Đăng ký Đăng nhập
Trang chủ ứng dụng phương trình vi phân giải bài toán kinh tế...

Tài liệu ứng dụng phương trình vi phân giải bài toán kinh tế

.PDF
65
4919
111

Mô tả:

1 LỜI CẢM ƠN Tôi xin chân thành bày tỏ lòng kính trọng và biết ơn sâu sắc tới TS. Nguyễn Văn Hùng, người thầy đã chỉ ra hướng nghiên cứu, chỉ bảo tận tình, chu đáo, động viên và giúp đỡ tôi trong quá trình thực hiện luận văn. Tôi xin gửi lời cảm ơn chân thành tới Ban giám hiệu, các thầy giáo, cô giáo Phòng Sau đại học, Khoa Toán Trường Đại Học Sư Phạm Hà Nội 2, bạn bè và người thân đã tạo điều kiện, động viên, khuyến khích, giúp đỡ tôi hoàn thành luận văn này. Hà Nội, tháng 11 năm 2013 Tác giả Trần Hoài Anh 2 LỜI CAM ĐOAN Luận văn này là kết quả của quá trình học tập, nghiên cứu của bản thân dưới sự chỉ bảo, dìu dắt của các thầy giáo, cô giáo, đặc biệt là sự hướng dẫn nhiệt tình và chu đáo của TS. Nguyễn Văn Hùng. Trong khi nghiên cứu, tôi đã kế thừa những thành quả nghiên cứu của các nhà khoa học, nhà nghiên cứu với sự trân trọng và biết ơn. Luận văn với đề tài “Ứng dụng phƣơng trình vi phân giải bài toán kinh tế” không có sự trùng lặp. Hà Nội, tháng 11 năm 2013 Tác giả Trần Hoài Anh 3 MỤC LỤC Trang Lời cảm ơn .......................................................................................... 1 Lời cam đoan ....................................................................................... 2 Mục lục ............................................................................................... 3 MỞ ĐẦU ............................................................................................ 4 NỘI DUNG ........................................................................................ 6 Chƣơng 1: Phƣơng trình vi phân....................................................... 6 1.1. Một số khái niệm về phương trình vi phân ................................... 6 1.2. Phương trình vi phân cấp 1 ........................................................... 7 1.3. Phương trình vi phân tuyến tính cấp n .......................................... 11 1.4. Hệ phương trình vi phân cấp 1 ...................................................... 15 Chƣơng 2: Ứng dụng phƣơng trình vi phân giải bài toán kinh tế .. 18 2.1. Khái niệm phân tích cân bằng động .............................................. 18 2.2. Phân tích cân bằng động đối với giá cả thị trường ........................ 23 2.3. Mô hình tăng trưởng Solow .......................................................... 28 2.4. Mô hình tăng trưởng với kỳ vọng giá được dự báo trước .............. 34 Chƣơng 3: Ứng dụng hệ phƣơng trình vi phân giải bài toán kinh tế 44 3.1. Mô hình cân đối liên ngành động với cầu vượt mức ..................... 44 3.2. Mô hình kinh tế vĩ mô về lạm phát và thất nghiệp ...................... .. 46 3.3. Biểu đồ pha hai biến và ứng dụng ............................................. .. 56 KẾT LUẬN ........................................................................................ 64 TÀI LIỆU THAM KHẢO ................................................................. 65 4 MỞ ĐẦU 1. Lý do chọn đề tài Sự phát triển của toán học tuy có những bước thăng trầm ở từng thời điểm lịch sử, song những kết quả mà nó đạt được rực rỡ nhất là vào thế kỷ XX. Toán học là một công cụ hết sức hiệu quả giúp cho việc phát biểu, phân tích và giải quyết các vấn đề kinh tế trong các hoạt động kinh tế một cách chặt chẽ, hợp lí, mang lại các lợi ích thiết thực. Việc biết cách mô tả các vấn đề kinh tế dưới dạng mô hình toán học thích hợp, vận dụng các phương pháp toán học để giải quyết chúng, phân tích, chú giải cũng như kiểm nghiệm các kết quả đạt được một cách logic luôn là một yêu cầu cấp thiết đối với các chuyên gia làm việc trong lĩnh vực phân tích kinh tế. Trong các thập kỉ gần đây, nhiều giải Nobel kinh tế được trao cho các công trình có vận dụng một cách mạnh mẽ các lí thuyết và phương pháp toán học như phương trình vi phân, phương trình sai phân, lí thuyết xác suất thống kê, …. Như vậy, nghiên cứu lý thuyết về phương trình vi phân và ứng dụng nó vào giải bài toán kinh tế là một vấn đề được các nhà kinh tế luôn quan tâm. Xuất phát từ nhận thức trên cùng với sự giúp đỡ, hướng dẫn tận tình của TS. Nguyễn Văn Hùng em chọn đề tài: “ỨNG DỤNG PHƢƠNG TRÌNH VI PHÂN GIẢI BÀI TOÁN KINH TẾ” để thực hiện luận văn tốt nghiệp của mình. 2. Mục đích nghiên cứu Đề tài này nhằm nghiên cứu, trình bày về phương trình vi phân và ứng dụng vào giải bài toán kinh tế. 3. Nhiệm vụ nghiên cứu Với mục đích nghiên cứu ở trên, nhiệm vụ nghiên cứu của luận văn là: 5 - Phương trình vi phân. - Ứng dụng phương trình vi phân và hệ phương trình vi phân giải các bài toán kinh tế. 4. Đối tƣợng và phạm vi nghiên cứu - Đối tượng nghiên cứu: Các kiến thức cơ sở cần thiết, các kết quả về ứng dụng của phương trình vi phân vào giải bài toán kinh tế. - Phạm vi nghiên cứu: Các tài liệu, các bài báo trong và ngoài nước liên quan đến ứng dụng phương trình vi phân vào giải bài toán kinh tế. 5. Phƣơng pháp nghiên cứu - Thu thập tài liệu và các bài báo viết về phương trình vi phân và các ứng dụng của nó. - Phân tích, tổng hợp kiến thức. - Tham khảo ý kiến của giáo viên hướng dẫn. 6. Nhƣ̃ng đóng góp của luâ ̣n văn Trình bày một cách có hệ thống về ứng dụng phương trình vi phân giải bài toán kinh tế. Hơn nữa, kết quả thu được có thể mở rộng cho mô ̣t số một số lĩnh vực khác. 6 CHƢƠNG 1 PHƢƠNG TRÌNH VI PHÂN 1.1. Một số khái niệm về phƣơng trình vi phân 1.1.1. Phƣơng trình vi phân thƣờng Định nghĩa 1.1. Phương trình vi phân thường là phương trình có dạng   F x, y, y , y ,...y (n )  0 , trong đó F là hàm xác định trong một miền nào đó của không gian n2 gồ m biế n đô ̣c lâ ̣p x và y là hàm của biến độc lập , cùng các đạo hàm cấp một đến cấp n của nó. Nếu từ phương trình trên ta tìm đươ ̣c biể u diễn của đa ̣o hàm cấ p cao nhấ t y (n ) qua các biế n còn la ̣i thì ta nói phương triǹ h giải ra được đố i với y (n ) hoă ̣c ta còn go ̣i là phương triǹ h da ̣ng chiń h tắ c , tức là phương trình có dạng   y (n )  f x, y, y ,..., y (n 1) . 1.1.2. Cấp của phƣơng trình vi phân Cấp của phương trình vi phân là cấp cao nhất của đạo hàm xuất hiện trong phương trình. dy 3 Ví dụ: 2  2    y  0 là phương trình vi phân cấp 2. dx  dx d 2y 1.1.3. Nghiệm Nghiệm của phương trình vi phân thường là hàm y  y(x ) khả vi n lần trên khoảng (a,b) nào đó thỏa mãn phương trình đã cho , tức là   F x, y(x ), y (x ),..., y (n 1)(x )  0 , 7 với mọi x thuộc khoảng (a,b) . 1.2. Phƣơng trình vi phân cấp 1 1.2.1. Định nghĩa Phương trình vi phân cấp 1 có dạng tổng quát F x, y, y   0 , (1.1) trong đó hàm F xác định trong miền D   3 . - Nếu trong miền D , từ phương trình (1.1) ta có thể giải được y  : y   f x, y  , (1.2) thì ta được phương trình vi phân cấp 1 đã giải ra đối với đạo hàm. - Hàm y   x  xác định và khả vi trên khoảng I  a,b  được gọi là nghiệm của phương trình (1.1) nếu:   a, x,  x ,  x   D với mọi x  I ;   b, F x,  x ,  x   0 trên I . - Ta cũng có thể viết phương trình vi phân đã giải ra đối với đạo hàm dưới dạng đối xứng: M x, y dx  N x, y dy  0 . 1.2.2. Một số phƣơng trình vi phân cấp 1 i) Phương trình với biến số phân li Phương trình vi phân cấp 1 dạng M y dy  N x dx  0 (1.3) được gọi là phương trình với biến số phân li (hay còn gọi là phương trình tách biến). Cách giải: Các hàm M y , N x  được giả thiết liên tục trên các khoảng nào đó. 8 Khi đó chuyển vế số hạng thứ hai và lấy tích phân hai vế của (1.3) ta được  M y dy   N x dx . Công thức này cho ta nghiệm tổng quát của phương trình (1.3). ii) Phương trình vi phân tuyến tính cấp 1 Phương trình vi phân tuyến tính cấp 1 có dạng y   p x  y  q x  , (1.4) trong đó p x , q x  là các hàm xác định trên khoảng a,b  nào đó, y  y t  là hàm cần tìm để phương trình được thỏa mãn. Nếu q x   0 , ta có phương trình vi phân tuyến tính thuần nhất y   p x  y  0 (1.5) Nếu q x   0 , ta gọi (1.4) là phương trình vi phân tuyến tính không thuần nhất. * Phương trình vi phân tuyến tính cấp 1 với hệ số hằng số: y   ay  b . (1.6) Cách giải: - Xét phương trình thuần nhất tương ứng y   ay  0 .  dy dy  ay     adx dx y  ln y  ax  c  yc  Aeax . - Tìm được nghiệm riêng của (1.6) là y p  b / a nếu a  0 ; y p  bx nếu a  0 . - Nghiệm tổng quát của phương trình (1.6) có dạng 9 y  y p  yc . Vậy y  Aeax   b b b  y(0)   e ax  , với a  0 ;  a a  a  y  A  bx  y(0)  bx , với a  0 . * Phương trình vi phân tuyến tính cấp 1 với hệ số biến thiên: y   p x  y  q x  . (1.7) Cách giải: - Xét phương trình tuyến tính thuần nhất tương ứng y   p x  y  0.  dy  p(x )dx y  ln y   p(x )dx  C1  p(x )dx  yc  Ce  . - Sử dụng phương pháp biến thiên hằng số Lagrange Coi C là một hàm theo biến x , ta sẽ tìm nghiệm của phương trình (1.7) dưới dạng  px dx . y  C x e  Thay vào phương trình (1.7) ta được  px dx C  x e   q x  , suy ra C x    q x e  px dx dx  C . Thay vào (1.8) ta thu được nghiệm tổng quát của (1.7) là (1.8) 10   px dx  px dx   q x e  y e  dx  C  , C là hằng số.   iii) Phương trình Bernoulli Phương trình Bernoulli là phương trình có dạng y   p x y  q x y  ,    . (1.9) Cách giải: + Với   0 hay   1 , thì (1.9) trở thành phương trình vi phân tuyến tính cấp 1. + Với   0 và   1 , ta chia cả hai vế của (1.9) cho y  y y   p x y 1  q x . (1.10) Đặt z  y 1 . Khi đó z   1   y y  . Thay biểu thức của z và z  vào (1.10) ta được z   1   p x  z  1  q x  . Đây là phương trình vi phân tuyến tính cấp 1 đối với z . Giải phương trình này ta tìm được nghiệm z  z (x ) . Từ đó suy ra nghiệm của phương trình (1.9) là 1/(1) y  z (x ) . iv) Phương trình vi phân toàn phần Phương trình vi phân cấp một P x, y dx  Q x, y dy  0 (1.11) được gọi là phương trình vi phân toàn phần nếu vế trái của nó là vi phân toàn phần của hàm nào đó, tức là tồn tại hàm U x, y  sao cho 11 dU x, y   P x, y dx  Q x, y dy hay U U  P (x , y ) ;  Q(x, y ). x y (1.12) Từ (1.11) và (1.12) suy ra dU (x, y)  0  U (x, y)  C , C là hằng số. P Q 2U 2U Do , nên . Có thể chứng minh điều ngược   y x x y yx lại cũng đúng. Vậy phương trình (1.11) là phương trình vi phân toàn phần khi và chỉ khi điều kiện sau được thỏa mãn: P Q  . y x (1.13) Cách giải: Từ U  P (x, y ) ta có x U (x, y )   P(x, y )dx  (y ). Lấy đạo hàm hai vế theo y ta thu được U    P(x, y )dx  (y )  Q(x, y ).    y y  Từ đó ta có thể tìm (y ) , do đó tìm được U (x, y ) . Nghiệm cần tìm sẽ là U x, y   C . 1.3. Phƣơng trình vi phân tuyến tính cấp n 1.3.1. Định nghĩa Phương trình vi phân tuyế n tiń h cấ p n là phương trình có dạng 12 y(n )  pn 1(x )y (n 1)   p1(x )y   p0(x )y  f (x ) , (1.14) trong đó p0(x ), p1(x ),..., pn 1(x ) và f (x ) là các hàm liên tục trên khoảng (a,b) nào đó. Nếu f (x )  0 , thì (1.14) gọi là phương trình vi phân tuyế n tiń h thuần nhất y(n )  pn 1(x )y (n 1)   p1(x )y   p0(x )y  0 . (1.15) Nếu f (x )  0 , thì (1.14) gọi là phương trình vi phân tuyế n tính không thuần nhất. Nếu pi (x ); i  0,..., n  1 , là các hằng số , thì phương trình (1.14) đươ ̣c gọi là phương trình vi phân tuyến t ính với hệ số hằng số . 1.3.2. Cấu trúc nghiệm của phƣơng trình vi phân tuyến tính Ta gọi hệ gồm n nghiệm độc lập tuyến tính của phương trình vi phân tuyến tính thuần nhất (1.15) là hệ nghiệm cơ bản của phương trình đó. Nếu y1, y2,..., ym là các nghiệm độc lập tuyến tính của phương trình vi phân tuyế n tính thuầ n nhấ t (1.15), thì nghiệm tổng quát của phương trình đó có dạng m y   ck yk (x ) , k 1 trong đó c1, c2,..., cm là các hằng số tùy ý. Giả sử y là một nghiệm riêng của phương trình vi phân tuyế n tiń h không thuầ n nhấ t (1.14) và y1, y2,..., yn là một hệ nghiệm cơ bản của phương trình thuầ n nhấ t (1.15) tương ứng với phương trình tổng quát của phương trình (1.14) là (1.14). Khi đó , nghiệm 13 n y(x )  y(x )   ckyk (x ) . k 1 1.3.3. Phƣơng trình vi phân tuyến tính thuần nhất cấp n với hệ số hằng số Phương trình vi phân tuyến tính thuần nhất với hệ số hằng số là phương trình có dạng y(n )  pn 1y (n 1)   p1y   p0y  0 , (1.16) trong đó p0, p1,..., pn 1 là các hằng số thực. Ta tim ̀ nghiê ̣m riêng của phương trình (1.16) dưới dạng y  ex , trong đó hằng số  được xác định sao cho y là nghiệm của phương trin ̀ h (1.16). Khi đó y   ex , y   2ex ,..., y (n )  nex . Thay vào phương trình (1.16) ta nhâ ̣n được  n   pn 1n 1    p1  p0 ex  0 . Bởi vì ex  0 , nên từ phương trình trên, ta suy ra Pn ()  n  pn 1n 1    p1  p0  0 . (1.17) Từ đó cho thấ y , nếu  là một nghiệm của phương trình (1.17) thì y  ex là một nghiệm của phương trình (1.16). Phương trình (1.17) được gọi là phương trình đặc trưng của phương trình (1.16). Đa thức Pn () gọi là đa thức đặc trưng của phương trình (1.16). Như vâ ̣y , hê ̣ nghiê ̣m cơ bản của phương triǹ h (1.16) đươ ̣c xây dựng trên cơ sở các nghiê ̣m của phương triǹ h đă ̣c trưng (1.17). Xét các trường hợp sau: 14 i) Phương trình (1.17) có m nghiệm thực khác nhau: 1, 2,..., m . Khi đó x e 1 ,e 2x ,...,e mx là các nghiệm riêng độc lập tuyến tính của phương trình vi phân tuyế n tiń h thuầ n nhấ t (1.16). ii) Phương trình (1.17) có nghiệm bội m , giả sử nghiệm đó là 1 . Khi đó x x e 1 , xe 1 ,..., x m1e 1x là các nghiệm riêng độc lập tuyến tính của phương trình vi phân tuyế n tiń h thuầ n nhấ t (1.16). iii) Phương trình (1.17) có cặp nghiệm phức   i  bội m . Khi đó e xcosx, xe xcosx,..., x m1e xcosx ; e x sin x, xe x sin x,..., x m1e x sin x là 2m nghiệm riêng độc lập tuyến tính của phương trình vi phân tuyế n tính thuầ n nhấ t (1.16). 1.3.4. Phƣơng trình vi phân tuyến tính không thuần nhất cấp n với hệ số hằng số Phương trình vi phân tuyến tính không thuần nhất với hệ số hằng số có dạng y(n )  pn 1y(n 1)    p1y   p0y  f (x ) , (1.18) trong đó p0, p1,..., pn 1 là các hằng số, f (x ) liên tục trên khoảng (a,b) nào đó. Để nhận được nghiệm tổng quát của phương trình (1.18), ta lấy một nghiệm riêng của phương trình này cộng với nghiệm tổng quát của phương 15 trình vi phân tuyến tính thuần nhất tương ứng. Ta xét mô ̣t số trường hơ ̣p f (x ) có dạng đặc biệt như sau: i) f (x )  e x Pk (x ) , trong đó Pk (x ) là một đa thức bậc k của x . + Nếu  không là nghiệm của phương trình đặc trưng, thì ta có thể tìm nghiệm riêng của phương trình (1.18) dưới dạng y  e xQk (x ) ; + Nếu  là nghiệm bội m của phương trình đặc trưng, thì ta có thể tìm nghiệm riêng của phương trình (1.18) dưới dạng y  x me xQk (x ) , trong đó Qk (x ) là một đa thức bậc k của x . ii) f (x )  e x P(x )cos x  Q(x )sin x  , trong đó P(x ),Q(x ) là   những đa thức bậc có thể khác nhau và ,  là các hằng số. + Nếu   i  không là nghiệm của phương trình đặc trưng, thì ta tìm nghiệm riêng y(x ) của phương trình (1.18) dưới dạng y(x )  e x R(x )cos x  S (x )sin x  .   + Nếu   i  là nghiệm bội m của phương trình đặc trưng, thì ta tìm nghiệm riêng y(x ) của phương trình (1.18) dưới dạng y(x )  x me x R(x )cos x  S (x )sin x  ,   trong đó R(x ) và S (x ) là những đa thức có bậc bằng bậc lớn nhất của các đa thức P(x ) và Q(x ) . 1.4. Hệ phƣơng trình vi phân cấp một 1.4.1. Định nghĩa 16 Hệ phương trình sau dy  1  f x , y ,..., y 1 1 n  dx     dyn  fn x , y1,..., yn    dx (1.19) được gọi là hệ phương trình vi phân cấp một dạng chuẩn tắc, trong đó x là biến độc lập; y1,..., yn là các hàm phải tìm và các hàm fi ( i  1, n ) xác định trên miền G  n 1 . Hệ y1  1(x ),..., yn  n (x ) khả vi trên khoảng (a,b) gọi là nghiệm của hệ phương trình nếu: i) x, 1(x ),..., n (x )  G; x  (a,b). ii) i(x )  fi x, 1(x ),..., n (x ); i  1, n; x  (a,b). 1.4.2. Hệ phƣơng trình vi phân tuyến tính cấp một Hệ phương trình vi phân tuyến tính cấp một có dạng   dy1    p11(x )y1  p12(x )y2    p1n x  yn  f1(x )  dx       dyn    pn 1(x )y1  pn 2(x )y2    pnn x  yn  fn (x )     dx (1.20) trong đó pij x ; i, j  1, n liên tục trên khoảng (a,b) . Nếu fi (x )  0; i  1, n , thì (1.20) được gọi là hệ phương trình vi phân tuyến tính cấp một thuần nhất. 17 Nếu fi (x )  0; i  1, n , thì (1.20) được gọi là hệ phương trình vi phân tuyến tính cấp một không thuần nhất. Nếu pij x ; i, j  1, n là hằng số, thì (1.20) được gọi là hệ phương trình vi phân tuyến tính cấp một với hệ số hằng số. 18 CHƢƠNG 2 ỨNG DỤNG PHƢƠNG TRÌNH VI PHÂN GIẢI BÀI TOÁN KINH TẾ 2.1. Khái niệm phân tích cân bằng động 2.1.1. Một số định nghĩa Các biến kinh tế thường nhận các giá trị khác nhau tùy vào thời điểm cụ thể được xem xét. Chẳng hạn, giá cả của một mặt hàng nào đó có tính biến động theo thời gian, tức là giá cả là một hàm của thời gian: P  P(t ) . Thuật ngữ “kinh tế động” dùng để chỉ lĩnh vực phân tích kinh tế mà trong đó mục tiêu là tìm ra và nghiên cứu các quỹ đạo thời gian của các biến kinh tế, nhằm xác định xem các biến có hội tụ đến một mức giá trị (cân bằng) nhất định không sau một khoảng thời gian đủ dài (thường được ký hiệu là t   ). Trong việc phân tích kinh tế động, mức giá trị cân bằng của biến kinh tế không nhất thiết được coi là luôn đạt tới được, mà chỉ có thể đạt tới được với một số điều kiện nhất định. Phân tích cân bằng động là một lĩnh vực quan trọng của phân tích kinh tế động nhằm tìm ra các điều kiện đó. Một cách tổng quát hơn, có thể nghiên cứu sự hội tụ của quỹ đạo thời gian của biến kinh tế tới một quỹ đạo cân bằng, chẳng hạn quỹ đạo thời gian x (t ) của biến kinh tế x tiệm cận dần tới một quỹ đạo cân bằng x * (t ) có tính tối ưu theo một nghĩa nào đó. Trong khuôn khổ của luận văn này, chúng ta sẽ chỉ đề cập tới trường hợp khi x * (t )  x  const. Lúc này ta nói x là mức cân bằng liên thời (cân bằng theo thời gian) có tính dừng của biến kinh tế được xem xét. Nếu với một số điều kiện nhất định x (t ) hội tụ tới x thì ta nói 19 x là mức cân bằng liên thời ổn định động và có tính dừng, hay x (t ) có tính ổn định động. P(t) P O t Hình 2.1 Trong phân tích cân bằng động, yếu tố thời gian hay thời điểm là rất quan trọng. Chính vì vậy, các biến kinh tế được phân chia làm hai loại: - Biến liên tục là hàm số phụ thuộc vào t biến thiên một cách liên tục. - Biến rời rạc là hàm số phụ thuộc vào t biến thiên một cách rời rạc t  t0, t1, t2,... . Trên hình 2.1, biến giá cả P  t  của một đơn vị hàng hóa là biến liên tục, tại mỗi thời điểm t , giá của một đơn vị hàng hóa là P  t  . Sau một thời gian đủ dài, giá P  t  sẽ ổn định tới mức giá cân bằng P . Cần chú ý rằng, trong trường hợp đang xét quỹ đạo thời gian P  t  (còn được gọi là đường biến động giá cả) có tính dao động xung quanh mức giá cân bằng P . Trong một số trường hợp khác, đường biến động giá cả có thể không có tính dao động mà tiệm cận tới P từ dưới lên hoặc từ trên xuống. Để thực hiện phân tích cân bằng động, ta có thể sử dụng các công cụ của toán học như: phép tính tích phân, phương trình vi phân, phương trình sai phân, …. 20 2.1.2. Một số ứng dụng của phép tính tích phân và phƣơng trình vi phân Bài toán 1. dH  t 1/2 và H  0   100 dt Cho Trong đó: H  t  là dân số tại thời điểm t . H  0  là dân số tại thời điểm t  0 . Hãy xác định quĩ đạo thời gian của biến dân số H  t  . Giải. Xét phương trình vi phân dH dH 1  t 1/2   dt dt t   dH   dt t  H (t )  2 t  c, Tại thời điểm t  0 ta có H  0   c  H (t )  2 t  H (0) . Theo bài ra ta có H (0)  100 . Vậy H (t )  2 t  100 . Phương trình này xác định quỹ đạo thời gian của biến dân số H (t ) . Bài toán 2. Cho MC  C (Q)  2e 0,2Q và FC  C 0  90 . Tìm chi phí toàn phần phụ thuộc vào mức sản phẩm đầu ra. Trong đó: MC là hàm chi phí biên FC là chi phí cố định C= C(Q) là chi phí toàn phần
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng