Đăng ký Đăng nhập
Trang chủ đề tài thiết kế kỹ thuật khoan kiểm soát áp suất cho giếng st 1p mỏ sư tử trắng ...

Tài liệu đề tài thiết kế kỹ thuật khoan kiểm soát áp suất cho giếng st 1p mỏ sư tử trắng bể cửu long

.PDF
84
265
62

Mô tả:

LỜI MỞ ĐẦU Dầu khí là một ngành công nghiệp mũi nhọn mang tính chiến lược trong quá trình phát triển của quốc gia, đóng góp phần lớn vào GDP cả nước, đưa đất nước tiến lên con đường công nghiệp hóa, hiện đại hóa. Ngành công nghiệp dầu khí là một chuỗi các công tác tìm kiếm thăm dò, khoan, khai thác đến chế biến và tiêu thụ sản phẩm. Một trong những yếu tố quyết định đến sự thành công của quá trình thăm dò và khai thác dầu khí chính là công nghệ khoan. Trên cơ sở nhận thức rõ tầm quan trọng của công nghệ khoan, qua thời gian nghiên cứu học tập tại trường, và qua đợt thực tập tốt nghiệp, thực tập sản xuất tại Tổng Công Ty Cổ Phần Khoan và Dịch Vụ Khoan Dầu Khí, tôi đã thực hiện đề tài tốt nghiệp: “Thiết kế kỹ thuật khoan kiểm soát áp suất cho giếng ST-1P mỏ Sư Tử Trắng bể Cửu Long” với mục đích nghiên cứu và ứng dụng công nghệ khoan kiểm soát áp suất. Đề tài được hoàn thành thành tại Bộ môn Khoan Khai Thác, Trường Đại Học Mỏ Địa Chất Hà Nội, dưới sự hướng dẫn của:  Tiến sĩ Nguyễn Thế Vinh, Chủ nhiệm Khoa Dầu khí, Phó Chủ nhiệm Bộ môn Khoan Khai Thác  Thạc sĩ Nguyễn Viết Bột, Giám đốc Công ty TNHH MTV dịch vụ giếng khoan dầu khí PVD Qua đây, tôi xin bày tỏ lòng biết ơn sâu sắc đến thầy TS Nguyễn Thế Vinh, và Ông Nguyễn Viết Bột đã dành công sức hướng dẫn tận tình, chu đáo trong quá trình thực hiện Đề tài. Ngoài ra, tôi xin cám ơn Ông Vũ Hồng Đức, kỹ sư khoan kiểm soát áp suất của Công ty TNHH MTV dịch vụ giếng khoan dầu khí PVD đã giúp đỡ tôi rất nhiều trong quá trình thực tập tại công ty. Nhân đây, tôi cũng xin được cảm ơn sự dạy dỗ, giúp đỡ nhiệt tình từ các thầy cô giáo trong bộ môn Khoan Khai Thác, tập thể cán bộ công nhân viên Tổng công ty cổ phần khoan và dịch vụ khoan dầu khí và các bạn sinh viên khóa 2008 chuyên ngành Khoan Khai Thác đã giúp tôi hoàn thành bản đồ án này. Trong quá trình làm đồ án, mặc dù đã cố gắng tìm hiểu, nghiên cứu tài liệu nhưng do kiến thức còn hạn chế nên bản thân không thể tránh khỏi những thiếu sót. Vì thế tôi rất mong nhận được sự đóng góp ý kiến của quý thầy cô cùng bạn đọc để bản đồ án được hoàn thiện hơn. Tôi xin chân thành cảm ơn! Hà nội, ngày tháng năm 2013 Sinh viên thực hiện Bùi Quang Vũ 1 MỤC LỤC LỜI MỞ ĐẦU ................................................................................................... 1 MỤC LỤC ......................................................................................................... 2 DANH MỤC HÌNH ẢNH ................................................................................ 5 DANH MỤC BẢNG BIỂU .............................................................................. 8 DANH MỤC TỪ VIẾT TẮT TIẾNG ANH ..................................................... 9 CHƯƠNG 1 - TỔNG QUAN VỀ CÔNG NGHỆ KHOAN KIỂM SOÁT ÁP SUẤT (MANEGED PRESSURE DRILLING) .............................................. 11 1.1 Giới thiệu................................................................................................... 11 1.2 Lịch sử và quá trình phát triển công nghệ MPD ....................................... 11 1.3 Định nghĩa công nghệ MPD...................................................................... 12 1.3.1 Công nghệ khoan truyền thống .......................................................... 12 1.3.2 Công nghệ khoan kiểm soát áp suất (MPD) ...................................... 14 1.4 Các phương pháp trong công nghệ MPD .................................................. 15 1.4.1 Phương pháp cố định áp suất đáy giếng (Constant Bottom-Hole Pressure CBHP) .......................................................................................... 15 1.4.2 Phương pháp khoan mũ dung dịch (Pressurized Mud Cap Drilling – PMCD)……………………………………………………………………17 1.4.3 Phương pháp tỉ trọng dung dịch kép (Dual Gradient Drilling – DGD)……………………………………………………………………...20 1.4.4 Phương pháp kiểm soát dòng tuần hoàn (Return Flow Control – RFC)………………………………………………………………………22 1.5 Ưu điểm của công nghệ MPD ................................................................... 22 1.5.1 Duy trì kiểm soát giếng, hạn chế rò rỉ khí, và khí độc H2S ............... 22 1.5.2 Ổn định áp suất đáy giếng, ngăn ngừa các rủi ro trong khi khoan .... 23 1.5.3 Khoan thành công qua các tầng mất dung dịch trầm trọng ............... 23 1.6 Phạm vi ứng dụng của công nghệ MPD ................................................... 23 1.6.1 Mỏ có nhiệt độ và áp suất cao ............................................................ 23 1.6.2 Mỏ suy giảm....................................................................................... 24 1.6.3 Giếng khoan vươn xa ......................................................................... 24 1.7 Cơ sở lựa chọn và khả năng ứng dụng công nghệ MPD ở Việt Nam....... 25 CHƯƠNG 2 - HỆ THỐNG THIẾT BỊ TRONG CÔNG NGHỆ KHOAN KIỂM SOÁT ÁP SUẤT.................................................................................. 28 2 2.1 Thiết bị chính ............................................................................................ 28 2.1.1 Đối áp xoay (Rotating Control Device - RCD) ................................. 28 2.1.2 Hệ thống van điều áp (Choke Manifold System) .............................. 31 2.1.3 Dụng cụ lắp ráp Trục quay (Bearing Running Tool – BRT) ............. 35 2.2 Hệ thống MPD .......................................................................................... 37 CHƯƠNG 3 - ĐẶC ĐIỂM ĐỊA CHẤT MỎ SƯ TỬ TRẮNG VÀ GIẾNG ST-1P ............................................................................................................... 39 3.1 Đặc điểm địa chất mỏ Sư Tử Trắng .......................................................... 39 3.1.1 Vị trí địa lý ......................................................................................... 39 3.1.2 Địa tầng .............................................................................................. 40 3.2 Đặc điểm địa chất giếng ST-1P................................................................. 44 3.2.1 Biều đồ áp suất dự kiến ...................................................................... 44 3.2.2 Biểu đồ nhiệt độ dự kiến .................................................................... 46 3.3 Các điều kiện địa chất ảnh hưởng tới quá trình khoan giếng ST-1P ........ 47 3.4 Những khó khăn trong công tác khoan giếng HPHT ST-1P .................... 48 3.4.1 Ảnh hưởng của nhiệt độ ..................................................................... 49 3.4.2 Ảnh hưởng của áp suất ....................................................................... 50 3.4.3 Ảnh hưởng của hiện tượng trương nở thành hệ ................................. 50 3.4.4 Ảnh hưởng của khí hòa tan ................................................................ 51 3.4.5 Ảnh hưởng của hiện tượng piston khi kéo thả cần ............................ 52 CHƯƠNG 4 - THIẾT KẾ KỸ THUẬT KHOAN KIỂM SOÁT ÁP SUẤT CHO GIẾNG HPHT ST-1P ............................................................................ 54 4.1 Đặc điểm kỹ thuật của giếng ST-1P.......................................................... 54 4.1.1 Thông số chung của giếng ................................................................. 54 4.1.2 Mặt cắt địa chất của giếng.................................................................. 58 4.1.3 Cấu trúc giếng khoan ......................................................................... 56 4.1.3 Profile giếng khoan ............................................................................ 58 4.2 Đánh giá lựa chọn phương pháp khoan kiểm soát áp suất........................ 60 4.3 Chương trình khoan MPD cho đoạn thân giếng 12-1/4” .......................... 61 4.3.1 Phân tích kĩ thuật................................................................................ 61 4.3.2 Thông số điều khiển ........................................................................... 64 4.3.3 Sự tăng giảm áp suất trong quá trình nâng thả................................... 68 4.3.4 Kiểm soát giếng bằng công nghệ MPD đoạn thân giếng 12-1/4” ..... 70 3 4.4 Chương trình khoan cho đoạn thân giếng 8-1/2” ...................................... 71 4.4.1 Phân tích kĩ thuật................................................................................ 71 4.4.2 Thông số điều khiển ........................................................................... 73 4.4.3 Sự tăng giảm áp suất trong quá trình nâng thả................................... 77 4.4.4 Kiểm soát giếng bằng công nghệ MPD đoạn thân giếng 8-1/2” ....... 80 5.1 Hiệu quả ứng dụng công nghệ MPD ở bể Cửu Long ............................... 80 KẾT LUẬN ..................................................................................................... 82 KIẾN NGHỊ .................................................................................................... 83 TÀI LIỆU THAM KHẢO ............................................................................... 84 4 DANH MỤC HÌNH ẢNH STT HÌNH TÊN HÌNH ẢNH TRANG 1 Hình 1.1 Áp suất đáy giếng trong phương pháp khoan truyền thống 13 2 Hình 1.2 Sự thay đổi áp suất đáy giếng khi khoan 13 3 Hình 1.3 Phức tạp trong giếng có giới hạn khoan nhỏ 14 4 Hình 1.4 Áp suất đáy giếng trong phương pháp CBHP 16 5 Hình 1.5 Áp suất đáy giếng ổn định trong CBHP 16 6 Hình 1.6 Phương pháp khoan mũ dung dịch PMCD 18 7 Hình 1.7 Áp suất đáy giếng trong phương pháp PMCD 19 8 Hình 1.8 Gradient áp suất sử dụng phương pháp DGD 20 9 Hình 1.9 Bơm chèn chất khí để giảm tỉ trọng dung dịch 21 10 Hình1.10 Sử dụng bơm đẩy để thay đổi tỉ trọng 22 11 Hình 2.1 Một số mẫu RCD cơ bản 28 12 Hình 2.2 RCD lắp đặt trên đối áp vạn năng 28 13 Hình 2.3 Tuần hoàn dung dịch khoan qua RCD 29 14 Hình 2.4 Phần thân của RCD 30 15 Hình 2.5 Trục quay 31 16 Hình 2.6 Hệ thống van điều áp 32 17 Hình 2.7 Van thủy lực 33 18 Hình 2.8 Thiết bị xử lý thông minh 33 19 Hình 2.9 Thiết bị đo dòng 34 20 Hình 2.10 Thiết bị thủy lực 34 21 Hình 2.11 Màn hình và bàn phím điều khiển 35 22 Hình 2.12 Dụng cụ lắp ráp Trục quay – BRT 36 23 Hình 2.13 Thao tác lắp Trục quay sử dụng BRT 37 24 Hình 2.14 Sơ đồ tổng quan hệ thống MPD 37 24 Hình 2.15 Sơ đồ chi tiết hệ thống MPD 38 25 Hình 3.1 Vị trí địa lý mỏ Sư Tử Trắng 39 26 Hình 3.2 Cột địa tầng tổng hợp mỏ Sư Tử Trắng 42 27 Hình 3.3 Tập cát E và F 43 28 Hình 3.4 Kết quả đo log độ thấm 43 5 29 Hình 3.5 Gradient áp suất mỏ Sư Tử Trắng 44 30 Hình 3.6 Áp suất lỗ rỗng dự kiến 45 31 Hình 3.7 Biểu đồ áp suất dự kiến giếng ST-1P 46 32 Hình 3.8 Biểu đồ nhiệt độ dự kiến của giếng ST-1P 47 33 Hình 3.9 Vùng xác định nhiệt độ và áp suất cao 48 34 Hình 3.10 Hiện tượng piston khi kéo thả cột cần khoan 35 Hình 4.1 Mặt cắt địa chấn giếng ST-1P 55 36 Hình 4.2 Cấu trúc giếng khoan ST-1P 57 37 Hình 4.3 Profile giếng khoan 59 38 Hình 4.4 Biểu đồ nhiệt độ khi tuần hoàn đoạn thân giếng 12-1/4” 61 39 Hình 4.5 Trọng lượng dung dịch tương đương đoạn thân giếng 12-1/4” 63 Hình 4.6 Liên hệ giữa trọng lượng tuần hoàn tương đương và tốc độ bơm với dung dịch có trọng lượng riêng 10,5ppg cho đoạn giếng 12-1/4” 63 Hình 4.7 ST-1P MPD cố định áp suất ở độ sâu 3090 mMD (Áp suất vỉa 11,2ppg; trọng lượng riêng dung dịch 10,5ppg;ECD cố định 11,6ppg) 65 Hình 4.8 ST-1P MPD cố định áp suất ở độ sâu 3090 mMD (Áp suất vỉa 11,2ppg; trọng lượng dung dịch 11ppg;ECD cố định 11,6ppg) 66 43 Hình 4.9 ST-1P MPD cố định áp suất ở tập ILM độ sâu 2514 mMD (Áp suất vỉa 11,2ppg; trọng lượng dung dịch 10,5ppg;ECD cố định 11,5ppg) 67 44 ST-1P MPD cố định áp suất ở tập ILM độ sâu Hình 4.10 2514 mMD (Áp suất vỉa 11,2ppg; trọng lượng dung dịch 11ppg;ECD cố định 11,5ppg) 67 45 Hình 4.11 Phân tích áp suất khi nâng cột cần (Tốc độ bơm 100gpm) 68 46 Hình 4.12 Phân tích áp suất khi nâng cột cần (Tốc độ bơm 300gpm) 69 40 41 42 6 53 47 Hình 4.13 Phân tích áp suất khi hạ cột cần (Trọng lượng dung dịch 10,5ppg, đối áp bề mặt 520psi) 70 48 Hình 4.14 Biểu đồ nhiệt độ khi tuần hoàn đoạn thân giếng 8-1/2” 71 49 Hình 4.15 Trọng lượng dung dịch khoan tương đương đoạn thân giếng 8-1/2” 72 50 Liên hệ giữa tỷ trọng lượng tuần hoàn tương Hình 4.16 đương và tốc độ bơm với dung dịch có trọng lượng 12,5ppg cho đoạn thân giếng 8-1/2” 73 51 ST-1P MPD điểm cố định áp suất ở độ sâu Hình 4.17 3518 mMD (Áp suất vỉa 11,9ppg; trọng lượng dung dịch 11,5ppg;ECD cố định 12,35ppg) 75 52 ST-1P MPD điểm cố định áp suất ở độ sâu Hình 4.18 3655 mMD (Áp suất vỉa 12,9ppg; trọng lượng dung dịch 12,3ppg;ECD cố định 13,33ppg) 75 53 ST-1P MPD điểm cố định áp suất ở độ sâu Hình 4.19 3808 mMD (Áp suất vỉa 13,4ppg; trọng lượng dung dịch 12,5ppg;ECD cố định 13,76ppg) 76 54 ST-1P MPD điểm cố định áp suất ở độ sâu Hình 4.20 3833 mMD (Áp suất vỉa 13,9ppg; trọng lượng dung dịch 13,2ppg;ECD cố định 14,22ppg) 76 55 ST-1P MPD điểm cố định áp suất ở 3833 Hình 4.21 mMD (Áp suất vỉa< 13,9ppg; trọng lượng dung dịch 13,2ppg;ECD cố định 14,22ppg) 77 56 Phân tích áp suất khi nâng cột cần (Trọng Hình 4.22 lượng dung dịch 13,2ppg, đối áp bề mặt 580 psi, tốc độ bơm 100 gpm) 78 57 Phân tích áp suất khi nâng cột cần (Trọng Hình 4.23 lượng dung dịch 13,2ppg, đối áp bề mặt 580 psi, tốc độ bơm 300 gpm) 78 58 Hình 4.24 Phân tích áp suất khi hạ cột cần (Trọng lượng dung dịch 13,2ppg, đối áp bề mặt 580psi) 79 7 DANH MỤC BẢNG BIỂU STT BẢNG TÊN BẢNG 1 Bảng 1.1 Ứng dụng công nghệ MPD tại Việt Nam 26 2 Bảng 1.2 Ứng dụng công nghệ MPD ở một số quốc gia trên thế giới 27 3 Bảng 4.1 Thông số chung của giếng 56 4 Bảng 4.2 Thông số mặt cắt địa chất của giếng 57 5 Bảng 4.3 Thông số ống chống 59 6 Bảng 4.4 Thông số profile giếng khoan 61 7 Bảng 4.5 Giá trị ECD thay đổi khi thay đổi tốc độ bơm 67 8 Bảng 4.6 Thông số hoạt động đoạn thân giếng 12-1/4” với điểm cố định áp suất tại đáy giếng 68 9 Bảng 4.7 Thông số hoạt động đoạn thân giếng 12-1/4” với điểm cố định cố định áp suất tại tập ILM 69 10 Bảng 4.8 Kiểm soát giếng bằng công nghệ MPD đoạn thân giếng 12-1/4” 74 11 Bảng 4.9 Giá trị ECD thay đổi khi thay đổi tốc độ bơm 76 12 Bảng 4.10 Thông số hoạt động đoạn thân giếng 81/2”với điểm cố định áp suất tại 3833 mMD 77 13 Bảng 4.11 Kiểm soát giếng bằng công nghệ MPD đoạn thân giếng 8-1/2” 83 14 Bảng 5.1 Dữ liệu khoan mỏ Cá Ngừ Vàng 84 15 Biểu đồ 5.1 Chi phí khoan đoạn thân giếng 8-1/2” trước và sau khi sử dụng công nghệ MPD 85 8 TRANG DANH MỤC TỪ VIẾT TẮT TIẾNG ANH KÍ HIỆU NGHĨA TIẾNG ANH NGHĨA TIẾNG VIỆT AFP Annulur friction pressure Áp suất ma sát vành xuyến BHP Bottom-hole pressure Áp suất đáy giếng BOP Blowout preventer Đối áp chống phun BP Back pressure Áp suất van điều áp BPH Barrel per hour Thùng/giờ CBHP Cố định áp suất đáy giếng DGD Constant bottom-hole pressure Cuu Long Joint Operation Company Dual gradient drilling EOP End off point ECD Equivalent circulating density EMW Equivalent mud weight ESD Equivalent static density FG Fracture gradient Điểm kết thúc cắt xiên Tỷ trọng tuần hoàn tương đương Tỷ trọng dung dịch tương đương Tỷ trọng tuần hoàn tĩnh tương đương Gradient vỡ vỉa HPHT High pressure high temperature Nhiệt độ, áp suất cao GPM Gallon per minute Ga-lông/phút KOP Kick off point Điểm cắt xiên MD Measure depth Chiều sâu theo thân giếng OBM Oil based mud Dung dịch khoan gốc dầu PMCD Pressurized mud cap drilling Khoan mũ dung dịch PP Pore pressure PPG Pound per gallon PWD Pressuring while drilling Áp suất vỉa Pound/ga-lông, đơn vị tỷ trọng hệ Anh-Mỹ Đo áp trong khi khoan RCD Rotating control device Thiết bị đối áp xoay ROP Rate of penetration Tốc độ cơ học khoan CLJOC 9 Công ty điều hành Cửu Long Khoan tỷ trọng kép SBP Surface back pressure Đối áp bề mặt SBM Synthetic based mud Dung dịch khoan tổng hợp SPP Standpipe pressure Áp suất ống đứng TD Total depth Tổng độ sâu TVD True vertical depth Chiều sâu thẳng đứng WBM Water based mud Dung dịch khoan gốc nước 10 CHƯƠNG 1 TỔNG QUAN VỀ CÔNG NGHỆ KHOAN KIỂM SOÁT ÁP SUẤT (MANAGED PRESSURE DRILLING) 1.1 Giới thiệu Cùng với sự phát triển kinh tế, nhu cầu về năng lượng của thế giới đang ngày một tăng cao đòi hỏi ngành công nghiệp dầu khí phải liên tục gia tăng sản lượng hàng năm trong khi nguồn tài nguyên dầu khí là hữu hạn, và những vùng mỏ trữ lượng lớn, dễ khai thác ngày càng ít đi. Điều này đã buộc ngành công nghiệp khoan – khai thác dầu khí phải đối mặt với những khó khăn, thử thách hơn, đồng thời phải nâng cao hiệu quả công tác khoan, khai thác các mỏ nhỏ, mỏ cận biên. Để có thể đáp ứng được với môi trường khoan phức tạp tại những khu vực đó, cần thiết phải có những công nghệ khoan hiện đại, giúp cho việc khống chế và kiểm soát giếng được dễ dàng và hiệu quả hơn, một trong những công nghệ đó là Khoan kiểm soát áp suất MPD. Ngay từ khi đưa vào áp dụng, công nghệ MPD cho thấy hiệu quả to lớn cho công tác khoan tại những vùng mỏ có điều kiện phức tạp mà trước đó rất khó thi công bằng các phương pháp khoan truyền thống. Khoan kiểm soát áp suất (MPD) đang dần trở thành công nghệ khoan phù hợp làm tăng đáng kể hiệu quả kinh tế cũng như khả năng khoan thành công các giếng khoan khó, giảm chi phí tiêu tốn cho khắc phục sự cố trong công tác khoan, đặc biệt là trong công tác khoan ngoài khơi. 1.2 Lịch sử và quá trình phát triển công nghệ MPD Vào thế kỉ 15, Leonardo da Vinci đã phác họa một động cơ cho giếng khoan. Năm 1859, động cơ hơi nước được sử dụng để khoan giếng dầu có tiềm năng kinh tế đầu tiên. Năm 1901 công nghệ khoan dưới cân bằng được ứng dụng ở mỏ Spindletop bang Texas. Trải qua nhiều thập kỉ nghiên cứu và ứng dụng những lợi thế của khoan dưới cân bằng trên thực tế, các nhà khoa học đã nhận thấy sự cần thiết phải có một công nghệ để kiểm soát tốt hơn dòng xâm nhập vào giếng. Những năm 1960, đối áp xoay (Rotating Cotrol Device - RCD) cho phép khoan với những dung dịch có khả năng nén như khí và dung dịch bọt. 11 Hiệu quả của nó được nhận thấy rõ ràng trong việc làm tăng đáng kể tốc độ khoan cơ học và tăng tuổi thọ của choòng khoan, dẫn đến giảm chi phí giá thành khoan. Qua thời gian, cùng với việc ứng dụng công nghệ khoan dưới cân bằng và khoan bằng khí nén với RCD, các nhà khoa học đã biết cách sử dụng RCD để điều khiển áp suất trong vành xuyến hiệu quả hơn. Năm 2003, công nghệ khoan kiểm soát áp suất (MPD) chính thức được ghi nhận bởi hiệp hội các nhà thầu khoan thế giới (IADC). Đến năm 2005, các công ty khoan đã thành công với hơn 100 giếng sử dụng công nghệ MPD. MPD góp phần tiết kiệm thời gian, chi phí bằng cách hạn chế tối đa sự lãng phí thời gian liên quan đến mất dung dịch và các vấn đề kiểm soát giếng khác. Sử dụng một hệ thống tuần hoàn kín, MPD kiểm soát áp suất trong thân giếng hiệu quả hơn và khoan thành công những giếng từng bị đánh giá là không thể khoan được với những công nghệ khoan truyền thống. Trong những năm vừa qua, công nghệ MPD đã được ứng dụng rộng rãi trên thế giới. Thông qua việc sử dụng công nghệ MPD, chúng ta có thể đồng thời xử lý được 2 vấn đề phức tạp trong công tác khoan đó là mất dung dịch và giới hạn khoan nhỏ. 1.3 Định nghĩa công nghệ MPD 1.3.1 Công nghệ khoan truyền thống “Công nghệ khoan truyền thống” sử dụng một hệ thống tuần hoàn mở, mùn khoan được đưa từ đáy giếng lên bề mặt rồi đi đến các thiết bị tách khí và tách chất rắn để xử lý. Áp suất vành xuyến được điều chỉnh bởi tỷ trọng của dung dịch khoan và tốc độ tuần hoàn dung dịch. Ở trạng thái tĩnh khi ngừng tuần hoàn bơm, áp suất đáy giếng (BHP) bằng áp suất thủy tĩnh của cột dung dịch trong giếng khoan. Còn ở trạng thái động, khi tuần hoàn dung dịch, áp suất đáy giếng bằng tổng của áp suất thủy tĩnh và tổn hao áp suất vành xuyến (AFP) do tuần hoàn gây ra. Hình 1.1 mô tả trạng thái áp suất đáy giếng trong phương pháp khoan truyền thống. Áp suất đáy giếng tăng lên trong quá trình tuần hoàn có thể lớn hơn áp suất vỡ vỉa (FP) gây ra hiện tượng mất dung dịch. 12 Hình 1.1 Áp suất đáy giếng trong phương pháp khoan truyền thống Trong công nghệ khoan truyền thống, dung dịch khoan được thiết kế với mục đích duy trì áp suất đáy giếng lớn hơn áp suất vỉa (khoan trên cân bằng) và nhỏ hơn áp suất vỡ vỉa để đề phòng hiện tượng chất lưu từ vỉa xâm nhập vào giếng khi ngừng tuần hoàn trong quá trình tiếp cần và tránh hiện tượng mất dung dịch. Hình 1.2 mô tả sự thay đổi áp suất đáy giếng trong quá trình khoan ở hai trạng thái tuần hoàn và ngừng tuần hoàn. Hình 1.2 Sự thay đổi áp suất đáy giếng trong quá trình khoan 13 Tuy nhiên, đối với những giếng có giới hạn khoan nhỏ, sự chênh lệch áp suất đáy giếng giữa trạng thái tuần hoàn và ngừng tuần hoàn có thể vượt quá giới hạn khoan, dẫn tới hiện tượng mất dung dịch khi khoan và dòng xâm nhập vào giếng khi ngừng tuần hoàn (Hình 1.3). Hình 1.3 Phức tạp trong giếng có giới hạn khoan nhỏ 1.3.2 Công nghệ khoan kiểm soát áp suất (MPD) Khoan Kiểm Soát Áp Suất (Managed Pressure Drilling) ứng dụng một hệ thống tuần hoàn kín có áp suất để tuần hoàn dung dịch khoan, cho phép kiểm soát tốt hơn và hiệu quả hơn sự thay đổi áp suất ở đáy giếng nhằm phòng ngừa, loại bỏ hoặc hạn chế các phức tạp có liên quan như mất dung dịch khoan, xâm nhập dung dịch vỉa, sập lở thành giếng khoan… cho phép khoan an toàn qua các địa tầng phức tạp như có dị thường cao về nhiệt độ, áp suất, vùng có giới hạn an toàn khoan nhỏ, vùng mất dung dịch trầm trọng… Hiệp hội các nhà thầu khoan quốc tế (IADC) đã định nghĩa công nghệ MPD như sau: “Khoan kiểm soát áp suất là một phương pháp khoan hiện đại, được sử dụng để kiểm soát chính xác áp suất vành xuyến dọc thân giếng khoan. Mục tiêu của công nghệ khoan kiểm soát áp suất là xác định chính xác những giới hạn áp suất đáy giếng để điều chỉnh áp suất vành xuyến phù hợp.” Đặc điểm công nghệ: 14  Công nghệ MPD sử dụng thiết bị và kĩ thuật để hạn chế tối đa những vấn đề khó khăn, phức tạp và tiêu tốn chi phí cho những giếng có giới hạn khoan nhỏ bằng cách kiểm soát chính xác áp suất dọc thân giếng khoan;  Công nghệ MPD bao gồm việc kiểm soát đối áp bề mặt (BP), tỉ trọng dung dịch khoan, tính lưu biến của dung dịch, mực dung dịch ở vành xuyến và tổn hao áp suất trong quá trình tuần hoàn;  Công nghệ MPD cho phép thay đổi, điều chỉnh áp suất đáy giếng một cách chủ động, nhanh và chính xác;  Công nghệ MPD cho phép hạn chế và ngăn ngừa dòng xâm nhập vào giếng trong quá trình khoan. 1.4 Các phương pháp trong công nghệ MPD 1.4.1 Phương pháp cố định áp suất đáy giếng (Constant Bottom-Hole Pressure CBHP) Sự thay đổi áp suất đáy giếng là nguyên nhân chính gây ra nhiều vấn đề như mất ổn định thành giếng, hiện tượng sập lở, kẹt cột cần khoan, mất dung dịch khoan, hiện tượng xâm nhập dung dịch vỉa… Sự thay đổi áp suất đáy giếng xảy ra khi thay đổi trạng thái tuần hoàn, ví dụ ngừng tuần hoàn để tiếp cần khoan. Như đã nêu trên, trong trạng thái tuần hoàn dung dịch để đưa mùn khoan lên bề mặt, áp suất đáy giếng bằng tổng của cột áp thủy tĩnh của dung dịch trong giếng khoan và tổn hao áp vành xuyến suất dọc thân giếng. Ở trạng thái tĩnh khi ngừng tuần hoàn, tổn hao áp suất mất đi làm cho giá trị áp suất đáy giếng giảm xuống, gây ra các phức tạp nêu trên. Đặc biệt với những giếng khoan khó, địa tầng không ổn định thì sự thay đổi áp suất đáy giếng sẽ làm gia tăng rủi ro xảy ra sự cố trong quá trình khoan. Phương pháp cố định áp suất đáy giếng (CBHP) là phương pháp được sử dụng để điều chỉnh hay hạn chế tối đa ảnh hưởng của sự thay đổi đột ngột áp suất đáy giếng gây ra do thay đổi trạng thái tuần hoàn dung dịch khoan. Trong phương pháp này, một hệ thống tuần hoàn kín được sử dụng, dung dịch khoan khi đi lên bề mặt được dẫn hướng đến một hệ thống van tiết lưu tự động hoặc bán tự động, hệ thống van này tạo ra đối áp bề mặt lên dòng dung dịch thông qua việc đóng mở thay đổi tiết diện van. Áp suất này tác động vào khoảng không vành xuyến nhằm bù lại lượng tổn hao áp suất bị giảm đi khi 15 giảm lưu lượng bơm, do đó áp suất đáy giếng được giữ cố định trong suốt quá trình khoan. Hình 1.4 Áp suất đáy giếng trong phương pháp CBHP Hình 1.4 mô tả trạng thái áp suất đáy giếng được duy trì ổn định khi thay đổi trạng thái tuần hoàn dung dịch bằng phương pháp CBHP. Hình 1.5 Áp suất đáy giếng ổn định trong phương pháp CBHP 16 Hình 1.5 mô phỏng phương thức ứng dụng đối áp bề mặt (BP) trong phương pháp CBHP. Theo lý thuyết, khi ngừng tuần hoàn dung dịch thì tổn hao áp suất do ma sát giảm đi sẽ được bù lại bằng đối áp bề mặt với giá trị tương đương cho phép kiểm soát áp suất đáy giếng (BHP) luôn ổn định. Phương pháp CBHP tạo ra khả năng có thể khoan được ở những khu vực có giới hạn khoan nhỏ đến rất nhỏ. Đặc biệt, phương pháp CBHP có thể điều chỉnh chính xác cơ chế áp suất trong giếng nhờ ứng dụng đối áp bề mặt duy trì áp suất đáy giếng ổn định, cho phép sử dụng dung dịch khoan có tỉ trọng nhỏ hơn, từ đó làm gia tăng tốc độ cơ học khoan. Ưu điểm của phương pháp CBHP:  Sử dụng hệ thống van tiết lưu điều chỉnh đối áp bề mặt, cho phép hạn chế tối đa sự thay đổi áp suất đáy giếng khi thay đổi trạng thái tuần hoàn của giếng.  Áp suất đáy giếng ở trạng thái động và trạng thái tĩnh đều được duy trì ổn định và dễ dàng điều chỉnh trong giới hạn khoan nhỏ giữa áp suất vỉa và áp suất vỡ vỉa.  Khả năng duy trì áp suất đáy giếng ổn định trong giới hạn khoan cho phép khoan sâu hơn trước khi phải thay đổi tỉ trọng dung dịch và chống ống.  Trong quá trình nối cần khi ngừng tuần hoàn, dòng xâm nhập được kiểm soát bằng việc sử dụng đối áp bề mặt duy trì áp suất đáy giếng.  Ít phải thay đổi tỉ trọng dung dịch khoan, gia tăng tốc độ cơ học khoan, giảm tổn hại vỉa. 1.4.2 Phương pháp khoan mũ dung dịch (Pressurized Mud Cap Drilling – PMCD) Khoan mũ dung dịch (PMCD) là phương pháp khoan không tuần hoàn dung dịch và mùn khoan lên bề mặt, được sử dụng để khoan qua các địa tầng mất dung dịch trầm trọng như cacbonat và đá móng nứt nẻ thường thấy ở Việt Nam. Phương pháp này sử dụng đồng thời hai hệ dung dịch có tính chất riêng biệt, một dung dịch nặng có độ nhớt cao được bơm vào khoảng vành xuyến và duy trì áp suất trên miệng giếng để ngăn ngừa sự giảm áp và dòng xâm nhập vào đáy giếng, một dung dịch nhẹ và sẵn có, không tốn kém, thường là nước biển hoặc dung dịch muối sẽ được bơm vào giếng qua cột cần khoan 17 khi đi qua choòng khoan, dung dịch này mang theo các hạt mùn khoan bít nhét, lấp đầy vào những khe nứt, lỗ rỗng hay hang hốc trong vỉa. Hình 1.6 mô tả quá trình tuần hoàn trong phương pháp khoan mũ dung dịch. Hình 1.6 Phương pháp khoan mũ dung dịch PMCD Phương pháp khoan mũ dung dịch giảm thiểu được hiện tượng mất dung dịch và xâm nhập chất lưu xảy ra cùng một lúc, cho phép tiết kiệm chi phí dung dịch khoan và hạn chế nhiễm bẩn gây ra bởi dung dịch khoan tới chất lượng vỉa chứa. Hình 1.7 mô tả trạng thái áp suất đáy giếng khi sử dụng phương pháp khoan mũ dung dịch. Áp suất đáy giếng bằng tổng của áp suất tuần hoàn bơm, áp suất bề mặt và áp suất của mũ dung dịch ngoài khoảng vành xuyến. 18 Hình 1.7 Áp suất đáy giếng trong phương pháp PMCD Ưu điểm của phương pháp PMCD:  PMCD cho phép khoan thành công qua các địa tầng phức tạp với hệ dung dịch có chi phí thấp, ít tốn kém như nước muối hoặc nước biển;  Phụ thuộc vào đặc điểm của các địa tầng phức tạp, nứt nẻ, mất dung dịch trầm trọng, mùn khoan dễ dàng được nén ép vào thành hệ nên có thể bỏ qua quá trình xử lý mùn khoan trên bề mặt;  Sự nén ép, bít nhét mùn khoan vào các địa tầng phức tạp nứt nẻ làm gia tăng mức độ ổn định của thành hệ;  Sử dụng dung dịch khoan có tỉ trọng nhỏ làm gia tăng tốc độ cơ học khoan, tiết kiệm chi phí dung dịch;  Khoan thành công qua các địa tầng mất dung dịch trầm trọng trước khi cần tiến hành công tác chống ống, trám xi măng để cách li, tăng chiều sâu chống ống. 19 1.4.3 Phương pháp tỉ trọng dung dịch kép (Dual Gradient Drilling – DGD) Phương pháp tỉ trọng dung dịch kép (DGD) sử dụng bơm đẩy hoặc bơm chèn dung dịch có tỉ trọng nhỏ hơn vào trong cột ống với nhằm làm thay đổi đường gradient áp suất của dung dịch trong giếng khoan ở phần phía trên của cột ống. Phương pháp này được ứng dụng ở các môi trường khoan nước sâu, giếng có giới hạn khoan nhỏ. Mục đích của phương pháp tỉ trọng dung dịch kép là điều chỉnh đường gradient áp suất của dung dịch khoan vào trong giới hạn khoan nhằm kéo dài khoảng cách giữa các lần chống ống, cho phép giảm số lượng ống chống kỹ thuật sử dụng trong giếng, nâng cao mức độ an toàn khi khoan. Hình 1.8 mô tả sự khác nhau giữa gradient áp suất của dung dịch trong phương pháp khoan truyền thống và phương pháp tỉ trọng dung dịch kép. Hình 1.8 Gradient áp suất sử dụng phương pháp DGD Trong phương pháp bơm chèn để giảm tỉ trọng phần phía trên của cột dung dịch, ta sử dụng các chất bơm chèn như khí Nito hoặc không khí. Hình 20
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng