Đăng ký Đăng nhập
Trang chủ Nghiên cứu ảnh hưởng chế độ xử lý thủy - nhiệt đến chất lượng của gỗ bạch đàn (e...

Tài liệu Nghiên cứu ảnh hưởng chế độ xử lý thủy - nhiệt đến chất lượng của gỗ bạch đàn (eucalyptus urophylla s.t. blake)

.PDF
26
555
145

Mô tả:

1 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ NÔNG NGHIỆP VÀ PTNT TRƢỜNG ĐẠI HỌC LÂM NGHIỆP NGUYỄN VĂN DIỄN NGHIÊN CỨU ẢNH HƢỞNG CỦA CHẾ ĐỘ XỬ LÝ THỦY NHIỆT ĐẾN CHẤT LƢỢNG GỖ BẠCH ĐÀN (Eucalyptus urophylla S.T. Blake) Chuyên ngành: Kỹ thuật Chế biến Lâm sản Mã số: 62 54 03 01 TÓM TẮT LUẬN ÁN TIẾN SĨ NGÀNH KỸ THUẬT CHẾ BIẾN LÂM SẢN Hà Nội, 2015 2 Trường Đại học Lâm nghiệp, Xuân Công trình được hoàn thành tại: Mai, Chương Mỹ, Hà Nội. Người hướng dẫn: 1. GS.TS. Phạm Văn Chƣơng 2. PGS.TS. Lê Xuân Phƣơng Phản biện 1: ................................................................... ....................................................................................... Phản biện 2: ................................................................... ....................................................................................... Phản biện 3: ................................................................... ....................................................................................... Luận án sẽ được bảo vệ trước Hội đồng chấm luận án cấp nhà nước họp tại: .............................................................................................. ........................................................................................................... Vào hồi giờ ngày tháng năm Có thể tìm hiểu luận án tại: Thư viện Trường Đại học Lâm nghiệp, thư viện Quốc gia. 1 MỞ ĐẦU Theo Quyết định số: 62/2006/QĐ-BNN, ngày 16 tháng 8 năm 2006 của Bộ trưởng Bộ NN&PTNT về việc phê duyệt chiến lược phát triển giống cây lâm nghiệp giai đoạn 2006-2020 đã nêu rõ cây gỗ Bạch đàn là một loại cây ưu tiên rừng trồng. Cây Bạch đàn sử dụng rộng rãi trên thị trường gỗ Việt Nam, bởi cây có ưu điểm khả năng tăng trưởng nhanh, gỗ có màu sắc đẹp, tính chất cơ học, vật lý khá cao .... Tuy nhiên, nhược điểm của gỗ Bạch đàn có nội ứng suất ngầm nên khi sử dụng gỗ dễ bị cong vênh, nứt, tách, … Do vậy, gỗ Bạch đàn chủ yếu cung cấp làm nhiên liệu đốt, bột giấy, sản xuất ván mỏng và ván dán, ván dăm, ván sợi cứng, ván sợi - bông. Vì thế, cần phải có biện pháp kỹ thuật đặc biệt là công nghệ chế biến gỗ để sử dụng phù hợp và hiệu quả loại gỗ này. Xử lý nhiệt cho gỗ nói chung và xử lý thủy nhiệt nói riêng là một hướng mới để khắc phục một hay nhiều nhược điểm của gỗ bằng cách thay đổi tính chất của gỗ. Mục đích của xử lý nhiệt cho gỗ là giảm khả năng hút ẩm của gỗ, cải thiện tính ổn định kích thước, tăng khả năng chống sự phá hoại của sinh vật và vi sinh vật hại gỗ, tăng khả năng chống chịu môi trường .... mà không gây độc hại. Theo kết quả của nhiều công trình nghiên cứu ngoài nước gỗ được xử lý thuỷ nhiệt có tính ổn định kích thước cao, khả năng chống mối mọt và độ bền màu tự nhiên tăng so với gỗ không xử lý. Đặc điểm hết sức quan trọng của phương pháp này là không dùng hoá chất do đó rất thân thiện với môi trường và con người. Trên thế giới phương pháp biến tính nói chung và phương pháp xử lý thuỷ - nhiệt nói riêng đã phát triển mạnh nhưng ở Việt Nam vấn đề thuỷ - nhiệt gỗ vẫn chưa được nghiên cứu. Vì thế để nâng cao chất lượng và sử dụng hợp lý gỗ nhưng không gây ô nhiễm môi trường, nguyên liệu mục tiêu của hướng nghiên cứu lựa chọn một loại gỗ rừng trồng đang được sử dụng rộng rãi ở nước ta với nhiều ưu điểm về tốc độ sinh trưởng, màu sắc, trữ lượng... để xử lý bằng phương pháp thuỷ - nhiệt. Cho đến nay, các công trình nghiên cứu về phương pháp xử lý nhiệt và thủy - nhiệt cho gỗ vẫn thường sử dụng trên cơ sở kế thừa các kết quả nghiên cứu trong và ngoài nước, kết hợp với phương pháp thực nghiệm để cho kết quả. Tuy nhiên, các kết quả nghiên cứu đó chỉ phù hợp với điều kiện cụ thể, để ứng dụng phương pháp này tại Việt Nam thi cần có nghiên cứu phù hợp với điều kiện hiện tại trong nước, cần có tính hệ thống và cơ sở khoa học nhằm ứng dụng các kết quả nghiên cứu của phương pháp xử lý thủy - nhiệt này. Xuất phát từ những lý do trên, chúng tôi tiến hành luận án: “Nghiên cứu ảnh hưởng của chế độ xử lý thủy - nhiệt đến chất lượng gỗ Bạch đàn (Eucalyptus urophylla S.T. Blake)”, nhằm có được những căn cứ khoa học xác đáng, thúc đẩy phát triển công nghệ biến tính gỗ nói chung và xử lý thủy - nhiệt nói riêng cho ngành Công nghệ gỗ, mở rộng phạm vi và nâng cao hiệu quả sử dụng nguồn nguyên liệu và đa dạng hóa loại hình sản phẩm. 2 Chƣơng 1. TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU 1.1. Khái niệm về biến tính gỗ và xử lý thủy - nhiệt 1.1.1. Khái niệm biến tính gỗ [41],[42] Callum Hill (2006) trong cuốn “Wood modification: chemical, thermal and other processes” đã định nghĩa: “biến tính gỗ liên quan đến quá trình tác động của tác nhân hoá học, sinh học hoặc vật lý đến vật liệu gỗ, tạo ra sự cải thiện các tính chất của gỗ trong quá trình sử dụng. Bản thân gỗ xử lý nhiệt ít gây độc và không tạo ra các chất độc trong qua trình sử dụng; hơn thế nữa, các sản phẩm tái chế từ gỗ xử lý nhiệt và phế thải của gỗ xử lý nhiệt cũng không gây độc hại với con người và môi trường”. 1.1.2. Khái niệm xử lý thuỷ - nhiệt [21],[28],[36],[41],[42],[43] Xử lý thủy - nhiệt là quá trình làm thay đổi một số tính chất vật lý, cơ học, sinh học và tính chất công nghệ của gỗ dưới tác dụng của nhiệt độ cao khi xử lý gỗ ở trong môi trường nước hoặc hơi nước, sau đó được gia nhiệt bằng phương pháp sấy. Xử lý thuỷ - nhiệt là quá trình xử lý 2 giai đoạn: 1. Xử lý thủy - nhiệt : 120 °C - 200 °C Làm khô sơ bộ Hong phơi tự nhiên 2. Đa tụ : 120 °C - 200 °C 1.2. Tổng quan nghiên cứu về xử lý nhiệt và thủy – nhiệt 1.2.1. Tình hình nghiên cứu ngoài nước a) Các công trình nghiên cứu về ổn định kích thức Stamm A. and L. Hansen (1937) đã thành công khi cho thực hiện phản ứng giữa nhóm hydroxyl với anydric axetic và pyridin ở dạng khí [65].Theo Hiroshi Jinno (1993), kết quả sự tăng nhiệt độ sấy gỗ làm giảm tính hút nước của các polychaccarit [11]. Militz H (2002), xử lý nhiệt cho gỗ nhằm nâng cao ổn định kích thước [54]. Behbood Mohebby và Ibrahim Sanaei (2005), nghiên cứu ảnh hưởng của xử lý thuỷ - nhiệt đến tính chất vật lý của gỗ Sồi (Fagus orientalis) [22]. P.Rezayati Charani và cộng sự (2007) “Nghiên cứu ảnh hưởng của chế độ xử lý thuỷ nhiệt đến sự ổn định kích thước của gỗ sồi” [57]. b) Các công trình nghiên cứu về tính chất cơ học của gỗ Inga JUODEIKIENĖ (2009), đã nghiên cứu sự ảnh hưởng của xử lý thủy - nhiệt đến cường độ nén và uốn tĩnh của gỗ Thông [51]. c) Các công trình nghiên cứu về thay đổi màu sắc gỗ Andreja KUTNAR , Milan ŠERNEK (2008), nghiên cứu ảnh hưởng của chế độ xử lý thuỷ - nhiệt làm thay đổi màu sắc gỗ [20]. Bruno Esteves, António Velez Marques, Idalina Domingos and Helena Pereira (2008), “Ảnh hưởng của nhiệt độ đến sự thay đổi màu sắc của gỗ Thông (Pinus pinaster) và gỗ Bạch đàn (Eucalyptus globulus)” [27]. d) Các công trình nghiên cứu về tỉ lệ tổn hao khối lượng gỗ Esteves và các cộng tác [34] đã nghiên cứu xử lý nhiệt cho gỗ Thông trong môi trường không khí thu được kết quả tốc độ giảm khối lượng của gỗ. Alén và 3 đồng nghiệp [19] đã chỉ ra, khi tỉ lệ giảm khối lượng trong phạm vi 1,5% (điều kiện xử lý 180oC, 4h) đến 12,5%. e) Các công trình nghiên cứu về tính chất công nghệ của gỗ l nhiệt Derya Sevim Korkut , Bilgin Guller (2007), đã nghiên cứu “Ảnh hưởng của xử lý nhiệt trên tính chất vật lý và độ nhám bề mặt gỗ Phong đỏ (Acer trautvetteri Medw)” [31],[32],[67]. Follrich [38] đã tiến hành nghiên cứu xử lý nhiệt gỗ Picea abies Karst và phát hiện, góc tiếp xúc của giọt dung dịch và bề mặt gỗ tăng từ 50o lên 90o, Gu Lianbai và cộng sự [77] đã tiến hành nghiên cứu tính năng dán dính của gỗ Birch, Thông rụng lá và Pinus sylvestris var. mongolica Litv. f) Các công trình nghiên cứu về thay đổi cấu trúc, thành phần hóa học gỗ V.Biziks, L. Belkova, E. Kapaca, B. Andersons (2010), “Ảnh hưởng của l thủy nhiệt đến cấu trúc gỗ Bạch Dương” [70]. Vladimirs Biziks, Bruno Andersons, Lubova Bel¸kova, Elına Kapacˇa và Holger Militz (2013), “Sự thay đổi của cấu trúc hiển vi của gỗ Bạch Dương sau khi lý thủy - nhiệt” [71]. 1.2.2. Tình hình nghiên cứu tại Việt Nam Trong những năm gần đây, công nghệ biến tính gỗ theo các xu hướng khác nhau như nâng cao khối lượng thể tích, tính chất cơ vật lý, ổn định kích thước gỗ đã được nhiều nhà khoa học, nhà sản xuất quan tâm nghiên cứu. Đặc biệt các công trình nghiên cứu của trường Đại học Lâm nghiệp và Viện Khoa học Lâm nghiệp Việt Nam: Lê Xuân Phương (2007), “Ảnh hưởng của xử lý nhiệt đến độ bền của gỗ Bồ đề” [17]. Vũ Huy Đại (2008): đã nghiên cứu và xây dựng quy trình công nghệ xử lý gỗ nhằm làm tăng độ bền tự nhiên của gỗ bằng Dimethylol dihydroxy ethylene urea/DMDHEU với chất xúc là MgCl2 ở nhiệt độ 1300C cho gỗ Keo lai, Keo lá tràm, Keo tai tượng [5]. Vũ Mạnh Tường (2011), “Nghiên cứu và đánh giá công nghệ xử lý nhiệt cho gỗ Keo lai rừng trồng Việt Nam” [23]. Phạm Văn Chương (2011), “Ảnh hưởng của công nghệ xử lý thủy nhiệt đến tính chất vật lý của gỗ Keo lá tràm” [36]. Trần Văn Chứ (2013) “ Nâng cao sự ổn định kích thước của gỗ Keo tai tượng bằng phương pháp xử lý nhiệt” [37]. Nguyễn Quang Trung (2005-2008), “Nghiên cứu sử dụng gỗ Bạch đàn đỏ (E.urophylla) để sản xuất gỗ xẻ làm đồ mộc” [16]. Chƣơng 2. ĐỐI TƢỢNG, PHẠM VI, MỤC TIÊU, NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1. Đối tƣợng nghiên cứu 2.1.1. Đối tượng nghiên cứu tổng quát: Công nghệ xử lý thủy - nhiệt gỗ Bạch đàn (Eucalyptus urophylla S.T. Blake) bằng thiết bị (Sumpot ) của Trung tâm Thí nghiệm và Phát triển công nghệ - Viện Công nghiệp gỗ - Trường Đại học Lâm nghiệp. 2.1.2. Đối tượng nghiên cứu cụ thể: Thông qua hai biến số công nghệ là nhiệt độ và thời gian xử lý được bố trí theo quy hoạch thực nghiệm, trong luận án cụ thể các đối tượng nghiên cứu sau: 4 - Nghiên cứu ảnh hưởng của xử lý thủy - nhiệt đến tính chất cơ học, vật lý và tính chất công nghệ. - Nghiên cứu ảnh hưởng phương pháp xử lý thủy – nhiệt đến sự thay đổi màu sắc và biến màu tự nhiên của gỗ Bạch đàn trước và sau khi xử lý. - Nghiên cứu ảnh hưởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến cấu tạo (SEM), thành phần hóa học cơ bản của gỗ Bạch đàn. - Nghiên cứu ảnh hường của xử lý thủy – nhiệt đến cấu trúc hóa học (XRD, FTIR) của gỗ Bạch đàn sau khi xử lý thuỷ - nhiệt. - Nghiên cứu, đề xuất thông số công nghệ (nhiệt độ và thời gian) phù hợp của xử lý thủy - nhiệt cho gỗ Bạch đàn trong điều kiện, biến số của luận án. 2.2. Phạm vi nghiên cứu 2.2.1. Các yếu tố cố định - Nguyên vật liệu nghiên cứu: + Gỗ Bạch đàn (Eucalyptus urophylla S.T. Blake), tuổi từ 10 - 15 năm. + Gỗ xẻ có kích thước mẫu xử lý thủy - nhiệt: 25 x (40 đến 100) x 600, mm. + Độ ẩm của gỗ trước khi xử lý: MC 25 đến 30 %. + Độ ẩm của gỗ sau khi xử lý (sấy hoặc hong phơi tự nhiên): MC 12% - Phương pháp xử lý: Xử lý thủy - nhiệt 2.2.2. Các yếu tố thay đổi - Nhiệt độ (T): 120; 140; 160; 180 và 200 (oC). - Thời gian (  ): 1; 2; 3; 4 và 5 (giờ). 2.3. Mục tiêu của Luận án 2.3.1. Mục tiêu lý thuyết - Bước đầu đóng góp cơ sở khoa học và thực tiễn về công nghệ xử lý thủy nhiệt cho gỗ Bạch đàn (Eucalyptus urophylla S.T. Blake) nhằm cải thiện một số tính chất và nâng cao hiệu quả sử dụng gỗ. - Xác định được mối quan hệ giữa chế độ xử lý thủy - nhiệt (nhiệt độ và thời gian) đến chất lượng của gỗ nói chung và gỗ Bạch đàn (Eucalyptus urophylla S.T. Blake) nói riêng, thông qua việc xác định tính chất cơ học, vật lý và tính chất công nghệ, sự thay đổi về cấu tạo, cấu trúc hóa học và thành phần hóa học cơ bản của gỗ. 2.3.2. Mục tiêu thực tiễn - Xác định được sự ảnh hưởng của thông số chế độ xử lý thủy - nhiệt (nhiệt độ và thời gian) đến chất lượng gỗ Bạch đàn. - Đề xuất được thông số công nghệ xử lý thủy - nhiệt (nhiệt độ và thời gian) hợp lý cho gỗ Bạch đàn trong điều kiện công nghệ tại Việt Nam. 2.4. Nội dung nghiên cứu -. Nghiên cứu ảnh hưởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến tính ổn định kích thước, tính chất cơ học, vật lý gỗ Bạch đàn. - Nghiên cứu ảnh hưởng nhiệt độ và thời gian xử lý thủy - nhiệt của gỗ Bạch đàn đến tính chất công nghệ (kéo trượt màng keo, khả năng bong tách màng keo và độ nhám bề mặt). - Nghiên cứu ảnh hưởng nhiệt độ và thời gian xử lý thủy - nhiệt đến sự thay đổi màu sắc và độ bền màu tự nhiên của gỗ Bạch đàn. 5 - Nghiên cứu ảnh hưởng nhiệt độ và thời gian xử lý thủy - nhiệt đến sự biến đổi về cấu tạo (SEM), thành phần hóa học cơ bản và cấu trúc hóa học (XRD, FTIR) của gỗ Bạch đàn sau khi xử lý thuỷ - nhiệt. - Phân tích, đánh giá kết quả và đề xuất thông số công nghệ phù hợp của xử lý thủy - nhiệt cho gỗ Bạch đàn. 2.5. Phƣơng pháp nghiên cứu - Phương pháp kế thừa - Phương pháp thực nghiệm - Phương pháp đánh giá chất lượng và sử dụng tiêu chuẩn kiểm tra 2.6. Ý nghĩa của Luận án 2.6.1. Ý nghĩa khoa học Kết quả nghiên cứu của Luận án là cơ sở khoa học, là tiền đề cho các nghiên cứu tiếp theo trong việc xác định thông số công nghệ xử lý thủy - nhiệt cho gỗ Bạch đàn nhằm nâng cao tính ổn định kích thước, độ bền màu tự nhiên, cải thiện độ nhẵn bề mặt và giảm độ khả năng hút nhả ẩm và độ ẩm thăng bằng của loại gỗ này. Xác định được sự thay đổi cấu tạo, cấu trúc và thành phần hóa học của gỗ Bạch đàn thông qua chụp SEM, xác định thành phần hóa học cơ bản và phân tích cấu trúc hóa học của gỗ sau khi xử lý nhiệt Luận án đã giải thích được sự biến đổi về tính chất của gỗ khi xử lý ở các chế độ khác nhau trên cơ sở kết quả phân tích quang phổ đối với mẫu gỗ trước và sau khi xử lý. Kết quả nghiên cứu của Luận án đã góp phần bổ sung về cơ chế biến đổi cấu trúc hóa học cũng như tính chất gỗ trong quá trình xử lý thủy - nhiệt. 2.6.2. Ý nghĩa thực tiễn Kết quả luận án là cơ sở kỹ thuật cho việc xác lập, lựa chọn và xây dựng quy trình công nghệ xử lý thủy - nhiệt để nâng cao tính ổn định kích thước của gỗ Bạch đàn. Sản phẩm gỗ xử lý thủy - nhiệt, tăng khả năng tính ổn định kích thước đáp ứng được yêu cầu của nguyên liệu trong sản xuất đồ nội ngoại thất với chất lượng cao hơn so với gỗ chưa xử lý mà không sử dụng bất cứ loại hóa chất nào trong quá trình xử lý. Áp dụng công nghệ xử lý thủy - nhiệt độ để xử lý gỗ rừng trồng nói chung và gỗ Bạch đàn nói riêng có thể giải quyết được phần nào về vấn đề chất lượng nguyên liệu gỗ rừng trồng sử dụng trong sản xuất đồ mộc nội địa cũng như xuất khẩu mà hoàn toàn có thể đáp ứng được mục tiêu bảo vệ môi trường, giảm chu kỳ khải thác và các quy định về sử dụng hợp lý, hiệu quả tài nguyên gỗ rừng trồng mọc nhanh. 2.7. Những đóng góp mới của Luận án * Về công nghệ xử lý: Luận án là công trình đầu tiên ở Việt Nam nghiên cứu một cách hệ thống về ảnh hưởng của công nghệ xử lý thủy - nhiệt cho gỗ Bạch đàn thông qua mô hình quy hoạch thực nghiệm, luận án đã đề xuất được thông số công nghệ xử lý hợp lý cho gỗ Bạch đàn với quy mô phòng thí nghiệm. * Về cơ sở lý luận của công nghệ: Luận án đã áp dụng các phương pháp phân tích hiện đại để nghiên cứu sự thay đổi về cấu tạo, cấu trúc và thành phần hóa học 6 cơ bản của gỗ Bạch đàn nhằm giải thích hiện tượng biến đổi tính chất của gỗ do quá trình xử lý thủy - nhiệt. Chƣơng 3. CƠ SỞ LÝ THUYẾT 3.1. Cơ sở khoa học của xử lý gỗ Gỗ là vật liệu tự nhiên có tính dị hướng cao, được cấu tạo bởi các tế bào xếp dọc thân cây (chiếm tới 90-95%) thể tích và tế bào xếp ngang thân cây (chiếm 5-10%). Các tế bào gỗ có dạng hình ống bao gồm vách và ruột. Gỗ được tổ thành từ các nguyên tố cơ bản như: C, H, O, N, ngoài ra gỗ còn chứa một lượng nhỏ các nguyên tố khoáng chất. Các hợp chất hóa học cấu tạo nên vách tế bào gỗ có thể được phân làm hai nhóm: Thành phần chủ yếu và thành phần thứ yếu. Thành phần chủ yếu bao gồm xenlulo, hemixenlulo và lignin; các thành phần thứ yếu bao gồm nhựa cây, tannin, tinh dầu, sắc tố, khoáng chất, pectin, protein, hợp chất vô cơ,… [14]. 3.2. Lý thuyết về xử lý thủy - nhiệt Xử lý thủy nhiệt là quá trình làm thay đổi một số chất có trong gỗ dưới tác dụng của nhiệt độ cao ở trong môi trường nước, sau đó được gia nhiệt bằng phương pháp sấy. Khi gỗ ở trong nước rồi tiến hành gia nhiệt đến nhiệt độ cao làm cho các chất chiết xuất và một số các cấu tử tạo nên vách tế bào bị phân huỷ làm thay đổi một số tính chất ban đầu của gỗ. Cấu trúc hóa học của gỗ bị thay đổi do xử lý nhiệt. Có thể cho rằng các nhóm -OH của các polyme vách tế bào được tách ra hoặc liên kết ngang trong quá trình xử lý thủy nhiệt. Quá trình xử lý nhiệt cho gỗ đã làm cho cấu trúc và thành phần hóa học của gỗ bị thay đổi làm ảnh hưởng đến một số tính chất vật lý, cơ học, sinh học và công nghệ của gỗ. Gỗ hấp thụ ẩm ít hơn và trở nên không thấm nước. Sự suy thoái của các polyme trên vách tế bào, đặc biệt là hemixenlulo từ những chuỗi dài chuỗi thành những chuỗi ngắn hơn, khả năng chịu uốn kém [22],[23]. 3.3. Cơ chế biến đổi tính chất gỗ trong xử lý thuỷ- nhiệt [20],[21],[22], [24],[34] Quá trình xử lý thuỷ nhiệt làm thay đổi thành phần cấu trúc hoá học trong gỗ, nhiệt độ cao và thời gian xử lý dài thì sự thay đổi cấu trúc hoá học của gỗ càng lớn. Nhiệt độ xử lý khoảng 40-900C bắt đầu xuất hiện những thay đổi hoá học chủ yếu là các chất chiết xuất. Nhiệt độ trên 90 0C những thay đổi xảy ra trong tất cả các thành phần gỗ đặc biệt là hemixenlulo. Ở nhiệt độ 150-2500C những thay đổi lớn xảy ra trong các thành phần gỗ. Chƣơng 4. KẾT QUẢ NGHIÊN CỨU 4.1. Nguyên liệu gỗ Để tiến hành thực nghiệm tôi đã lựa chọn cây gỗ Bạch đàn Uro tại xã Ba Trại, huyện Ba Vì - thành phố Hà Nội, cụ thể như sau: - Gỗ Bạch đàn (Eucalyptus urophylla S.T. Blake), tuổi từ 10 - 15 năm. - Gỗ xẻ có kích thước: 25 x (40 đến 100) x 600, mm. 7 - Số lượng gỗ: 50 thanh/chế độ (0.05 ÷ 0,075m3/chế độ).; Nước trong khoang chứa: 40 ÷ 45 lít. - Độ ẩm của gỗ trước khi xử lý MC 25 đến 30 %. 4.2. Sử dụng thiết bị và dụng cụ thí nghiệm - Thiết bị xử lý thuỷ nhiệt: Sử dụng thiết bị xử lý thủy nhiệt là máy Sumpot tại Trung tâm thí nghiệm và Phát triển công nghệ - Viện Công nghiệp gỗ Trường Đại học Lâm nghiệp. Hình 4.1. Thiết bị xử lý thuỷ nhiệt 4.3. Phân tích và đánh giá kết quả nghiên cứu 4.3.1. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến khối lượng thể tích gỗ Bạch đàn Kết quả kiểm tra khối lượng thể tích các mẫu thí nghiệm thu được ở phụ biểu 01 đến phụ biểu 10 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.3. Bảng 4.3. Khối lƣợng thể tích của gỗ Bạch đàn (g/cm3) Dạng thực Số lần lặp (T; 0C) (τ; giờ) Y1 Y2 Y3 1 140 2 0,584 0,573 0,583 2 180 2 0,509 0,512 0,503 3 140 4 0,579 0,576 0,571 4 180 4 0,505 0,497 0,500 5 120 3 0,623 0,624 0,630 6 200 3 0,481 0,494 0,479 7 160 1 0,542 0,536 0,538 8 160 5 0,512 0,512 0,513 Hình 4.4. Biểu đồ quan hệ giữa chế độ xử lý với khối lƣợng thể tích 9 160 3 0,509 0,528 0,519 + Phương trình dạng mã: Y= 0,529 - 0,036T + 0,007T2 - 0,006τ - 0,002Tτ - 0,0005τ2 (4.1a). Ảnh hƣởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến khối lƣợng thể tích gỗ Bạch đàn STT KLTT (g/cm3) 0,65 0,6 0,55 0,5 0,45 0,4 120 130 140 5 150 160 170 Nhiệt độ (oC) 0,6-0,65 3 180 190 0,55-0,6 0,5-0,55 0,45-0,5 1 200 0,4-0,45 Thời gian (giờ) 8 + Phương trình dạng thực: Y= 1,208 - 0,0068T + 0,0000165T2 + 0,011τ - 0,000085Tτ - 0,0005τ2 (4.1b). Nhận xét: Qua quá trình thực nghiệm ta thấy khối lượng thể tích của gỗ Bạch đàn đã xử lý thuỷ - nhiệt so với gỗ Bạch đàn chưa xử lý giảm dần từ 0,632 g/cm3 đến 0,485 g/cm3 (giảm 23,30% so với mẫu đối chứng) khi nhiệt độ tăng và thời gia tăng. 4.3.2. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến Hệ số chống trương nở ASE gỗ Bạch đàn Kết quả kiểm tra hệ số chống trương nở các mẫu thí nghiệm thu được ở phụ biểu 11 đến phụ biểu 20 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.4. Bảng 4.4. Hệ số chống trƣơng nở ASE của gỗ Bạch đàn (%) STT 1 2 3 4 5 6 7 8 9 Dạng thực (T; (τ; 0 C) giờ) 140 2 180 2 140 4 180 4 120 3 200 3 160 1 160 5 160 3 Số lần lặp Ảnh hƣởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến hệ số chống trƣơng nở (ASE) của gỗ Bạch đàn (%) Y1 Y2 Y3 31,15 39,20 31,32 39,61 24,17 42,78 35,19 38,58 37,90 30,31 39,41 30,95 41,03 24,32 43,38 33,25 38,73 36,17 30,10 40,03 31,37 39,95 23,26 43,16 34,31 39,24 36,01 ASE (%) 45 40 35 30 25 5 20 120 130 3 140 150 160 170 180 Nhiệt độ (oC) 190 Thời gian (giờ) 1 200 40-45 35-40 30-35 25-30 20-25 Hình 4.5. Biểu đồ quan hệ giữa chế độ xử lý với ASE + Phương trình dạng mã: Y= 36, 255 + 4,699T - 0,713T2 + 0,879τ - 0,011Tτ + 0,046τ2 (4.2a). + Phương trình dạng thực: Y= - 49,4679 + 0,80722T - 0,001783T2 + 0,6872τ - 0,00054Tτ + 0,0463τ2 (4.2b). Nhận xét: Căn cứ vào các kết quả nghiên cứu ở trên và bảng 4.4 và đồ thị hình 4.5 mà tác giả đã nghiên cứu xử lý thủy - nhiệt cho gỗ Bạch đàn, ta thấy hệ số ASE đều lớn hơn 0, biến đổi (giá trị trung bình của 3 lần lặp) từ 23,92% đến 43,11%. 4.3.3. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến hiệu suất chống hút nước (WRE) gỗ Bạch đàn Kết quả kiểm tra hiệu suất chống hút nước các mẫu thí nghiệm thu được ở phụ biểu 21 đến phụ biểu 29 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.5. S T T 1 2 3 4 5 6 7 8 9 9 Bảng 4.5. Hiệu suất chống hút nƣớc WRE của gỗ Bạch đàn (%) Ảnh hƣởng của nhiệt độ và thời gian xử lý thủy - nhiệt Dạng thực Số lần lặp đến hiệu suất chống hút nƣớc (WRE) của gỗ Bạch đàn (%) (T; (τ; Y1 Y2 Y3 0 C) giờ) WRE (%) 140 2 17,44 18,84 16,68 50 180 2 30,16 31,44 30,33 40 5 4 140 4 19,89 19,91 20,51 30 3 20 180 4 34,90 33,30 35,12 Thời gian 10 2 (giờ) 120 3 14,30 13,93 15,02 120 130 140 150 160 170 200 3 42,54 42,86 43,36 1 180 190 Nhiệt độ ( C) 200 160 1 21,39 20,06 20,68 40-50 30-40 20-30 10-20 160 5 27,40 26,73 27,32 Hình 4.6. Biểu đồ quan hệ giữa 160 3 24,19 22,82 23,08 chế độ xử lý với WRE o + Phương trình dạng mã: Y= 24,144 + 7,028T + 1,18T 2 + 1,594τ + 0,337Tτ - 0,005τ2 (4.3a). + Phương trình dạng thực: Y= 46,685 - 0,643T + 0,00295T2 - 1,071τ + 0,0168Tτ - 0,005τ2 (4.3b). Nhận xét: Căn cứ vào kết quả ở bảng 4.5 và đồ thị hình 4.6 ta thấy hệ số chống hút nước WRE biến đổi (giá trị trung bình 3 lần lặp) từ 14,42% đến 42,92%. 4.3.4. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến Độ bền uốn tĩnh gỗ Bạch đàn Kết quả kiểm tra độ bền uốn tĩnh các mẫu thí nghiệm thu được ở phụ biểu 30 đến phụ biểu 39 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.6. Bảng 4.7. Độ bền uốn tĩnh của gỗ Bạch đàn (MPa) S T T 1 2 3 4 5 6 7 8 9 Dạng thực (T; (τ; 0 C) giờ) 140 2 180 2 140 4 180 4 120 3 200 3 160 1 160 5 160 3 Số lần lặp Y1 Y2 Ảnh hƣởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến độ bền uốn tĩnh gỗ Bạch đàn (MPa) Y3 Uốn tĩnh 110 (MPa) 100 97,61 61,45 88,58 55,03 98,27 33,01 86,40 76,11 76,69 93,64 62,48 85,21 55,18 95,62 66,94 86,89 56,61 101,83 101,76 33,70 83,97 71,91 82,98 39,32 83,20 70,96 81,19 90 80 70 60 50 120 130 40 140 150 Nhiệt độ (oC) 30 20 160 170 5 180 3 190 100-110 90-100 80-90 1 200 70-80 Thời gian (giờ) 60-70 50-60 40-50 30-40 20-30 Hình 4.7. Biểu đồ quan hệ giữa chế độ xử lý với độ bền uốn tĩnh + Phương trình dạng mã: Y= 79,05 - 16,153T - 2,844T2 - 3,317τ + 0,178Tτ - 0,15τ2 (4.4a). + Phương trình dạng thực: 10 Y= 39,121 + 1,441T - 0,0071T2 - 3,843τ + 0,00892Tτ - 0,15τ2 (4.4b). Nhận xét: Qua quá trình thực nghiệm của luận án, ta thấy độ bền uốn tĩnh của gỗ Bạch đàn đã xử lý thuỷ - nhiệt so với gỗ Bạch đàn chưa xử lý giảm (giá trị trung bình 3 lần lặp) từ 105,83 MPa còn 35,34 MPa (giảm 66,6% so với mẫu chưa xử lý) và giảm dần ở các chế độ xử lý khi nhiệt độ tăng và thời gia tăng. 4.3.5. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến độ bền nén dọc thớ gỗ Bạch đàn Kết quả kiểm tra độ bền nén dọc thớ các mẫu thí nghiệm thu được ở phụ biểu 40 đến phụ biểu 49 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.7. Bảng 4.7. Độ bền nén dọc thớ của gỗ Bạch đàn (MPa) Ảnh hƣởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến độ Dạng thực Số lần lặp bền nén dọc thớ gỗ Bạch đàn (MPa) (T; (τ; Y1 Y2 Y3 0 C) giờ) 140 2 61,09 63,58 63,99 180 2 49,08 48,87 48,22 140 4 58,12 56,09 59,32 180 4 41,28 43,08 42,69 120 3 66,09 63,78 66,70 200 3 35,82 36,61 33,23 160 1 55,78 58,39 57,29 Hình 4.8. Biểu đồ quan hệ giữa 160 5 51,38 51,16 55,19 chế độ xử lý với Độ bền nén dọc thớ (COM//) 160 3 54,94 56,99 53,16 + Phương trình dạng mã: Y= 54,254 - 7,522T - 1,019T2 - 1,714τ - 0,332Tτ + 0,104τ2 (4.5a). + Phương trình dạng thực: Y= 47,3142 + 0,48898T - 0,0025T2 + 0,32τ - 0,0166Tτ + 0,104τ2 (4.5b). Nhận xét: Qua kết quả nghiên cứu cho thấy (bảng 4.7) sự ảnh hưởng của nhiệt độ xử lý thủy nhiệt cho gỗ Bạch đàn đến độ bền nén dọc rất rõ rệt còn thời gian ảnh hưởng rất ít ở cùng chế độ nhiệt độ. Độ bền nén dọc thớ (COM//) giảm (giá trị trung bình 3 lần lặp) từ 68,15 MPa còn 35,22 MPa (giảm 48,32% so với mẫu chưa xử lý). 4.3.6. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến độ bền nén ngang thớ theo chiều xuyên tâm và tiếp tuyến gỗ Bạch đàn a) Độ bền nén ngang uyên tâm Từ kết quả nghiên cứu và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.8 (theo phụ biểu 50 đến phụ biểu 59). S T T 1 2 3 4 5 6 7 8 9 Nén dọc (MPa) 70 60 50 120 130 40 30 140 150 20 160 Nhiệt độ (oC) 5 170 4 180 3 2 190 1 200 60-70 50-60 40-50 Thời gian (giờ) 30-40 20-30 11 Bảng 4.8. Độ bền nén ngang thớ theo chiều xuyên tâm (COM R) của gỗ Bạch đàn (MPa) Dạng thực Số lần lặp Ảnh hưởng của chế độ xử lý thủy - nhiệt đến độ bền nén ngang thớ theo chiều xuyên tâm gỗ Bạch đàn (MPa) (T; (τ; Y1 Y2 Y3 NN-XT 0 C) giờ) (MPa) 140 2 8,45 8,56 8,64 180 2 5,33 5,37 5,66 140 4 7,43 7,97 7,66 180 4 4,34 4,51 5,11 120 130 140 150 120 3 8,96 9,12 8,77 160 5 Nhiệt độ ( C) 170 180 3 200 3 3,31 3,14 3,19 190 Thời gian (giờ) 1 200 160 1 6,98 7,26 7,32 8-10 6-8 4-6 2-4 0-2 160 5 6,49 6,19 6,58 Hình 4.9. Biểu đồ quan hệ giữa 160 3 7,30 6,91 7,02 chế độ xử lý với COM  R + Phương trình dạng mã: Y= 6,922 - 1,467T - 0,22T2 - 0,266τ + 0,016Tτ - 0,039τ2 (4.6a). + Phương trình dạng thực: Y= 5,414 + 0,100125T - 0,00055T2 - 0,1564τ + 0,00079Tτ - 0,039τ2 (4.6b). b) Độ bền nén ngang tiếp tuyến Từ kết quả nghiên cứu và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.9 (theo phụ biểu 60 đến phụ biểu 69). Bảng 4.9. Độ bền nén ngang thớ theo chiều tiếp tuyến (COM T) của gỗ Bạch đàn (MPa) Ảnh hưởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến độ Dạng thực Số lần lặp S bền nén ngang thớ theo chiều tiếp tuyến gỗ Bạch đàn (MPa) T (T; (τ; Y Y Y 0 1 2 3 T C) giờ) 1 140 2 7,29 7,41 7,46 2 180 2 5,59 5,59 5,66 3 140 4 6,69 6,94 6,85 4 180 4 5,29 5,24 4,99 5 120 3 7,76 7,57 7,78 6 200 3 4,25 4,31 4,18 7 160 1 6,96 6,63 6,75 Hình 4.10. Biểu đồ quan hệ 8 160 5 6,13 5,86 5,90 9 160 3 6,77 6,34 6,46 giữa chế độ xử lý với COM T + Phương trình dạng mã: Y= 6,436 - 0,862T - 0,121T2 - 0,219τ + 0,03Tτ - 0,022τ2 (4.7a). + Phương trình dạng thực: Y= 6,7894 + 0,04898T - 0,0003018T2 - 0,03304τ + 0,0015Tτ - 0,0215τ2 (4.7b). Nhận xét: Căn cứ vào bảng 4.8; bảng 4.9, đồ thị hình 4.9 và đồ thị 4.10, ta thấy xử lý thuỷ nhiệt gỗ Bạch đàn ở nhiệt độ 130 0C; 1400C; 1600C; 1800C và S T T 1 2 3 4 5 6 7 8 9 10 8 6 4 2 0 o NN-TT (MPa) 9 8 7 6 5 4 3 120 130 140 150 5 160 170 Nhiệt độ (oC) 3 180 190 8-9 7-8 6-7 5-6 1 200 4-5 Thời gian (giờ) 3-4 12 2000C, thời gian xử lý 1 giờ, 2 giờ, 3 giờ, 4 giờ, và 5 giờ độ bền nén xuyên tâm giảm 65,29% so với mẫu chưa xử lý. Độ bền nén ngang thớ tiếp tuyến giảm 47,22% so với mẫu chưa xử lý). 4.3.7. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến Độ nhám bề m t gỗ Bạch đàn Kết quả kiểm tra độ nhám bề mặt các mẫu thí nghiệm thu được ở phụ biểu 70 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.10. Bảng 4.10. Độ nhám bề mặt (Rmax) của gỗ Bạch đàn (µm) S T T 1 2 3 4 5 6 7 8 9 Dạng thực (T; (τ; 0 C) giờ) 140 2 180 2 140 4 180 4 120 3 200 3 160 1 160 5 160 3 Số lần lặp Ảnh hƣởng của nhiệt độ và thời gian xử lý thủy - nhiệt đến độ nhám bề mặt gỗ Bạch đàn Y1 Y2 Y3 99,74 74,52 93,30 70,16 96,29 76,19 93,97 72,61 99,12 75,22 95,89 70,58 112,72 112,92 113,45 75,83 90,04 77,62 74,40 76,04 86,39 77,36 74,23 74,38 90,21 74,23 75,35 ĐNBM 130 (µm) 110 90 120 140 70 160 Nhiệt độ (oC) 50 180 5 3 Thời gian (giờ) 200 1 110-130 90-110 70-90 50-70 Hình 4.11. Biểu đồ quan hệ giữa chế độ xử lý với Độ nhám bề mặt (Rmax) Từ kết quả ở bảng 4.10 ta xây dựng được phương trình quan hệ giữa nhiệt độ và thời gian đối với độ nhám bề mặt: + Phương trình dạng mã: Y= 77,181 - 9,992T + 4,418T2 - 2,901τ + 0,367Tτ + 1,523τ2 (4.8a). + Phương trình dạng thực: Y= 471,101 - 4,0892T + 0,01105T2 - 14,977τ + 0,01838Tτ + 1,5227τ2 (4.8b). Nhận xét: Qua kết quả nghiên cứu cho thấy (bảng 4.10) sự ảnh hưởng của nhiệt độ xử lý thủy nhiệt cho gỗ Bạch đàn đến độ nhám bề mặt rất rõ rệt còn thời gian ảnh hưởng rất ít ở cùng chế độ nhiệt độ. Độ nhám bề mặt (R max) giảm từ 115,16 µm còn 71,12 µm (giảm 38,24 % so với mẫu chưa xử lý). 4.3.8. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến Độ bền kéo trượt màng keo và Độ bong tách màng keo gỗ Bạch đàn a) Độ bền kéo trượt màng keo Kết quả kiểm tra độ bền kéo trượt màng keo các mẫu thí nghiệm thu được ở phụ biểu 71 đến phụ biểu 80 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.11. 13 Bảng 4.11. Độ bền kéo trƣợt màng keo (  k ) của gỗ Bạch đàn (MPa) Ảnh hƣởng của chế độ xử lý thủy - nhiệt đến độ bền Dạng thực Số lần lặp kéo trƣợt màng keo gỗ Bạch đàn (MPa) (T; (τ; Y1 Y2 Y3 0 C) giờ) Kéo trượt (MPa) 140 2 6,03 6,15 5,99 180 2 3,51 3,61 3,60 140 4 5,66 4,90 5,95 180 4 3,69 3,08 2,95 120 130 140 150 120 3 5,55 5,63 5,56 5 160 Nhiệt độ ( C) 170 3 180 200 3 1,75 1,70 1,60 Thời gian (giờ) 190 1 200 160 1 6,19 5,94 6,11 6-7 5-6 4-5 3-4 2-3 1-2 0-1 160 5 4,07 4,27 4,15 Hình 4.11. Biểu đồ quan hệ giữa 160 3 5,83 5,43 5,52 chế độ xử lý với Độ nhám bề mặt Từ kết quả ở bảng 4.11 ta xây dựng được phương trình quan hệ giữa nhiệt độ và thời gian đối với độ bền kéo trượt màng keo: + Phương trình dạng mã: Y= 5,245 - 1,045T - 0,425T2 - 0,393τ + 0,055Tτ - 0,053τ2 (4.9a). + Phương trình dạng thực: Y= - 11,5747 + 0,27958T - 0,00106T2 - 0,5177τ + 0,00275Tτ - 0,0526τ2 (4.9b). Nhận xét: Qua kết quả nghiên cứu cho thấy (bảng 4.11), khi nhiệt độ và thời gian tăng thì độ bền kéo trượt màng keo có xu hướng giảm dẫn theo chiều tăng của nhiệt độ và thời gian. Độ bền kéo trượt giảm từ 6,69 MPa còn 1,68 MPa (giảm 74,81% so với mẫu chưa xử lý). b) Độ bong tách màng keo gỗ Bạch đàn Kết quả kiểm tra độ bong tách màng keo các mẫu thí nghiệm thu được ở phụ biểu 81 đến phụ biểu 90 và xử lý bằng phần mềm OPT của Viện Cơ điện Nông nghiệp ta được kết quả tổng hợp ghi trong bảng 4.12. Bảng 4.12. Độ bong tách màng keo của gỗ Bạch đàn (%) Ảnh hƣởng của chế độ xử lý thủy - nhiệt đến độ bền Dạng thực Số lần lặp S bong tách màng keo gỗ Bạch đàn (%) T (T; (τ; Y1 Y2 Y3 0 T C) giờ) 1 140 2 18,59 20,58 19,68 2 180 2 30,32 29,59 31,02 3 140 4 21,68 22,82 22,36 4 180 4 32,60 33,04 32,35 5 120 3 19,62 19,31 18,82 6 200 3 39,69 40,29 38,18 7 160 1 24,65 21,57 21,86 Hình 4.13: Biểu đồ quan hệ giữa 8 160 5 25,28 28,72 24,32 chế độ xử lý với độ bong tách 9 160 3 22,68 25,66 21,62 màng keo + Phương trình dạng mã: S T T 1 2 3 4 5 6 7 8 9 7 6 5 4 3 2 1 0 o BT-MK (%) 45 35 200 190 25 180 170 15 160 Nhiệt độ (oC) 1 150 2 3 140 4 130 Thời gian (giờ) 5 120 35-45 25-35 15-25 14 Y= 24,324 + 5,112T + 1,311T2 + 0,987τ - 0,079Tτ + 0,082τ2 (4.10a). + Phương trình dạng thực: Y= 63,2241 - 0,7816T + 0,00328T2 + 1,131τ - 0,004Tτ + 0,0817τ2 (4.10b). Nhận xét: Sự ảnh hưởng của nhiệt độ và thời gian xử lý thủy nhiệt cho gỗ Bạch đàn đến độ bong tách màng keo theo xu hướng tăng khi tăng nhiệt độ và thời gian. Độ bong tách màng keo tăng từ 16,81% đến 39,39% (tăng 57,31% so với mẫu chưa xử lý). Nguyên nhân giảm độ bền kéo trượt màng keo và bong tác màng keo: - Nhiệt độ cao và thời gian xử lý dài làm các chất chiết xuất trong gỗ dễ dàng bị phân huỷ trong quá trình làm nóng, phân huỷ các polyme vách tế bào, phá huỷ hệ thống mao dẫn, hình thành một số chất mới trên bề mặt làm cho bề mặt gỗ trở lên trơ hơn so với gỗ không xử lý từ đó làm giảm khả năng dán dính của gỗ đã qua xử lý thủy nhiệt. - Khi nhiệt độ và thời gian xử lý tăng, làm giảm khả năng khuếch tán keo và làm tăng góc tiếp xúc keo – gỗ nên độ bền gián dính giảm. - Khi nhiệt độ và thời gian xử lý thủy nhiệt tăng lên thì nhóm OH trong gỗ giảm, từ đó làm giảm liên kết hóa học giữa keo và gỗ làm khả năng dán dính của gỗ sau khi xử lý thủy nhiệt giảm so với gỗ chưa qua xử lý. 4.3.9. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến sự thay đổi màu sắc và độ bền màu tự nhiên gỗ Bạch đàn 4.3.9.1. Sự thay đổi màu sắc của gỗ Bạch đàn trước và sau khi l thủy nhiệt Từ các kết quả thực nghiệm chúng tôi tiến hành kiểm tra độ sáng màu L*, các chỉ số a*,b*, độ chênh lệch màu sắc ΔE*, ΔL*, Δa*, Δb* của gỗ Bạch đàn trước và sau khi xử lý thủy – nhiệt (phụ biểu 91 đến phụ biểu 100) để so sánh các chỉ số màu sắc thông qua sự thay đổi các chế độ xử lý theo kết quả bảng 4.13. Bảng 4.13 Độ lệch màu ΔE* ở các chế độ xử lý thủy - nhiệt với mẫu đối chứng Chế độ xử lý Chỉ số màu trung bình Nhiệt độ Thời gian L* a* b* ΔE* (T; 0C) (τ; giờ) 1 Đối trứng (không xử lý 75,80 24,27 43,87 2 140 66,27 20,07 35,93 13,09 13,09 3 180 49,67 9,93 19,60 38,44 38,44 4 140 63,40 18,20 34,47 16,70 16,70 5 180 47,40 8,40 16,53 43,93 43,93 6 120 67,20 21,47 39,20 10,18 10,29 7 200 39,00 7,67 14,07 50,18 49,78 8 160 60,27 16,27 32,13 21,05 21,05 9 160 54,47 12,40 25,00 30,85 30,85 10 160 56,40 14,00 27,40 27,44 27,44 Từ số liệu của bảng 4.13 ta xây dựng được đồ thị biểu diễn quan hệ giữa chỉ số màu sắc L*, a*, b* và ΔE* của các chế độ xử lý thủy - nhiệt như sau: STT 15 BIỂU ĐỒ QUAN HỆ CHỈ SỐ a*b* ẢNH HƢỞNG CỦA CHẾ ĐỘ XỬ LÝ THỦY - NHIỆT ĐẾN SỰ THAY ĐỔI MÀU SẮC GỖ BẠCH ĐÀN 50 45 90 40 70 35 60 30 Chỉ số b* Chỉ số màu sắc (L,a,*b*) 80 50 40 25 20 30 15 20 10 10 5 0 ĐC 120-3 140-2 140-4 160-1 160-3 160-5 180-2 180-4 200-3 0 0 Chế độ xử lý (nhiệt độ, thời gian) L a 5 10 b 15 20 25 30 Chỉ số a* Hình 4.14. Biểu đồ quan hệ giữa L*, a* và b* với các chế độ xử lý thủy - nhiệt SỰ THAY ĐỔI MÀU SẮC THEO CHẾ ĐỘ XỬ LÝ THỦY - NHIỆT CỦA GỖ BẠCH ĐÀN 60 Chỉ số Delta E 50 40 Delta E 30 20 10 0 120-3 140-2 140-4 160-1 160-3 160-5 180-2 180-4 200-3 Chế độ xử lý (nhiệt độ, thời gian) Hình 4.15. Biểu đồ quan hệ giữa ΔE* với các chế độ xử lý thủy - nhiệt Nhận xét: Nhìn vào bảng 4.13 và đồ thị hình 4.14 và hình 4.15 ta thấy, khi nhiệt độ và thời gian xử lý tăng thì độ sáng màu của gỗ (L*) xử lý thủy - nhiệt giảm (sẫm mầu) và các chỉ số a*, b* và độ lệch màu ΔE* thay đổi , độ sáng màu (L*) giảm từ 75,8 xuống 39,0 (so với mẫu chưa xử lý); chỉ số a* thay đổi từ 24,27 xuống 7,67 (so với mẫu chưa xử lý); chỉ số b* thay đổi từ 43,87 xuống 14,07 (so với mẫu chưa xử lý) và độ lệch màu ΔE* thay đổi từ 10,18 đến 50,18 (mẫu ở chế độ 120-3 so với mẫu ở chế độ 200-3). 4.3.9.2. Biến màu tự nhiên của gỗ Bạch đàn sau khi l thủy - nhiệt Theo kết quả kiểm tra độ biến màu tự nhiên ở các chế độ xử lý thủy - nhiệt, mẫu được tiến hành kiểm tra chỉ số chênh lệch màu ΔE* của gỗ Bạch đàn ở các chế độ tương ứng sau 60 ngày (2 tháng) kể từ thời gian đo lần thứ nhất. Điều kiện nhiệt, ẩm của môi trường trong thời gian thí nghiệm: nhiệt độ trung bình 28 0C, độ ẩm trung bình: 85%. Các kết quả thu được ghi ở bảng 4.14, các đặc trưng thống kê như sau: 16 Bảng 4.14. Độ lệch màu ΔE* ở các chế độ xử lý thủy – nhiệt sau 60 ngày Dạng thực (T; 0C) (τ; giờ) STT 1 2 3 4 5 6 7 8 9 140 180 140 180 120 200 160 160 160 2 2 4 4 3 3 1 5 3 L* Chỉ số màu trung bình a* b* 70,80 51,40 67,73 47,40 74,40 40,40 62,80 56,07 58,53 22,87 10,53 21,13 8,40 24,13 7,73 18,53 13,80 15,53 39,47 20,60 36,53 16,53 43,20 14,93 33,33 26,07 28,53 ΔE* 6,39 2,09 5,63 1,72 8,66 1,65 3,60 2,38 2,86 Từ số liệu của bảng 4.14 ta xây dựng được đồ thị biểu diễn quan hệ độ biến màu ΔE* với các chế độ xử lý thủy - nhiệt như sau: SỰ THAY ĐỔI MÀU SẮC Ở CÁC CHẾ ĐỘ XỬ LÝ THỦY - NHIỆT CỦA GỖ BẠCH ĐÀN 10,00 9,00 8,66 Chỉ số Delta E 8,00 7,00 6,39 5,63 6,00 Delta E 5,00 3,60 4,00 2,86 3,00 2,38 2,09 2,00 1,72 1,65 180-4 200-3 1,00 0,00 120-3 140-2 140-4 160-1 160-3 160-5 180-2 Chế độ xử lý thủy - nhiệt (nhiệt độ, thời gian) Hình 4.16. Độ bền màu tự nhiên (ΔE*) ở các chế độ xử lý thủy - nhiệt Nhận xét chung về độ bền màu: Hầu hết mẫu gỗ ở các chế độ xử lý đều có mức độ biến màu trong giới hạn cho phép (mắt thường không phân biệt được). Nhìn vào đồ thị ta thấy, độ biến màu tự nhiên giảm dẫn khi nhiệt độ và thời gian tăng, ở các chế độ 1200C-3 giờ, 1400C-2 giờ, 1400C-4 giờ và 1600C-1 giờ màu sắc gỗ thay đổi (ΔE* từ 8,66 xuống 3,6). Còn ở các chế 160 0C-3 giờ, 1600C-5 giờ, 1800C-2 giờ, 1800C-4 giờ và 2000C-3 giờ màu sắc gỗ thay không thay đổi (ΔE* từ 2,86 xuống 1,65). 4.3.1 . Ảnh hưởng của chế độ xử lý thủy - nhiệt đến cấu tạo gỗ Bạch đàn Trong khoa học gỗ thì cấu tạo gỗ là cơ sở để đánh giá và dự đoán chất lượng gỗ, các loài gỗ khác nhau sẽ có đặc điểm cấu tạo khác nhau đã dẫn đến các tính chất của chúng không giống nhau. Vì thế, khi sử dụng gỗ các nhà khoa học cần nghiên cứu đặc điểm cấu tạo và tính chất của gỗ để định hướng việc sử dụng hiệu quả của từng loại gỗ vào mục đích sản phẩm gỗ. 17 Trong nghiên cứu này, nhằm mục đích khảo sát sự thay đổi về cấu tạo hiển vi của gỗ trước và sau khi xử lý nhiệt, đã tiến hành làm mẫu chụp ảnh cấu tạo hiển vi của gỗ (từ hình 4.17 đến hình 4.19) bằng kính hiển vi điện tử quét (FE-SEM). (a) Mặt cắt tiếp tuyến (x500) (b) Mặt cắt tiếp tuyến (x1.000) Hình 4.17. Mặt cắt tiếp tuyến của gỗ Bạch đàn chƣa xử lý thủy-nhiệt (a) Gỗ chưa xử lý thủy-nhiệt (x10.000) (b) Gỗ sau xử lý thủy-nhiệt (x10.000) Hình 4.19. Hình dạng miệng lỗ thông ngang trên vách tế bào sợi gỗ Bạch đàn Kết quả nghiên cứu thể hiện, tế bào mạch gỗ và lỗ thông ngang trên vách tế bào sợi gỗ Bạch đàn sau khi xử lý nhiệt đã bị thay đổi về hình dạng (sự nguyên vẹn của tế bào). Sự thay đổi của mạch gỗ không rõ rệt như đối với lỗ thông ngang. Một lượng không nhỏ lỗ thông ngang trên vách tế bào sợi gỗ Bạch đàn bị phá hủy, đặc điểm này có thể thấy rất rõ khi quan sát miệng của lỗ thông ngang trong mẫu gỗ chưa xử lý và mẫu gỗ đã xử lý (hình 4.18). Kết quả nghiên cứu này hoàn toàn tương đồng với các kết quả nghiên cứu trong và ngoài nước đã được công bố [20],[44],[66],[68] Điều này chứng tỏ, ở điều kiện xử lý thủy-nhiệt lựa chọn này đã tác động đến cấu tạo gỗ, từ đó có thể sẽ gây ảnh hưởng nhất định đến các tính chất cơ lý của gỗ Bạch đàn. 4.3.11. Ảnh hưởng của chế độ xử lý thủy - nhiệt đến thành ph n hoá học cơ bản gỗ Bạch đàn Nhằm phân tích tác động của xử lý nhiệt đến thành phần hóa học của gỗ Bạch đàn, thí nghiệm đã tiến hành xác định các thành phần hóa học chủ yếu của gỗ 18 đối với mẫu gỗ trước và sau khi xử lý. Kết quả thể hiện trong bảng 4.15 và biểu đồ hình 4.20. Bảng 4.15. Hàm lƣợng thành phần hóa học cơ bản của gỗ trƣớc và sau xử lý Mẫu ở các chế độ xử lý thuỷ - nhiệt STT Thành phần hoá học của gỗ 120-3 160-3 200-3 ĐC (A1) (B2) (C3) 1 Hàm lượng xenlulo (%) 45,64 43,76 44,87 41,66 2 Hàm lượng lignin (%) 27,22 27,68 28,28 30,52 Hàm lượng hemixenlulo (%) 11,52 11,42 11,12 10,05 Hàm lượng các chất tan trong 4 11,45 11,60 12,28 14,86 nước nóng (%) - Đồ thị quan hệ giữa nhiệt độ và thời gian đối với thành phần hóa học của gỗ Bạch đàn: 3 ẢNH HƢỞNG CỦA CHẾ ĐỘ XỬ LÝ THU NHIỆT ĐẾN THÀNH PHẦN HÓA HỌC CƠ BẢN (%) Tỷ lệ thành phần (%) 60 Xenlulo Lignin 50 Hemixenlulo Chiết xuất 40 30 20 10 0 ĐC 120-3 160-3 200-3 Chế độ xử lý thủy - nhiệt (nhiệt độ và thời gian) Hình 4.20. Sự thay đổi của thành phần hoá học của chế độ xử lý thuỷ - nhiệt Nhận xét: Từ bảng 4.15 và biểu đồ 4.20 có thể thấy, sau khi xử lý nhiệt, hàm lượng chất chiết xuất trong gỗ Bạch đàn tăng lên, từ 11,45% tăng lên 14,86 (tăng khoảng 22,95%). Kết quả nghiên cứu này hoàn toàn tương đồng với các kết quả nghiên cứu đã công bố với các loài gỗ khác. Xenlulo tổng là thành phần còn lại khi đã loại bỏ lignin, nó bao gồm toàn bộ hàm lượng hemixenlulo và xenlulo, tức lượng polysaccharide trong gỗ. Sau khi xử lý nhiệt, hàm lượng xenlulo tổng của gỗ giảm xuống, đặc biệt, sự chênh lệch hàm lượng xenlulo tổng rõ rệt hơn khi xử lý gỗ ở nhiệt độ 2000C. Trong quá trình xử lý nhiệt, nhóm acetyl bị tách khỏi phân tử hemixenlulo tạo thành acid acetic, trong quá trình này độ tụ hợp của hemixenlulo bị giảm xuống, tạo thành đường có phân tử lượng thấp, thậm chí là đường đơn, đường pentose trong các đường đơn này sẽ phản ứng tạo thành furfural, còn hexose sẽ phản ứng tạo ra hydroxymethylfurfural . Do quá trình thủy phân này diễn ra ở điều kiện môi trường acid, vì vậy acid acetic tạo ra trong quá trình này sẽ có tác dụng gia tăng tốc độ phản ứng thủy phân, làm cho hemixenlulo phân giải nhanh hơn [24],[56].
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất