Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Toán học Chứng minh bất đẳng thức bằng lượng giác...

Tài liệu Chứng minh bất đẳng thức bằng lượng giác

.PDF
14
384
55

Mô tả:

G.NTH 1. C¸c kiÕn thøc cÇn n¾m 1.1. C¸c hÖ thøc c¬ b¶n + cos 2 α + sin 2 α = 1 1 π (α ≠ + kπ) 2 2 cos α 1 + 1 + cotg2α = (α ≠ kπ) sin 2 α + 1 + tg2α = kπ ) 2 1.2. C«ng thøc céng gãc + cos(α ± β) = cosα cosβ  sinα sinβ + sin(α ± β) = sinα cosβ ± cosα sinβ tgα ± tgβ π + tg (α ± β) = (α ; β ≠ + kπ) 1  tgα tgβ 2 cot gα. cot gβ  1 + cotg(α ± β) = (α; β ≠ kπ) cot gα ± cot gβ 1.3. C«ng thøc nh©n + sin2α = 2 sinα cosα + cos2α = cos2α - sin2α = 2cos2α - 1 = 1 - 2sin2α 2 tgα π π + tg2α = (α ≠ + k ) 2 4 2 1 − tg α + tgα . cotgα = 1 (α ≠ cot g 2 α − 1 kπ (α ≠ ) 2 cot gα 2 + sin3α = 3sinα - 4sin3α + cos3α = 4cos3α - 3cosα 3tgα − tg 3α π π + tg3α = (α ≠ + k ) 3 6 3 1 − 3tg α 1.4. C«ng thøc h¹ bËc 1 + cos 2α 1 − cos 2α + cos2α = + sin2α = 2 2 π 1 − cos 2α (α ≠ + kπ) + tg2α = 2 1 + cos 2α 1.5. C«ng thøc biÕn ®æi tæng thµnh tÝch: α+β α −β cos + cosα + cosβ = 2cos 2 2 α +β α β sin + cosα - cosβ = - 2sin 2 2 α+β α β cos + sinα + sinβ = 2sin 2 2 α +β α −β sin + sinα - sinβ = = - 2cos 2 2 + cotg2α = 1 G.NTH sin(α ± β) π (α; β ≠ + kπ) cos α. cos β 2 1.6. C«ng thøc biÕn ®æi tÝch thµnh tæng: 1 + cosα.cosβ = [cos(α + β) + cos(α − β)] 2 1 + sinα.sinβ = [cos(α − β) + cos(α + β)] 2 1 + sinα.cosβ = [sin(α + β) + sin(α − β)] 2 + tgα ± tgβ = BiÓu thøc ®¹i sè BiÓu thøc l­îng gi¸c t­¬ng tù 1 + x2 1 + tan2t 4x3 - 3x 2x2 - 1 2x 1− x2 2x 1+ x2 x+y 1 − xy 4cos3t - 3cost 2cos2t - 1 1 cos 2 t 4cos3t - 3cost = cos3t 2cos2t - 1 = cos2t 2 tan t 1 − tan 2 t 2 tan t = tan2t 1 − tan 2 t 2 tan t 1 + tan 2 t 2 tan t = sin2t 1 + tan 2 t tan  + tan  1 − tan  tan  tan  + tan  = tan(α+β) 1 − tan  tan  C«ng thøc l­îng gi¸c 1+tan2t = 1 1 −1 − 1 = tan2α 2 2 cos α cos α ... .... ...... mét sè ph­¬ng ph¸p l­îng gi¸c ®Ó chøng minh bÊt ®¼ng thøc ®¹i sè x2 - 1 I. D¹ng 1: Sö dông hÖ thøc sin2 + cos2 = 1 1) Ph­¬ng ph¸p: x = sin α a) NÕu thÊy x2 + y2 = 1 th× ®Æt  víi α ∈ [0, 2π]  y = cos α  x = r sin  víi α ∈ [0, 2π]  y = r cos  b) NÕu thÊy x2 + y2 = r2 (r > 0) th× ®Æt  2. C¸c vÝ dô minh ho¹: VD1: Cho 4 sè a, b, c, d tho¶ m·n: a2 + b2 = c2 + d2 = 1 Chøng minh r»ng: − 2 ≤ a(c+d) + b(c-d) ≤ 2 2 G.NTH Gi¶i: c = sin v a = sin u vµ  ⇒ S = sinu(sinv+cosv) + cosu(sinv-cosv) b = cos u d = cos v §Æt  ⇒ P = a(c+d) + b(c-d) = (sinucosv+cosusinv) - (cosucosv - sinusinv) = sin(u+v) - cos(u+v) π  ⇔ S = 2 sin(u + v) −  ∈[− 2, 2] ⇒ − 2 ≤ S = a(c + d) + b(c − d) ≤ 2 (®pcm) 4  2 2 1  1  25  VD2: Cho a + b = 1. Chøng minh r»ng:  a 2 + 2  +  b 2 + 2  ≥ 2 a   b   2 2 Gi¶i: §Æt a = cosα vµ b = sinα víi 0 ≤ α ≤ 2π. ThÕ vµo biÓu thøc vÕ tr¸i råi biÕn ®æi. 2 2 2 1   2 1   2 1  2 1   2  a + 2  +  b + 2  =  cos α +  +  sin α + 2  2 a   b   cos α   sin α   2 1 1 cos 4 α + sin 4 α 4 4 + + 4 = cos α + sin α + +4 cos 4 α sin 4 α cos 4 α. sin 4 α = cos4α + sin4α + ( ) [( ) 1   = cos 4 α + sin 4 α 1 + +4 4 4  cos α. sin α  ] 1   = cos 2 α + sin 2 α − 2 cos 2 α sin 2 α 1 + +4 4 4  cos α. sin α  16  17 25  1   1 = 1 − sin 2 2α 1 + 4 (®pcm)  + 4 ≥ 1 − (1 + 16) + 4 = + 4 = 2 2  2  sin 2α   2 B©y giê ta ®Èy bµi to¸n lªn møc ®é cao h¬n mét b­íc n÷a ®Ó xuÊt hiÖn a2+b2=1 VD3: Cho a2 + b2 - 2a - 4b + 4 = 0. Chøng minh r»ng: A = a 2 − b 2 + 2 3ab − 2(1 + 2 3 )a + (4 − 2 3 )b + 4 3 − 3 ≤ 2 Gi¶i: BiÕn ®æi ®iÒu kiÖn: a2 + b2 - 2a - 4b + 4 = 0⇔ (a-1)2 + (b-2)2 = 1 a − 1 = sin α a = 1 + sin α §Æt  ⇒ ⇒ A = sin 2 α − cos 2 α + 2 3 sin α cos α b − 2 = cos α b = 2 + cos α A = 3 sin 2α − cos 2α = 2 3 1 π sin 2α − cos 2α = 2 sin( 2α − ) ≤ 2 (®pcm) 2 2 6 VD4: Cho a, b tho¶ m·n : 5a + 12b + 7 = 13 3 G.NTH Chøng minh r»ng: a2 + b2 + 2(b-a) ≥ - 1 Gi¶i: BiÕn ®æi bÊt ®¼ng thøc: a2 + b2 + 2(b-a) ≥ - 1 ⇔ (a-1)2 + (b + 1)2 ≥ 1 a − 1 = R sin α §Æt  víi R ≥ 0 ⇔ b + 1 = R cos α a = R sin α + 1 ⇔ (a − 1) 2 + (b + 1) 2 = R 2  b = R cos α − 1 Ta cã: 5a + 12b + 7 = 13 ⇔ 5(R sin α + 1) + 12(R cos α − 1) + 7 = 13 ⇔ 5R sin α + 12R cosα = 13 ⇔ 1 = R 5 12 5  sin α + cosα = R sin α + arccos  ≤ R 13 13 13  Tõ ®ã ⇒ (a-1)2 + (b+1)2 = R2 ≥ 1 ⇔ a2 + b2 + 2(b - a) ≥ - 1 (®pcm) II. D¹ng 2: Sö dông tËp gi¸ trÞ | sin α |≤ 1 ; | cos α | ≤ 1 1. Ph­¬ng ph¸p:      x = sin  khi  ∈  − 2 ; 2      x = cos  khi  ∈ [ 0;  ] a) NÕu thÊy |x| ≤ 1 th× ®Æt      x = m sin  khi  ∈  − 2 ; 2  b) NÕu thÊy |x| ≤ m ( m ≥ 0 ) th× ®Æt     x = m cos  khi  ∈ [ 0;  ] 2. C¸c vÝ dô minh ho¹: VD1: Chøng minh r»ng: (1+x)p + (1-x)p ≤ 2p ∀ |x| ≤ 1 ; ∀ P ≥ 1. Gi¶i: §Æt x = cosα víi α ∈ [0, π], khi ®ã (1 + x)p + (1 - x)p = (1+cosα)p + (1-cosα)p p p α  α α α α α    =  2 cos 2  +  2 sin 2  = 2 p  cos 2 p + sin 2 p  ≤ 2 p  cos 2 + sin 2  = 2 p 2  2 2 2 2 2    (®pcm) VD2: Chøng minh r»ng: 3−2 3+2 ≤ 3x 2 + x 1 − x 2 ≤ 2 2 Gi¶i: Tõ ®k 1 - x2 ≥ 0 ⇔ |x| ≤ 1 nªn §Æt x = cosα víi 0 ≤ α ≤ π ⇒ 1 − x 2 = sinα. Khi ®ã ta cã: P= 2 3 x 2 + 2 x 1 − x 2 = 2 3 cos 2  + 2 cos  sin  = 3 (1 + cos 2 ) + sin 2 4 G.NTH  3  1 π  = 2 cos2α + sin 2α + 3 = 2 sin 2α +  + 3 ⇒ 3 − 2 ≤ A ≤ 3 + 2 (®pcm) 2 3  2  VD3: Chøng minh r»ng: 1 + 1 − a 2 [ (1 + a) 3 ] − (1 − a )3 ≤ 2 2 + 2 − 2a 2 (1) Gi¶i: Tõ ®k |a| ≤ 1 nªn §Æt a=cosα víi α∈[0,π] ⇒ 1 − a = 2 sin (1)⇔ 1 + 2 sin α α ; 1 + a = 2 cos ; 1 − a 2 = sin α 2 2 α α α α α α  cos .2 2 cos 3 − sin 3  ≤ 2 2 + 2 2 sin cos 2 2 2 2 2 2  α  α α  α α α α α α  α ⇔  sin + cos  cos − sin  cos2 + sin cos + sin 2  ≤ 1 + sin cos 2 2  2 2  2 2 2 2 2 2  α  α α α α  α ⇔  sin + cos  cos − sin  = cos 2 − sin 2 = cos α ≤ 1 ®óng ⇒ (®pcm) 2 2  2 2 2 2  ) ( ( ) VD4: Chøng minh r»ng: S = 4 (1 − a 2 )3 − a 3 + 3 a − 1 − a 2 ≤ 2 Gi¶i: Tõ ®k |a| ≤ 1 nªn: §Æt a = cosα víi α ∈ [0, π] ⇒ 1 − a 2 = sinα. Khi ®ã biÕn ®æi S ta cã: S= 4(sin 3 α − cos 3 α) + 3(cos α − sin α) = (3 sin α − 4 sin 3 α) + (4 cos 3 α − 3 cos α) π  = sin 3α + cos 3α = 2 sin  3α +  ≤ 2 ⇒ (®pcm) 4  ( ) VD5: Chøng minh r»ng A = a 1 − b 2 + b 1 − a 2 + 3 ab − (1 − a 2 )(1 − b 2 ) ≤ 2 Gi¶i: Tõ ®iÒu kiÖn: 1 - a2 ≥ 0 ; 1 - b2 ≥ 0 ⇔ |a| ≤ 1 ; |b| ≤ 1 nªn.  π π §Æt a = sinα, b = sin β víi α, β ∈ − ;   2 2 Khi ®ã A = sin α cos β + cos α sin β − 3 cos(α + β) = 1 3 π  = sin(α + β) − 3 cos(α + β) = 2 sin(α + β) − cos(α + β) = 2 sin(α + β) −  ≤ 2 2 2 3  (®pcm) VD6: Chøng minh r»ng: A = |4a3 - 24a2 + 45a - 26| ≤ 1 ∀a ∈ [1; 3] 5 G.NTH Gi¶i: Do a ∈ [1, 3] nªn |a-2| ≤ 1 nªn ta ®Æt a - 2 = cosα ⇔ a = 2 + cosα. Ta cã: A = 4(2 + cosα)3 − 24(2 + cosα)2 + 45(2 + cosα) − 26 = 4cos3 α − 3cosα = cos3α ≤1 (®pcm) VD7: Chøng minh r»ng: A = 2a − a 2 − 3a + 3 ≤ 2 ∀ a ∈[0, 2] Gi¶i: Do a ∈ [0, 2] nªn |a-1| ≤ 1 nªn ta ®Æt a - 1 = cosα víi α ∈ [0, π]. Ta cã: A= 2(1 + cos α ) − (1 − cos α ) 2 − 3 (1 + cos α ) + 3 = 1 − cos 2 α − 3 cos α 1  3 π  cos α  = 2 sin  α +  ≤ 2 (®pcm) = sin α − 3 cos α = 2 sin α − 2 3  2  III. D¹ng 3: Sö dông c«ng thøc: 1+tg2 = π 1 1 2 ( α ≠ + kπ) ⇔ tg α = − 1 2 cos2 α cos2 α 1) Ph­¬ng ph¸p: a) NÕu |x| ≥ 1 hoÆc bµi to¸n cã chøa biÓu thøc th× ®Æt x = 1  π   3π  víi α∈ 0;  ∪ π,  cos α  2  2  b) NÕu |x| ≥ m hoÆc bµi to¸n cã chøa biÓu thøc th× ®Æt x = x2 −1 x 2 − m2 m  π   3π  víi α∈ 0;  ∪ π,  cos α  2  2  2. C¸c vÝ dô minh ho¹: VD1: Chøng minh r»ng A = a2 −1 + 3 ≤ 2 ∀ a ≥1 a Gi¶i: Do |a| ≥ 1 nªn : §Æt a = A= 1  π   3π  víi α∈ 0;  ∪ π,  ⇒ cos α  2  2  a 2 − 1 = tg 2 α = tgα . Khi ®ã: a 2 −1 + 3 π  = (tgα + 3) cosα = sin α + 3 cosα = 2 sin α +  ≤ 2 (®pcm) a 3  5 − 12 a 2 − 1 VD2: Chøng minh r»ng: - 4 ≤ A = ≤ 9 ∀ a ≥1 a2 Gi¶i: 6 G.NTH Do |a| ≥ 1 nªn: §Æt a = 1  π   3π  víi α∈ 0;  ∪ π,  ⇒ cos α  2  2  a 2 − 1 = tg 2 α = tgα . Khi ®ã: 5(1+ cos2α) 5−12 a2 −1 − 6sin2α = (5-12tgα)cos2α = 5cos2α-12sinαcosα= 2 2 a 5 13  5 12 5  5 13  = +  cos 2α − sin 2α  = + cos 2α + arccos  2 2  13 13 13   2 2  A = ⇒-4= 5 13 5 13  5  5 13 + (−1) ≤ A = + cos 2α + arccos  ≤ + .1 = 9 (®pcm) 2 2 2 2 13  2 2  VD3: Chøng minh r»ng: A = a 2 − 1 + b2 − 1 ≤1 ab ∀ a ; b ≥1 Gi¶i: Do |a| ≥ 1; |b| ≥ 1 nªn . §Æt a = 1 1  π   3π  ;b= víi α∈ 0;  ∪ π,  . Khi ®ã ta cã: cos β cos α  2  2  A = ( tgα + tgβ) cos α cos β = sin α cos β + sin β cos α = sin(α + β) ≤ 1 (®pcm) VD4: Chøng minh r»ng: a + a a −1 2 ≥ 2 2 ∀ a >1 Gi¶i: Do |a| > 1 nªn: §Æt a = a+ 1 a 1 1 1  π víi α∈  0;  ⇒ . Khi ®ã: = . = cos α  2 a 2 − 1 cos α tg 2 α sin α a a2 −1 = 1 1 1 1 2 2 + ≥ 2. . = ≥ 2 2 (®pcm) cos α sin α cos α sin α sin 2α VD5: Chøng minh r»ng y x 2 − 1 + 4 y 2 − 1 + 3 ≤ xy 26 ∀ x ; y ≥ 1 Gi¶i: BÊt ®¼ng thøc ⇔ x2 − 1 + x Do |x|; |y| ≥ 1 nªn §Æt x = 1  4 y 2 − 1 3  + ≤ 26 (1) x y y   1 1  π ; y= víi α, β∈ 0, . cosβ cos α  2 7 G.NTH Khi ®ã: (1) ⇔ S = sinα + cosα(4sinβ + 3cosβ) ≤ 26 Ta cã: S ≤ sinα + cosα (4 2 + 32 )(sin 2 β + cos 2 β) = sin α + 5 cos α ≤ (12 + 52 )(sin 2  + cos 2  ) = 26 ⇒ (®pcm) IV. D¹ng 4: Sö dông c«ng thøc 1+ tg2 = 1 cos 2 α 1. Ph­¬ng ph¸p:  π π a) NÕu x ∈ R vµ bµi to¸n chøa (1+x2) th× ®Æt x = tgα víi α ∈  − ,   2 2  π π b) NÕu x ∈ R vµ bµi to¸n chøa (x2+m2) th× ®Æt x = mtgα víi α ∈  − ,   2 2 2. C¸c vÝ dô minh ho¹: VD1: Chøng minh r»ng: S = 3x 1 + x2 − 4x 3 (1 + x 2 )3 ≤1 Gi¶i: 1  π π §Æt x = tgα víi α ∈  − ,  ⇒ 1 + x 2 = , khi ®ã biÕn ®æi S ta cã: cos α  2 2 S = |3tgα.cosα - 4tg3α.cos3α| = |3sinα - 4sin3α| = |sin3α| ≤ 1 (®pcm) 3 + 8a 2 + 12a 4 VD2: T×m gi¸ trÞ lín nhÊt vµ nhá nhÊt cña biÓu thøc A = (1 + 2a 2 ) 2 Gi¶i: 3 + 4 tg 2 α + 3tg 4 α  π π §Æt a 2 = tgα víi α∈ − ,  th× ta cã: A = (1 + tg 2 α) 2  2 2 3 cos 4 α + 4 sin 2 α cos 2 α + 3 sin 4 α = = 3(sin 2 α + cos 2 α) 2 − 2 sin 2 α cos 2 α 2 2 2 (cos α + sin α) sin 2 2α 5 1 sin 2 2α 0 ⇒ = 3− ≤ A = 3− ≤ 2− =3 2 2 2 2 2 1 π 5 Víi α = 0 ⇒ a = 0 th× MaxA = 3 ; Víi α = ⇒ a = th× MinA = 2 4 2 =3- VD3: Chøng minh r»ng: (a + b)(1 − ab) 1 ≤ ∀ a, b ∈ R (1 + a 2 )(1 + b 2 ) 2 Gi¶i: 8 G.NTH §Æt a = tgα, b = tgβ. Khi ®ã = cos 2 α cos 2 β. (a + b )(1 − ab) (tgα + tgβ)(1 − tgαtgβ) = 2 2 (1 + a )(1 + b ) (1 + tg 2 α)(1 + tg 2β) sin(α + β) cos α. cos β − sin α. sin β . cos α. cos β cos α. cos β 1 1 sin[2(α + β)] ≤ (®pcm) 2 2 | a −b | | b−c| | c −a | VD4: Chøng minh r»ng: + ≥ ∀a, b,c (1+a2)(1+b2) (1+b2)(1+c2) (1+c2)(1+a2) = sin(α + β) cos(α + β) = Gi¶i: §Æt a = tgα, b = tgβ, c = tgγ. Khi ®ã bÊt ®¼ng thøc ⇔ | tg α − tg β | | tg β − tg γ | | tg γ − tg α | ⇔ + ≥ (1 + tg 2 α )(1 + tg 2 β ) (1 + tg 2 β )(1 + tg 2 γ ) (1 + tg 2 γ )(1 + tg 2 α ) ⇔ cos α cos β. sin(α − β) sin(β − γ ) sin( γ − α) + cos β cos γ. ≥ cos γ cos α. cos α. cos β cos β. cos γ cos γ. cos α ⇔ |sin(α-β)|+|sin(β-γ)| ≥ |sin(γ-α)|. BiÕn ®æi biÓu thøc vÕ ph¶i ta cã: |sin(γ-α)|= |sin[(α-β)+(β-γ)]| = |sin(α-β)cos(β-γ)+sin(β-γ)cos(α-β)| ≤ |sin(α-β)cos(β-γ)|+|sin(β-γ)cos(α-β)|=|sin(α-β)||cos(β-γ)|+|sin(β-γ)||cos(α-β)| ≤ |sin(α-β)|.1 + |sin(β-γ)|.1 = |sin(α-β)| + |sin(β-γ)| ⇒ (®pcm) ab + cd ≤ (a + c)(b + d ) (1) ∀a , b, c, d > 0 VD5: Chøng minh r»ng: Gi¶i: (1) ⇔ ab + ( a + c )( b + d ) cd ≤1⇔ ( a + c )( b + d ) cd 1 ab + ≤1 c  b c  b    1 +  1 +   1 +  1 +   a  d   a  d  c d  π §Æt tg2α= , tg2β= víi α,β ∈  0,  ⇒ BiÕn ®æi bÊt ®¼ng thøc a b  2 ⇔ 1 (1 + tg α)(1 + tg β) 2 2 + tg2α.tg2β (1 + tg α)(1 + tg β) 2 2 = cos2 α cos2 β + sin2 α sin2 β ≤ 1 ⇔ cosα cosβ + sinα sinβ = cos(α-β) ≤ 1 ®óng ⇒ (®pcm) DÊu b»ng x¶y ra ⇔ cos(α-β) = 1 ⇔ α=β ⇔ c d = a b 6a + 4 | a 2 − 1 | VD6: T×m gi¸ trÞ lín nhÊt vµ nhá nhÊt cña biÓu thøc A = a2 +1 9 G.NTH Gi¶i: §Æt a = tg α . Khi ®ã A = 2 6 tg α α α α + 4 | tg 2 − 1 | 2 tg tg 2 − 1 2 2 + 4. 2 2 = 3. α α α tg 2 + 1 1 + tg 2 tg 2 + 1 2 2 2 A = 3sin α + 4 |cosα| ≥ 3 sinα + 4.0 = 3sinα ≥ 3.(-1) = -3 Sö dông bÊt ®¼ng thøc Cauchy - Schwarz ta cã: A2 = (3sinα + 4 |cosα|)2 ≤ (32 + 42)(sin2α + cos2α) = 25 ⇒ A ≤ 5 Víi sinα = 1 ⇔ a = 1 th× MinA = - 3 ; víi sin α | cos α | th× MaxA = 5 = 3 4 V. D¹ng 5: §æi biÕn sè ®­a vÒ bÊt ®¼ng thøc tam gi¸c 1) Ph­¬ng ph¸p: π  x; y; z > 0 A; B; C ∈ (0; ) a) NÕu  2 th× ∃∆ABC :  2 2 2 x + y + z + 2 xyz = 1  x = cos A; y = cos B; z = cos C π  x; y; z > 0 A; B; C ∈ (0; ) b) NÕu  th× ∃∆ABC :  2 x + y + z = xyz x = tgA; y = tgB; z = tgC π  A; B; C ∈ (0; 2 )  x; y, z > 0 x = cot gA; y = cot gB; z = cot gC c) NÕu  th× ∃∆ABC :  A; B; C ∈ (0; π) xy + yz + zx = 1   A B C x = tg ; y = tg ; z = tg  2 2 2  2. C¸c vÝ dô minh ho¹: VD1: Cho x, y, z > 0 vµ zy + yz + zx = 1. T×m gi¸ trÞ nhá nhÊt cña biÓu thøc. 1 1 1 S = + + − 3( x + y + z) x y z Gi¶i: Tõ 0 < x, y, z < 1 nªn ®Æt x = tg Do xy + yz + zx = 1 nªn tg α β γ  π ; y = tg ; z = tg víi α, β, γ ∈  0,  2 2 2  2 α β β γ γ α tg + tg tg + tg tg =1 2 2 2 2 2 2 10 G.NTH β γ tg + tg α β β γ γ 2 = 1 ⇔ tg β + γ  = cot g α ⇔ tg  tg + tg  = 1 - tg tg ⇔ 2 2 2 2 2 2 1 − tg β tg γ tg α 2 2 2 2 2 2 β γ π α α+β+ γ π β γ  π α = ⇔ α+β+ γ = π ⇔ tg +  = tg +  ⇔ + = − ⇔ 2 2 2 2 2 2 2 2 2 2 S= 1 1 1 α β γ  α β γ + + − 3( x + y + z) = cotg + cotg + cotg -3  tg + tg + tg  2 2  2 x y z 2 2 2 α α  β β  γ γ  α β γ  S =  cot g − tg  +  cot g − tg  +  cot g − tg  − 2 tg + tg + tg  2 2  2 2  2 2  2 2 2  β γ  α S = 2(cotgα+cotgβ+cotgγ) - 2 tg + tg + tg  2 2  2 γ α β S = (cotgα+cotgβ-2tg ) + (cotgβ+cotgγ-2tg ) +(cotgα+cotgβ-2tg ) 2 2 2 §Ó ý r»ng: cotgα + cotgβ = sin(α + β) 2 sin γ 2 sin γ = = sin α. sin β 2 sin α. sin β cos(α − β) − cos(α + β) γ γ 4 sin cos 2 sin γ 2 sin γ 2 2 = 2 tg γ ⇒ cot gα + cot gβ − 2 tg γ ≥ 0 = = ≥ γ 1 − cos(α + β) 1 + cos γ 2 2 2 cos 2 2 T ®ã suy ra S ≥ 0. Víi x = y = z = VD2: Cho 0 < x, y, z < 1 vµ 1 th× MinS = 0 3 x y z 4 xyz + + = 2 2 2 2 1− x 1− y 1− z (1 − x )(1 − y 2 )(1 − z 2 ) T×m gi¸ trÞ nhá nhÊt cña biÓu thøc S = x2 + y2 + z2 Gi¶i: Do 0 < x, y, z < 1 nªn ®Æt x = tg Khi ®ã tgα = ⇔ α β γ  π ; y = tg ; z = tg víi α, β, γ ∈  0,  2 2 2  2 2x 2y 2z ; tgβ = ; tgγ = vµ ®¼ng thøc ë gi¶ thiÕt 1− x2 1 − y2 1 − z2 2x 2y 2z 8xyz + + = ⇔ tgα+tgβ+tgγ = tgα.tgβ.tgγ 2 2 2 2 1− x 1− y 1− z (1 − x )(1 − y 2 )(1 − z 2 ) 11 G.NTH ⇔ tgα + tgβ = - tgγ(1-tgα.tgβ) ⇔ tgα + tgβ = - tgγ ⇔ tg(α+β) = tg(-γ) 1 − tgα.tgβ  π Do α, β, γ ∈  0,  nªn α + β = π - γ ⇔ α + β + γ = π. Khi ®ã ta cã:  2 tg α β β γ γ α tg + tg tg + tg tg = 1 ⇔ xy + yz + zx = 1. MÆt kh¸c: 2 2 2 2 2 2 (x2 + y2 + z2) - (xy + yz + zx) = [ ] 1 ( x − y) 2 + ( y − z ) 2 + ( z − x ) 2 ≥ 0 2 ⇒ S = x2 + y2 + z2 ≥ xy + yz + zx = 1. Víi x = y = z = 1 th× MinS = 1 3  x , y, z > 0 x y z 9 + + ≤ VD3: Cho  . Chøng minh r»ng: S = x + yz y + zx z + xy 4 x + y + z = 1 Gi¶i: xz β = tg ; y 2 §Æt yz α = tg ; x 2 Do yz zx zx xy xy yz =x+y+z=1 . + . +. . x y y z z x nªn tg xy γ = tg víi α, β, γ ∈ z 2  π  0,   2 α β β γ γ α tg + tg tg + tg tg =1 2 2 2 2 2 2 α β γ π α π α β γ  β γ  ⇔ tg  +  = cotg ⇔ tg  +  = tg  −  ⇔ + = 2 2 2 2 2 2 2 2 2 2 2 ⇔ α+β+ γ π = ⇔ α+β+ γ = π 2 2 S=   2y   2z  3 x y z 1  2 x + + =  − 1 +  − 1 +  − 1 + x + yz y + zx z + xy 2  x + yz   y + zx   z + xy  2  yz 1 − zx xy   1−  1 − 1  x − yz y − zx z − xy  3 1  y x z + 3  + = =  + + + + 2  x − yz y + zx z + xy  2 2  1 + yz 1 + zx 1 + xy  2  x y z   = 3 1 3 1 (cos + cosβ + cosγ) + = [(cosα + cosβ).1 − (cosα cosβ − sinα + sinβ)] + 2 2 2 2 12 G.NTH ≤ 1 1 1  3 3 3 9 2 2 2 ( ) (cos α + cos β + 1 ) + (sin α + sin β ) − cos α cos β  + 2 = 4 + 2 = 4 (®pcm) 2  2 2 3. C¸c bµi to¸n ®­a ra tr¾c nghiÖm Tr­íc khi t«i d¹y thö nghiÖm néi dung s¸ng kiÕn cña t«i cho häc sinh cña 2 líp 11A1 vµ 11A2 ë tr­êng t«i, t«i ®· ra bµi vÒ nhµ cho c¸c em, cho c¸c em chuÈn bÞ tr­íc trong thêi gian 2 tuÇn. Víi c¸c bµi tËp sau: Bµi 1:Cho a2 + b2 = 1. CMR: | 20a3 - 15a + 36b - 48b3| ≤ 13. Bµi 2:Cho (a-2)2 + (b-1)2 = 5. CMR: 2a + b ≤ 10. a; b ≥ 0 Bµi 3:Cho  CMR: a4 + b4 ≥ a3 + b3 a + b = 2 Bµi 4:Cho a; b ; c ≥ 1 1  1  1  1  1  1   CMR:  a −  b −  c −  ≥  a −  b −  c −  b  c  a  a  b  c  x; y; z > 0 Bµi 5:Cho  2 2 2 x + y + z + 2 xyz = 1 a) xyz ≤ 1 8 3 4 b) xy + yz + zx ≤ c) x2 + y2 + z2 ≥ 3 4 d) xy + yz + zx ≤ 2xyz + e) CMR: 1 2 1− x 1− y 1− z + + ≥ 3 1+ x 1+ y 1+ z Bµi 6:CMR: 1 1+ a2 + 1 1 + b2 ≤ 2 ∀ a, b ∈ (0, 1] 1 + ab Bµi 7:CMR: (a2 + 2)(b2 + 2)(c2 + 2) ≥ 9 (ab + bc + ca) ∀ a, b, c > 0 x , y, z > 0 x y z 3 3 Bµi 8:Cho  CMR : + + ≥ 2 2 2 2 1− x 1− y 1− z xy + yz + zx = 1 x , y, z > 0 x y z 3 Bµi 9:Cho  CMR : + + ≤ 1+ x2 1 + y2 1 + z2 2 x + y + z = xyz 13 G.NTH x,y,z>0 1 1 1 2x 2y 2z CMR : + + ≥ + + Bµi 10: Cho  1+x2 1+y2 1+z2 1+x2 1+y2 1+z2 xy+yz+zx=1 14
- Xem thêm -

Tài liệu liên quan