêu của điều khiển lànâng cao chất lượng các hệ thống điều khiển tự động. Tuy nhiên, trên thực tế có rất nhiều đối tượng điều khiển khác nhau, với yêu cầu và đặc tí nh phức tạp khác nhau. Do đó cần phải tiến hành nghiên cứu, tìm ra các phương pháp điều khiển cụ thể cho từng đối tượng. Trong luận văn, em sử dụng phương pháp bộ điều khiển PID và phần mềm Matlab Simulink, xây dựng mô hì nh hóa và mô phỏng hệ thống điều khiển, đây là công cụ đắc lực trợ giúp việc nghiên cứu, môphỏng mô hình đo và điều khiển nhiệt độ. Đối tượng vàphạm vi nghiên cứu Đối tượng nghiên cứu: RYC-TAG làmột ứng dụng điều khiển nhiệt độ được thiết kế bởi EDIBON. Phạm vi nghiên cứu của đề tài là nghiên cứu xây dựng mô hình đo và điều khiển nhiệt độ theo thuật toán PID với các cảm biến công nghiệp. Phương pháp nghiên cứu Để thực hiện nghiên cứu đề tài này cần kết hợp hai phương pháp sau: - Phương pháp nghiên cứu lý thuyết: nghiên cứu các vấn đề về ứng dụng điềukhiển thích nghi, mô hình điều khiển nhiệt độ, các hàm tối ưu trong Matlab và tính toán hỗ trợ hàm tối ưu. - Phương pháp mô phỏng: Sử dụng công cụ tí nh toán tìm tối ưu trong phần mềm Matlab vàRYC, tạo dữ liệu môphỏng, kiểm tra. 11 Ý nghĩa thực tiễn vàkhoa học của đề tài Thông qua việc tìm hiểu về cấu tạo vànguyên lýhoạt động của thiết bị, chúng ta có thể hiểu được cấu tạo vànguyên lý hoạt động của các thiết bị có liên quan ứng dụng trong công nghiệp, sản xuất, đời sống hàng ngày. Cấu trúc luận văn Nội dung chính của luận văn là nghiên cứu xây dựng mô hình đo và điều khiển nhiệt độ theo thuật toán PID với các cảm biến công nghiệp. Bố cục luận văn gồm 3 chương: Chương 1: Lý thuyết PID. Chương 2: Khảo sát môhình vànguyên lýhoạt động hệ thống đo nhiệt độ nước. Chương 3: Nghiên cứu xây dựng vàkết quả thực nghiệm mô hình đo điều khiển nhiệt độ nước. 12 1. CHƯƠNG 1: LÝ THUYẾT PID 1.1. Khái quát bộ điều khiển PID Bộ điều khiển PID làmột cơ chế phản hồi vòng điều khiển tổng quát được sử dụng rộng rãi trong các hệ thống điều khiển công nghiệp. Bộ điều khiển PID sẽ tí nh toán giátrị “sai số” là hiệu số giữa giátrị đo thông số biến đổi vàgiátrị đặt mong muốn. Bộ điều khiển sẽ thực hiện giảm tối đa sai số bằng cách biến điều chỉnh giátrị điều khiển đầu vào dựa trên sự kết hợp của ba bộ điều khiển: tỷ lệ, tí ch phân vàvi phân. 1.1.1. Điều khiển tỷ lệ 1.1.1.1. Hoạt động tỷ lệ Một dụng cụ điều khiển tiến hành điều khiển theo tỷ lệ khi cótỷ lệ đôi một giữa các tí n hiệu đầu ra và đầu vào. Phương trình đặc trưng của bộ điều khiển theo tỷ lệ có thể được viết như sau: y =y0± k(x-x0) (1.1) y vày0 làcác giátrị tức thời và ban đầu của sự mở van điều khiển, x vàx0 làcác giá trị tức thời và ban đầu của biến, k làhệ số tỷ lệ. Ký hiệu ± phụ thuộc vào loại quá trình điều khiển. Nó là cộng khi van mở thêm khi biến tăng, trừ trong trường hợp ngược lại, tức là việc mở van bị giảm khi biến tăng. Trường hợp trừ được thể hiện trong hình 1.1. Hình 1.1 Điều khiển theo tỷ lệ Trong hình 1.1, x2 và x1 tương ứng giátrị cực đại của khoảng biến thiên của biến được điều khiển. Khi giá trị ban đầu x0 trùng điểm đặt thìsự chênh lệch x0-x trùng độ lệch biến, tức làcó sai số. Độ nghiêng đường hoạt động phương trình (1.1) 13 phụ thuộc vào giátrị của hệ số tỷ lệ k vàbiểu thị độ nhạy dụng cụ. Nếu độ nhạy tăng, đường hoạt động sẽ giảm độ nghiêng của nó. Hình 1.2 Thay đổi độ nghiêng đường hoạt động bộ điều khiển theo tỷ lệ Theo hình 1.2, sự biến thiên x2’ – x1’ của biến cần để van điều khiển đi qua toàn bộ phạm vi làthấp hơn so với sự biến thiên trước đó x2 – x1. Phương trình biểu diễn đường b) cóthể được viết như sau: 𝑦 ′ = y0 + k1(x0 – x) (1.2) Nếu p = y/100, p0 = x0/100 vàsai số phần trăm tương ứng với e = (x0 – x)/(x2 – x1), phương trình (1.2) trở thành: p = 𝑝0 + 𝑘 100 e(𝑥2 -𝑥1 ) (1.3) Hì nh 1.2 thể hiện rằng: 𝑘1 = 𝑦 1 − 𝑦0 𝑥0 − 𝑥 = 100 𝑥21 −𝑥11 (1.4) Thay 𝑘1 vào phương trình (1.3) được kết quả: p = 𝑝0 + e nếu b = 𝑥21 − 𝑥11 𝑥2 − 𝑥1 𝑥2 − 𝑥1 𝑥21 − 𝑥11 (1.5) được kết quả: p = 𝑝0 + 𝑒 𝑏 (1.6) Phương trình (1.6) là công thức thường được sử dụng biểu diễn dải tỷ lệ; hằng số b làdải tỷ lệ của dụng cụ; nólàkết quả của hệ số giữa sự chênh lệch của các giátrị của 14 biến tương ứng với các vị trícực đại của van điều khiển vàsự chênh lệch của các giátrị của biến giới hạn khoảng hoạt động dụng cụ. Do đó dải tỷ lệ làkết quả của một phần khoảng hoạt động của dụng cụ được bao gồm bằng sự biến thiên của biến để tí n hiệu đầu ra cóthể thay đổi 100%. Hình 1.3 cho thấy một số đường hoạt động của bộ điều khiển tỷ lệ tương ứng với các giátrị khác nhau của dải tỷ lệ. Hình 1.3 Sự biến thiên của dải tỷ lệ Theo hình 1.3, dải tỷ lệ cóthể vượt quá100%, van điều khiển không đạt tới vị trí đóng và mở toàn bộ, khoảng hoạt động của nó nằm giữa hai vị trítrung gian. Khi dải tỷ lệ càng rộng thìsự biến thiên của sự mở van càng thấp. Do đó, độ nhạy dụng cụ cũng phụ thuộc biên độ dải tỷ lệ. Dải tỷ lệ càng hẹp thì độ nhạy càng cao. Nếu cả hai vế phương trình (1.6) liên quan thời gian, kết quả: 𝑑𝑝 𝑑𝑡 = 1 𝑑𝑒 𝑏 𝑑𝑡 (1.7) Phương trình (1.7) liên kết tốc độ dịch chuyển của bộ khởi động với tốc độ biến thiên của biến. Hình 1.4 cho thấy xu hướng của đặc điểm đáp ứng bộ điều khiển theo tỷ lệ với biến thiên của biến trong trường hợp lý tưởng của bộ điều khiển hoạt động theo phương trình (1.6) không trễ. 15 Hình 1.4 Đáp ứng của bộ điều khiển theo tỷ lệ Nếu tín hiệu đầu vào làsóng hình sin thìtín hiệu đầu ra của dụng cụ tỷ lệ thuận và trong pha cósai số. 1.1.1.2. Đáp ứng của hệ thống theo điều khiển tỷ lệ Xem xét hệ thống trong hình 1.5. Trong một bộ trao đổi nhiệt, chất lỏng A được làm nóng thông qua một chất lỏng B nóng hơn. Biến số được điều khiển lànhiệt độ ống xả của chất lỏng A. Hình 1.5 Điều khiển tự động nhiệt độ đầu ra chất lỏng trong bộ trao đổi nhiệt[10, pp.28] Bộ điều khiển theo tỷ lệ C phải giữ cho vận tốc dòng chảy của chất lỏng gia nhiệt B không thay đổi, bằng cách điều khiển phù hợp thông qua van điều khiển của nó. Nếu vận tốc dòng chảy chất lỏng B không thay đổi, nhiệt độ đầu ra của nó tăng theo tỷ lệ khi lưu lượng chất lỏng B tăng, tức là, khi van điều khiển mở rộng. Trong trường hợp này, đường tải của quá trình là đường thẳng như hình 1.6. 16 Hình 1.6 Đường tải quátrì nh Hai giátrị tối thiểu vàtối đa của phạm vi biến đổi của nhiệt độ được điều khiển tương ứng với hai vị trícực đại đóng và mở của van, trong khi đó nhiệt độ 𝜗0 = (𝜗2 +𝜗1 )/2 tương ứng vị trímở trung gian 0.5. Trong giai đoạn thiết kế, thực hiện cố định vị trítrung gian của van điều khiển tương ứng với điểm đặt của biến được điều khiển. Theo cách này, nócókhả năng tác động như nhau theo cả hai hướng, mở rộng hoặc giảm theo hướng lệch của biến. Do đó, bộ điều khiển được giả sử hoạt động với dải tỷ lệ 100% và điểm đặt biến 𝜗0 . Hình 1.7 thể hiện hoạt động của hệ thống; lưu ý đường tải quá trình và đường hoạt động của dụng cụ được xếp chồng lên nhau. Giao điểm H của hai đường biểu diễn điểm hoạt động của hệ thống. Hình 1.7 Các điều kiện hoạt động hệ thống theo số liệu thiết kế Trên thực tế, nhiệt độ đầu ra chất lỏng A phụ thuộc vào mức độ mở van theo đường tải biểu diễn kết quả sự cân bằng năng lượng; nhờ vào hoạt động của dụng cụ điều khiển mà nhiệt này cũng được liên kết với mức độ mở van theo sự tương ứng được cố định bởi đường hoạt động. Do đó, điểm cân bằng của hệ thống chỉ tương ứng 17 với giao điểm của hai đường này. Nếu nhiệt độ được điều khiển giảm xuống dưới điểm đặt, van mở nhiều hơn cho phép vận tốc dòng chảy của chất lỏng gia nhiệt lớn hơn. Điều này gây ra sự tăng nhiệt độ được điều khiển. Ngược lại, nếu nhiệt độ này vượt quá điểm đặt, dụng cụ sẽ làm giảm sự mở van dẫn đến việc giảm nhiệt được cung cấp. Hình 1.8 Hệ thống điều khiển theo tỷ lệ Vận tốc dòng chảy U của chất lỏng chảy ra khỏi bể được điều khiển sao cho mức độ không thay đổi trong bể dù đầu vào I của chất lỏng khác. Thiết bị gồm phao A, điểm đặt lực B và đòn bẩy kép có liên quan thực hiện mối quan hệ tỷ lệ thuận giữa mức chất lỏng trong bể chứa vàcổng van C. Giả sử vận tốc dòng chảy đầu vào I là50 l/s vàcông suất chảy ra của tuyến xả 50 l/s khi van mở một nửa. Hệ thống được điều khiển để van mở một nửa khi mức bể chứa trùng với điểm đặt, vận tốc dòng chảy ra U cân bằng chính xác vận tốc dòng chảy vào I vàmức không thay đổi. Nếu lượng chất lỏng nhất định đột nhiên được đổ vào bể chứa, vận tốc dòng chảy vào tạm thời vượt quávận tốc dòng chảy ra vàmức tăng lên. Điều này gây ra sự mở van lớn hơn cùng với việc tăng lượng xả sau đó. Tuy nhiên thông số cuối cùng này cao hơn giá trị thông thường của 50 l/s tới khi lượng chất lỏng được đổ vào đó được xả. Sau đó mức sẽ lại trùng với điểm đặt và các điều kiện ban đầu sẽ được thiết lập lại. Vìvậy, hệ thống điều khiển theo tỷ lệ cóthể sinh ra đáp ứng hiệu quả với sự thay đổi đột ngột vàngắn gọn trong điều kiện thông thường. Giả sử vận tốc dòng chảy I đột nhiên tăng từ 50 l/s đến 75 l/s không thay đổi tại giátrị mới này. Trong lần đầu tiên, vận tốc dòng chảy vào vượt quávận tốc dòng chảy của chất lỏng được xả. Sau đó mức bắt đầu tăng và giá trị mở nhiều hơn. Khi mức đã đạt đến giátrị màsự mở van cho phép chảy ra 75 l/s thìchất lỏng vào vàchất lỏng được xả lại như nhau. Khi đó mức ngừng tăng và duy trì giá trị không đổi khác với giá trị ban đầu. Sau đó hệ thống sẽ khởi động lại điều khiển quá trình để biến được điều khiển không đổi. Sự chênh lệch giữa hai giá trị này gây ra sự mở van rộng hơn để lượng chất lỏng được xả cóthể bằng với giátrị vận tốc dòng chảy vào. Trong trường 18 hợp này, sự điều khiển theo tỷ lệ không đủ để đảm bảo sự trùng khớp không đổi của biến với điểm đặt cónó. Bắt đầu từ các điều kiện hoạt động được thể hiện trong hình 1.7. Giả sử rằng tại một thời điểm nhất định, nhiệt độ đầu vàchất lỏng gia nhiệt B đột giảm. Trong trường hợp này, vận tốc dòng chảy lớn hơn của chất lỏng B làcần thiết để đạt được nhiệt độ đầu ra nhất định của chất lỏng A. Hình 1.9 thể hiện sự hoạt động của hệ thống trong các điều kiện mới này. Hình 1.9 Sự biến thiên tải trong quátrì nh Khi tải thay đổi, sự mở van 50% là không đủ để giữ được biến điều khiển tại điểm đặt. Do đó, nhiệt độ đầu ra của biến A giảm xuống giátrị 𝜗, ứng điểm cân bằng mới 𝐻 ′ . Kim chỉ của dụng cụ lệch khỏi mốc trên thang chia độ của đại lượng 𝜗0 - 𝜗 ′ không đổi tới khi sự biến thiên tải của quá trình không thay đổi. Tức là, có khoảng cách giữa giátrị thực tế của biến được điều khiển và điểm đặt mànóphụ thuộc vào giá trị sự biến thiên tải và biên độ dải tỷ lệ của dụng cụ. Hình 1.10 Điều chỉnh thủ công đối với biến thiên tải
- Xem thêm -

Tài liệu liên quan