Đăng ký Đăng nhập
Trang chủ Khảo sát ảnh hưởng của bức xạ Laser lên phổ phát quang của vài vật liệu...

Tài liệu Khảo sát ảnh hưởng của bức xạ Laser lên phổ phát quang của vài vật liệu

.PDF
68
171
83

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Đặng Văn Thái KHẢO SÁT ẢNH HƯỞNG CỦA BỨC XẠ LASER LÊN PHỔ PHÁT QUANG CỦA MỘT SỐ VẬT LIỆU LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2011 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN Đặng Văn Thái KHẢO SÁT ẢNH HƯỞNG CỦA BỨC XẠ LASER LÊN PHỔ PHÁT QUANG CỦA MỘT SỐ VẬT LIỆU Chuyên nghành: Mã số: QUANG HỌC 60 44 11 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS. PHẠM VĂN BỀN Hà Nội – 2011 Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học MỞ ĐẦU Ngày nay, trong sự phát triển của kĩ thuật điện tử, các vật liệu bán dẫn đóng vai trò rất quan trọng. Xu hướng nghiên cứu của các nhà khoa học là chế tạo ra các vật liệu bán dẫn có đặc tính quang điện tốt, kích thước nhỏ, cấu trúc bền vững và ổn định…. Đặc biệt, trong những năm gần đây bán dẫn có vùng cấm rộng ZnS (Eg = 3.67eV ở 300K) thuộc nhóm AIIBVI đã được nghiên cứu ứng dụng rộng rãi trong các thiết bị quang điện tử, màn hình hiển thị, vật dẫn quang, cửa sổ truyền qua, xúc tác quang,...[1, 2]. Khi pha tạp các kim loại chuyển tiếp như Mn, Cu, Co… và các nguyên tố đất hiếm như Eu, Sm, Tb… có các lớp vỏ điện tử như 3d và 4f tương ứng chưa lấp đầy vào ZnS sẽ tạo ra các đám phát quang màu khác nhau và mở rộng vùng phổ bức xạ của ZnS cả về bước sóng ngắn và bước sóng dài. Vì thế khả năng ứng dụng của các vật liệu ZnS sẽ tăng lên. Các vật liệu bán dẫn vùng cấm rộng ZnS, ZnS:Mn có thể được chế tạo bằng phương pháp thủy nhiệt , đồng kết tủa, vi nhũ tương, phún xạ catốt và spincoating… Tuy nhiên, các mẫu chế tạo ra chưa thật hoàn hảo về tính chất cấu trúc và tính chất quang, vì vậy việc nâng cao phẩm chất của mẫu nghiên cứu luôn là vấn đề được đặt ra. Để đạt đươc mục đích này người ta thường ủ mẫu bằng nhiệt hoặc bằng bức xạ quang học. Trên thế giới việc sử dụng bức xạ quang học để tiến hành ủ mẫu nhằm nâng cao phẩm chất của mẫu đã có những thành công tốt [5]. Nắm bắt những thành tựu này, chúng tôi đã tiến hành sử dụng bức xạ laser để ủ các bột nano ZnS, ZnS:Mn được chế tạo bằng phương pháp thủy nhiệt, đồng kết tủa hoặc spin cotting. Đây cũng là lý do để tôi thực hiện đề tài “Khảo sát ảnh hưởng của bức xạ laser lên phổ phát quang của một số vật liệu” Đặng Văn Thái 1 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Ngoài phần mở đầu và kết luận, luận văn gồm 3 chương: Chương 1- TỔNG QUAN VỀ VẬT LIỆU ZnS VÀ ZnS:Mn Chương này trình bày cơ sở lý thuyết về vật liệu bán dẫn ZnS và ZnS:Mn, nó gồm: các tính chất về cấu trúc, vùng năng lượng, các quá trình dịch chuyển quang và sự ảnh hưởng của bức xạ quang lên tính chất quang của vật liệu. Chương 2- THIẾT BỊ THỰC NGHIỆM VÀ MẪU NGHIÊN CỨU Chương này giới thiệu về dụng cụ và thiết bị thực nghiệm, nó gồm: nguồn phát bức xạ, hệ thu và đo phổ và mẫu nghiên cứu. Chương 3- KẾT QUẢ THỰC NGHIỆM VÀ BIỆN LUẬN Chương này trình bày về cách thức tiến hành thực nghiệm, kết quả thực nghiệm và biện luận kết quả thực nghiệm. Đặng Văn Thái 2 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Chương 1 - TỔNG QUAN VỀ VẬT LIỆU ZnS VÀ ZnS:Mn 1. 1. Cấu trúc tinh thể, vùng năng lượng, tính chất quang của ZnS và ZnS:Mn Vật liệu ZnS là bán dẫn thuộc nhóm AIIBVI có chuyển mức thẳng, độ rộng vùng cấm lớn (Eg = 3,7eV ÷ 3,93eV ở 300K) [3, 4], năng lượng liên kết exciton lớn (khoảng 37 meV) [6], phổ bức xạ nằm trong vùng tử ngoại và khả kiến [8]. Nhờ có độ rộng vùng cấm lớn nên có thể đưa vào những tâm kích hoạt để tạo ra các vật liệu phát quang có khả năng cho bức xạ vùng khả kiến và hồng ngoại gần. Trong ZnS liên kết giữa nguyên tử Zn và S không thuần túy một loại mà nó thể hiện liên kết hỗn hợp với tỉ lệ: liên kết ion 62% và cộng hóa trị 38%. Cấu hình electron Zn: 1s22s22p63s23p63d104s2 và S: 1s22s22p63s23p4 . Liên kết ion xảy ra khi 2 electron lớp ngoài cùng trong lớp vỏ (4s2) của Zn chuyển sang lớp vỏ (3p4) của S tạo thành Zn2+: 1s22s22p63s23p63d10 và S2- : 1s22s22p63s23p6. Liên kết đồng hóa trị là do có sự góp chung cặp điện tử nên thạo thành Zn2-: 1s22s22p63s23p63d104s14p3 và S2+: 1s22s22p63s13p3 [9]. Thực nghiệm cho thấy liên kết đồng hóa trị làm nên tính chất của bán dẫn còn liên kết ion tạo nên cấu trúc mạng tinh thể. Tinh thể ZnS có thể được hình thành dưới hai dạng cấu trúc sau: lập phương (Sphalerite hay Zinblende) và lục giác (Wurtzite) tùy thuộc vào phương pháp chế tạo. 1.1.1. Cấu trúc mạng tinh thể lập phương (Sphalerite hay Zinblende) Tinh thể ZnS có cấu trúc thuộc nhóm đối xứng không gian Td2  F 43m. Hình 1.1 biểu diễn một ô mạng cơ sở có cấu trúc lập phương của của tinh thể ZnS [10]. Zn S Hình 1.1. Cấu trúc dạng lập phương của tinh thể ZnS [2] Đặng Văn Thái 3 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Mỗi ô mạng cơ sở có 4 nguyên tử Zn được bao quanh bởi 14 nguyên tử S đặt tại các đỉnh và tâm mặt. Nguyên tử Zn được đặt tại tâm của tứ diện đều cạnh a 2 mà tại 2 mỗi đỉnh là một nguyên tử S. Khoảng cách từ Zn đến mỗi đỉnh là a 3 , trong đó a 4 là hằng số mạng (a = 5,41Å). Trong cấu trúc loại này bất kì một nguyên tử cùng loại cũng được bao quanh bởi 12 nguyên tử cùng loại ở khoảng cách a 2 , trong đó 6 2 nguyên tử nằm trên cùng mặt phẳng còn 6 nguyên tử còn lại tạo thành một phản lăng kính tam giác. Nếu đặt các nguyên tử S ở các nút mạng lập phương, tâm mạng có tọa độ cầu là (0,0,0) thì các nguyên tử của nguyên tố kia tại các nút mạng của 1 1 1 4 4 4 tinh thể này nhưng với nút mạng đầu có tọa độ ( , , ). Khi đó: Tọa độ của 4 nguyên tử S là:  0, 0, 0 ; 1, 1 1 , ;  2 2 1 1  , 0,  ; 2 2 1 1   , ,0 2 2  Tọa độ của 4 nguyên tử Zn là: 1 1 1  , , ; 4 4 4 1 3 3  , , ; 4 2 2 3 1 3 3 3 1  , , ;  , ,  4 4 4 4 4 4 1.1.2. Cấu trúc mạng tinh thể lục giác (Wurtzite) Khi 2 tứ diện đặt cạnh nhau sao cho các đáy tam giác song song nhau thì tạo thành tinh thể có cấu trúc lục giác (hình 1.2). Zn S Hình 1.2. Cấu trúc dạng lục giác của tinh thể ZnS [2] Đặng Văn Thái 4 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Cấu trúc dạng lục giác được xây dựng dựa trên cơ sở quy luật xếp cầu theo hình cạnh của nguyên tử S trong đó một nửa số hỗng 4 mặt chứa nguyên tử Zn được định hướng song song với nhau [9]. Nhóm đối xứng không gian của cấu trúc lục giác là C64v  p63mc. Ở cấu trúc lập phương mỗi ô cơ sở chứa 4 phân tử ZnS. Tọa độ mỗi nguyên tử Zn được bao quanh 4 nguyên tử S đặt trên đỉnh tứ diện ở cùng khoảng cách [ a2 3  c2 (u  1 2)2 ]1 2 , trong đó a là hằng số mạng, u là hằng số mạng dọc trục z. Ngoài ra mỗi nguyên tố cũng được bao bọc bởi 12 nguyên tử cùng loại, trong đó có 6 nguyên tử nằm ở đỉnh của một lục giác đồng phẳng với nguyên tử đầu và cách nó một khoảng là a, 6 nguyên tử kia ở đỉnh mặt lăng trụ có đáy là một tam diện ở khoảng cách bằng [ a 2 3  c2 4]1 2 . Các tọa độ nguyên tử Zn là  0, 0, 0  ; 1 2, 2 3,1 2  và các tọa độ của nguyên tố S là  0, 0, 4 ; 1 3, 2 3,1 2  u  . Bảng 1.1. Các thông số mạng tinh thể của một số hợp chất thuộc nhóm AIIBVI [4] Hợp Loại cấu trúc Nhóm đối xứng chất tinh thể không gian Lập phương F 4 3m( Td ) ZnS ZnO CdS CdTe ZnSe P63mc( C ) Lập phương F 4 3m( Td ) Lục giác P63mc( C6v ) Lập phương F 4 3m( Td ) 5.4000 3.8200 4 6v c (Å) u (Å) c/a 6.2340 1.6360 2 4.2700 3.2495 4 5.2059 0.3450 1.6020 2 Lục giác P63mc( C ) Lập phương F 4 3m( Td ) Lục giác P63mc( C6v ) Lập phương F 4 3m( Td ) Đặng Văn Thái a = b (Å) 2 Lục giác Lục giác Hằng số mạng 5.8350 4.1360 4 6v 6.7134 1.6230 7.4370 1.6270 6.5400 1.6310 2 6.4780 4.5700 4 2 5.6670 4.0100 4 6v P63mc( C ) 5 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học 1.1.3. Vùng năng lượng 1.1.3.1. Sơ đồ cấu trúc vùng năng lượng của ZnS Nghiên cứu về mật độ trạng thái bằng phổ phản xạ điện tử cho thấy vùng hóa trị được tạo thành các mức năng lượng của các nguyên tử Zn và S với các hàm sóng đối xứng s và p tương ứng, như vậy trong vùng hóa trị có đối xứng bội 3. Nhưng do tương tác spin-quỹ đạo nên có sự tách mức khiến số bậc bị suy giảm. Ba nhánh trong vùng hóa trị được được tính toán thông qua công thức sau: E1,2 = AK2±[B2K4 + C2(K2xK2y+ K2yK2z+ K2zK2x)]1/2 (1.1) E3 = A’ K 2 - ∆E3 trong đó A, A’, B, C là các hằng số. E13B 10 5 0 -5  15 L1 L3 L1 L3 1  15 L1 -10 L 1 3 1 5  15 1  15 3  12  15 1   12  15 1   K Hình 1.3. Cấu trúc vùng năng lượng của ZnS [3] 1.1.3.2. Ảnh hưởng của Mn lên cấu trúc vùng năng lượng của ZnS Bằng phương pháp cộng hưởng spin-điện tử, spin điện tử-quang và phương pháp tổng hợp từ quang (ODMR) đã xác định được các ion Mn2+ đã thay thế vào vị trí của Zn2+ trong mạng tinh thể của ZnS, tạo cấu hình Mn2+ (3d5). Các điện tử 4s2 của Mn2+ đóng vai trò như các điện tử 4s2 của Zn2+. Do các ion từ Mn2+ có momen định xứ tổng cộng khác không và xảy ra tương tác spin-spin giữa các điện tử 3d của các ion từ với điện tử dẫn tạo ra dịch chuyển phân mức vùng dẫn và vùng hóa trị của ZnS. Ngoài ra, tương tác này còn ảnh hưởng đến hằng số mạng. Sự có mặt của ion Mn2+ trong trường tinh thể của Đặng Văn Thái 6 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học ZnS đã tạo nên các mức năng lượng xác định trong vùng cấm của nó. Dưới tác dụng của trường tinh thể và tương tác spin-quỹ đạo, các mức năng lượng bị tách thành các phân mức con [7]. 6 4 4 G A1,4E 4 4 6 T1 6 8 S Các mức năng lượng của ion Mn2+ trong trường tinh thể của ZnS T2 A1 Các mức năng lượng của ion Mn2+ tự do Hình 1.4. Sự tách mức năng lượng của ion Mn2+ trong trường tinh thể của ZnS [7] Do vậy trong phổ hấp thụ và phổ bức xạ của ZnS:Mn ngoài các vạch và các đám đặc trưng cho số tái tổ hợp của các exciton tự do, exciton liên kết trên các mức donor, acceptor trung hòa còn xuất hiện các đám rộng liên quan đến lớp vỏ 3d của ion Mn2+. Độ rộng vùng cấm phụ thuộc vào nồng độ Mn2+ và nhiệt độ theo công thức sau [11]: Eg ( x, T )  E0 g ( x, T )  dx   T 2  T T  (1.2) CM , trong đó: α, β là hệ số dịch chuyển nhiệt độ; x nồng độ tạp chất; T  x T nhiệt độ tuyệt đối; χ độ từ cảm ; θ nhiệt độ Curie-Wiess Khi nồng độ Mn2+ không đổi thì độ rộng vùng cấm ZnS:Mn bị giảm khi tăng nhiệt độ (hình 1.5), khi đó độ rộng vùng cấm tính theo công thức sau: Eg  E0 g  Đặng Văn Thái T 2  T (1.3) 7 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Trong đó: E0 g là độ rộng vùng cấm ở 0K,  ,  là hệ số dịch chuyển nhiệt độ của độ rộng vùng cấm tương ứng với nhiệt độ cao và nhiệt độ thấp. Giữ nguyên nhiệt độ của mẫu đồng thời tăng nồng độ Mn thì độ rộng vùng cấm của ZnS:Mn giảm, nhanh đạt cực tiểu ứng với nồng độ nào đó, sau đó lại tăng theo nồng độ nhưng ứng với nhiệt độ thấp thì đường biểu diễn Eg cao hơn (hình 1.5). Hình 1.5. Sự phụ thuộc của Eg vào T của tinh thể ZnS:Mn [8] Nguyên nhân sự giảm độ rộng vùng cấm khi tăng nồng độ Mn là do tương tác trao đổi s-d của các điện tử dẫn với điện tử 3d của các ion Mn2+ [8]. Sự phụ thuộc của Eg vào nồng độ Mn2+ và nhiệt độ của tinh thể ZnS:Mn được dẫn ra ở hình 1.6. Hình 1.6. Sự phụ thuộc của Eg vào nồng độ Mn và nhiệt độ của tinh thể ZnS:Mn [8] Đặng Văn Thái 8 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học 1.1.4. Các cơ chế hấp thụ trong tinh thể Giả sử trong một mẫu chất có Ni tâm với các cơ chế hấp thụ khác nhau. Gọi  i (h ) là hệ số hấp thụ photon với năng lượng h trên một đơn vị chiều dày mẫu chất bởi tâm hấp thụ thứ i. Nếu các tâm với các cơ chế hấp thụ hoạt động độc lập với nhau, thì hệ số hấp thụ toàn phần của mẫu  sẽ là:  (h )  i (h ) (1.4) i nghĩa là phổ hấp thụ toàn phần của mẫu bằng tổng phổ hấp thụ của các tâm hấp thụ khác nhau. Bởi vì quá trinh hấp thụ ánh sáng luôn gắn liền với quá trình biến đổi năng lượng photon thành các dạng năng lượng khác nhau trong tinh thể, nên một cách tự nhiên có thể phân loại các cơ chế hấp thụ như sau [10]: 1. Hấp thụ riêng hay hấp thụ cơ bản, liên quan đến chuyển dời các electron giữa các vùng năng lượng được phép (1). 2. Hấp thụ exciton, liên quan tới sự tạo thành và phân hủy các trạng thái exciton 3. Hấp thụ bởi các hạt tải điện tự do, liên quan đến các chuyển dời electron (hoặc lỗ trống) bên trong các vùng năng lượng được phép tương ứng hay giữa các tiểu vùng trong vùng năng lượng được phép (3a, 3b). 4. Hấp thụ tạp chất, liên quan đến các chuyển dời electron (hoặc lỗ trống) giữa các mức bên trong tâm tạp chất hoặc giữa các vùng năng lượng được phép và các mức tạp chất bên trong vùng cấm (4a, 4b, 4c, 4d). 5. Hấp thụ giữa các tạp chất, liên quan đến các chuyển dời electron (hoặc lỗ trống) giữa các mức tạp chất bên trong vùng cấm. 6. Hấp thụ phonon, liên quan đến sự hấp thụ năng lượng của sóng ánh sáng bởi các dao động của mạng tinh thể và tạo thành các phonon mới. 7. Hấp thụ plasma, liên quan đến sự hấp thụ năng lượng của sóng ánh sáng bởi plasma electron-lỗ trống dẫn tới sự chuyển plasma lên trạng thái lượng tử cao hơn. Đặng Văn Thái 9 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Khi xảy ra tương tác giữa electron trong vật rắn với bức xạ điện từ cần phải thỏa mãn hai định luật: định luật bảo toàn năng lượng và định luật bảo toàn chuẩn xung lượng. Nếu trước khi tương tác với photon, electron có năng lượng E và chuẩn  xung lượng P , thì sau khi tương tác nó có năng lượng E’ và chuẩn xung lượng  P ' sao cho: E '  E  h '  (1.5)  P  P   k ph (1.6)  trong đó h là năng lượng của photon, k ph là chuẩn xung lượng của photon. Trên hình 1.7 trình bày các chuyển dời electron tương ứng với các cơ chế hấp thụ khác nhau. Hình 1.7. Một số chuyển dời electron trong hấp thụ quang: 1-Hấp thụ riêng; 2a-Hấp thụ (tạo ra) exciton, 2b-Hấp thụ (phân hủy) exciton; 3a, 3b-Hấp thụ bởi các hạt tải điện tự do; 4a, 4b-Hấp thụ tạp chất- vùng gần; 4c, 4d-Hấp thụ tạp chất-vùng xa; 5-Hấp thụ giữa các tạp chất [7]. 1.1.5. Các cơ chế phát quang trong tinh thể Bức xạ là quá trình ngược của hấp thụ. Khi tinh thể bị kích thích, tức là nhận được một giá trị năng lượng nào đó, electron chuyển lên trạng thái có năng lượng cao hơn trạng thái trong điều kiện cân bằng. Electron chỉ tồn tại ở trạng thái kích Đặng Văn Thái 10 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học thích trong một khoảng thời gian rất ngắn, sau đó nó chuyển về trạng thái trống có năng lượng thấp hơn. Chuyển dời này có thể kèm theo bức xạ hoặc không bức xạ. Trong các chuyển dời không kèm theo bức xạ, năng lượng giải phóng ra được truyền cho mạng tinh thể (phonon), các hạt tải điện khác (hiệu ứng Auger) hoặc plasma điện tử-lỗ trống (dao động plasma) Trong các chuyển dời có kèm theo bức xạ, toàn bộ hoặc phần lớn năng lượng chênh lệch giữa hai trạng thái được giải phóng bằng cách phát ra sóng điện từ. Khi đó trong tinh thể xảy ra quá trình phát quang hay quá trình tái hợp bức xạ. Tốc độ tái hợp bức xạ R được xác định bằng tich số của mật độ các hạt tải điện ở trạng thái đầu ni và mật độ các trạng thái trống (trạng thái cuối) nf với xác suất chuyển dời bức xạ từ trạng thái đầu tới trạng thái cuối Pif R = ni.nf.Pif (1.7) Hầu hết các chuyển dời trong cơ chế hấp thụ đều có thể thực hiện theo chiều ngược lại và gây ra các bức xạ đặc trưng. Tuy nhiên, có một điểm khác nhau quan trọng giữa các thông tin mà chúng ta nhận được từ hấp thụ và từ bức xạ. Đó là: tất cả các trạng thái trong tinh thể đều có thể tham gia vào quá trình hấp thụ, kết quả là gây ra một phổ dải rộng. Trong khi đó, quá trình bức xạ chỉ liên quan đến một vùng hẹp các trạng thái chứa các electron cân bằng nhiệt và một vùng hẹp các trạng thái trống chứa lỗ trống cân bằng nhiệt, do đó gây ra một phổ hẹp. Muốn cho tinh thể phát quang phải làm cho kích thích nó. Căn cứ vào cách kích thích người ta chia phát quang thành các loại như sau: quang phát quang là hiện tượng phát quang khi chiếu vào tinh thể ánh sáng có bước sóng thích hợp (thông thường h  E g ), điện phát quang là quá trình kích thích mẫu bằng dòng điện hay điện trường, cathode phát quang là hiện tượng phát quang khi bắn phá mẫu bằng chùm tia electron có năng lượng cao (1 KeV ÷ 100 KeV). Ngoài ra dựa vào thời gian phát quang kéo dài người ta còn chia phát quang thành hai loại: huỳnh quang và lân quang. Huỳnh quang (fluorescence) là hiện tượng phát quang chỉ xảy ra trong thời gian kích thích. Lân quang (phosphorescence) là sự phát quang còn tiếp tục xảy ra trong một thời gian sau khi đã ngừng kích thích. Đặng Văn Thái 11 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Không phụ thuộc vào dạng kích thích, lân quang có thể xảy ra theo các cơ chế sau đây [7] (hình 1.8). 1. Tái hợp vùng-vùng là tái hợp giữa các electron tự do trong vùng dẫn và lỗ trống tự do trong vùng hóa trị. 2. Tái hợp exciton (exciton tự do, exciton liên kết, phân tử exciton, plasma electron-lỗ trống). 3. Tái hợp vùng-tạp chất là tái hợp bức xạ của các hạt tải điện tự do và các hạt tải điện bị bắt trên các tâm tạp chất (electron tự do trong vùng dẫn với lỗ trống trên acceptor hoặc electron trên donor với lỗ trống tự do trong vùng hóa trị) 4. Tái hợp cặp donor-acceptor là tái hợp bức xạ giữa các electron trên donor và các acceptor tích điện dương. Vùng dẫn Kích thích EC EV Vùng hóa trị Hình 1.8. Các quá trình tái hợp bức xạ: Tái hợp vùng-vùng (e-h); tái hợp exciton; hợpquang vùng-tạp D-h); tái hợp cặp donor-acceptor (D-A) [7] 1.2. Tính tái chất củachất(e-A, ZnS, ZnS:Mn 1.2.1. Phổ hấp thụ của ZnS, ZnS:Mn 1.2.1.1. Phổ hấp thụ của ZnS Hình 1.9 là phổ hấp thụ ở gần bờ vùng cấm của ZnS với những nồng độ c khác nhau của nó trong dung dịch. Đặng Văn Thái 12 [email protected] Chuyên ngành Quang học Độ hấp thụ (a.u) Luận văn Thạc sĩ Khoa học (nm) Hình 1.9. Phổ hấp thụ của ZnS với các nồng độ khác nhau [12] Với c = 0,5 g/100ml thì bờ hấp thụ nằm trong khoảng từ 250 nm đến 290 nm và có độ dốc lớn. Khi tăng nồng độ của nó thì bờ hấp thụ dịch chuyển về phía sóng dài từ 260 nm đến 320 nm và độ dốc giảm dần [12, 16] 1.2.1.2. Phổ hấp thụ của ZnS:Mn Hình 1.10 là phổ hấp thụ ở gần bờ vùng cấm của ZnS:Mn với những nồng độ c khác nhau của nó trong dung dịch. Hình 1.10. Phổ hấp thụ của ZnS:Mn ứng với những nồng độ khác nhau trong dung dịch [12] Ứng với nồng độ 0,5 g/100ml thì bờ hấp thụ của ZnS:Mn cũng nằm ở khoảng 250 nm đến 290 nm và có độ dốc lớn. Khi tăng nồng độ của nó thì bờ hấp thụ bị dịch về phía sóng dài và độ dốc giảm dần. Khi nồng độ từ 10g/100ml ÷ 12g/100ml thì bờ Đặng Văn Thái 13 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học hấp thụ nằm trong khoảng từ 285 nm ÷ 320 nm. Điều này chứng tỏ rằng sự có mặt của Mn trong ZnS đã làm thay đổi phổ hấp thụ ở gần bờ vùng cấm của ZnS [14]. 1.2.2. Phổ phát quang của ZnS, ZnS:Mn 1.2.2.1. Phổ phát quang của ZnS Hình 1.11 là phổ phát quang catốt của ZnS ở 77 K. Trong phổ phát quang này xuất hiện các đám trong vùng tử ngoại có cực đại ở 328 nm, 340 nm, 360 nm và một đám ở vùng xanh lam. 340 nm 328 nm 360 nm 426 nm 405 nm 466 nm 496 nm Hình 1.11. Các đám phát quang cơ bản trong phổ phát quang của ZnS [15] Sự phân bố năng lượng của các đám trong vùng tử ngoại lớn gấp đôi trong vùng xanh lam. Đám ở vùng xanh lam gồm nhiều đám nhỏ và ứng với mỗi loại ZnS chế tạo bằng các phương pháp khác nhau thì tỉ số cường độ của chúng cũng khác nhau. Người ta đã chia đám xanh lam của ZnS thành các đám có cường độ cực đại ở các vị trí: 405 nm, 426 nm, 466 nm, 496 nm. Trên thực tế không có một loại ZnS nào mà chỉ có một trong các đám hoặc có đầy đủ các đám [13]. 1.2.2.2 Phổ phát quang của ZnS:Mn Hình 1.12 là phổ phát quang của ZnS:Mn. Phổ phát quang này gồm 2 đám: đám xanh lam với cực đại ở khoảng 437 nm do các tâm sai hỏng tự kích hoạt hình thành bởi các nút khuyết của kẽm bên trong mạng tinh thể ZnS và đám da cam-vàng với cực đại khoảng 600 nm đặc trưng dịch chuyển bức xạ từ 4T1→6A1 trong lớp vỏ điện tử 3d5 của các ion Mn2+ [15]. Đặng Văn Thái 14 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học Hình 1.12. Phổ huỳnh quang của ZnS :Mn với các nồng độ Mn khác nhau [14] Hai đám này nằm ở hai vùng khá xa nhau. Khi tăng dần nồng độ Mn thì cường độ của đám xanh lam tăng chậm còn cường độ của đám da cam-vàng tăng nhanh. Ở đây chưa quan sát thấy sự giảm cường độ phát quang khi tăng nồng độ của Mn2+ như trong các tài liệu [14-16]. Điều này là do nồng độ Mn2+ nhỏ. 1.2.3. Phổ kích thích phát quang của ZnS, ZnS:Mn 1.2.3.1. Phổ kích thích phát quang của ZnS Hình 1.13 là mẫu ZnS được kích bằng đèn xenon với bước sóng  = 335 nm ở 300K. Hình 1.13. Phổ kích thích của ZnS Ta thấy trong phổ kích thích của ZnS có hai bước sóng tốt nhất để kích là  = 280 nm và  = 335 nm. Đồng thời cũng nhận thấy tại vị trí  = 335 nm đỉnh nhọn và cao hơn do đó phổ phát huỳnh quang của ZnS được kích bằng 355 nm tại 300K. Đặng Văn Thái 15 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học 1.2.3.2. Phổ kích thích phát quang của ZnS:Mn Hình 1.14 là phổ kích thích phát quang của đám 580 nm của ZnS:Mn. Trong phổ xuất hiện một đám rộng với cực đại ở khoảng 350 nm. Đám này đặc trưng cho hấp thụ cơ bản của ZnS. Khi pha Mn2+ vào thì xuất hiện thêm 5 đỉnh kích thích tại 390 nm, 430 nm, 465 nm, 498 nm và 535 nm. Cường độ các vạch này tăng dần khi nồng độ Mn2+ tăng. Các đỉnh này tương ứng với các dịch chuyển từ trạng thái cơ bản 6A1(6S) lên các trạng thái kích 4E(4D), 4T2(4D), 4A1(4G) và 4E(4G), 4T2(4G), 4 T1(4G) của lớp vỏ 3d5+ chưa lấp đầy của các ion Mn2+ Hình 1.14. Phổ kích thích huỳnh quang của ZnS:Mn với các nồng độ khác nhau [7] 1.3. Ảnh hưởng của ủ quang lên phổ phát quang của ZnS, ZnS:Mn 1.3.1. Ảnh hưởng của ủ quang học lên phổ phát quang của ZnS Các hạt nano ZnS được tổng hợp bằng phương pháp thủy nhiệt từ Zn(CH3COO)2.2H2O, Na2S2O3.5H2O ở nhiệt độ 110°C ÷ 220°C trong thời gian 5h ÷ 15h. Từ gián đồ nhiễu xạ tia X, ảnh TEM cho thấy: trong 15h ở 1100C ÷ 1500C, các hạt nano ZnS có cả cấu trúc lập phương và cấu trúc lục giác, còn ở 1800C ÷ 2200C các hạt nano ZnS chủ yếu có cấu trúc lập phương với kích thước hạt khoảng 14 nm ÷ 17 nm. Trong phổ phát quang xuất hiện đám xanh lam ở 450 nm Đặng Văn Thái 16 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học và đám xanh lá cây ở 510 nm đặc trưng cho các nút khuyết của Zn, S… và các nguyên tử của chúng nằm điền kẽ giữa ác nút mạng tinh thể. Trong phổ microRaman chủ yếu xuất hiện các vạch ở 216 cm-1, 347 cm-1 đặc trưng cho các mode dao động 2LA, LO trong tinh thể ZnS, trong đó vạch ở 347 cm-1 có cường độ lớn. Sự phụ thuộc của kích thước hạt, phổ phát quang, phổ microRaman vào nhiệt độ và thời gian thủy nhiệt cũng được khảo sát. Khi thực hiện ủ các mẫu ZnS bằng bức xạ tử ngoại trong không khí và chân không người ta thấy rằng cường độ phát quang tăng theo thời gian ủ [15]. Mẫu được ủ trong không khí có cường độ phát quang tăng đáng kể hơn so với mẫu ủ trong chân không. Theo một số công trình dã công bố khi thực hiện ủ trong chân không đã làm tăng đặc trưng tinh thể của các hạt nano ZnS. Ngoài ra, việc ủ mẫu trong không khí làm dẫn tới sự quang oxi hóa bề mặt các hạt nano trong thời gian chiếu xạ. 1.3.2. Ảnh hưởng của ủ quang học lên phổ phát quang của ZnS:Mn Trong kĩ thuật nano bán dẫn, để thu được các bước sóng phát quang như ý muốn người ta thường pha thêm các ion phát quang vào trong bán dẫn chủ. Do kích thước của các hạt nano nhỏ hơn kích thước của các exciton nên có thể xuất hiện sự truyền năng lượng từ bán dẫn chủ sang các ion phát quang, điều này đã làm tăng cường độ của phổ phát quang. Tuy nhiên do mẫu chế tạo theo những phương pháp khác nhau thường chưa có sự ổn định về cấu trúc cũng như khả năng phát quang nên người ta đã tiến hành ủ mẫu. Mẫu sau khi chế tạo có thể được ủ trong lò nhiệt hoặc bằng bức xạ quang học [4]. Các hạt nano ZnS pha tạp Mn được tổng hợp bằng phương pháp hóa ướt được ủ bằng bức xạ trong chân không và trong không khí. Trong phổ phát quang của chúng xuất hiện xuất hiện đám liên quan đến nút khuyết của S xung quanh 420 nm, một đám liên quan đến dịch chuyển 4T1 → 6A1 của Mn2+. Tiến hành ủ mẫu bằng bức xạ trong không khí và chân không, người ta thấy cường độ phát quang của mẫu ủ trong không khí tăng đáng kể như một hàm theo thời gian chiếu bức xạ so Đặng Văn Thái 17 [email protected] Luận văn Thạc sĩ Khoa học Chuyên ngành Quang học với trong chân không. Theo tác giả ủ quang học làm tăng chất lượng mẫu, cường độ phát quang của mẫu, điều này được giải thích bởi sự quang oxi hóa bề mặt, sự tăng cường các đặc trưng tinh thể và sự khuếch tán dần các ion phát quang vào trong mạng tinh thể [15]. Để nghiên cứu ảnh hưởng của bức xạ quang lên phổ phát quang người ta cũng tiến hành trên các mẫu ZnS:Mn không được bọc phủ, bọc phủ polymer ủ trong các môi trường không khí khô, không khí ẩm, Nitơ, Nitơ ẩm và ethanol [16]. Các polymer được sử dụng polyvinylbutyral (PVB), polyvinylalcohol (PVA), methacrylic acid (MA) sodiumpolyphosphate (PP). Mẫu được bọc phủ không những làm tăng khả năng phát quang mà khi đem ủ trong không khí bằng bức xạ quang thì khả năng phát quang còn tăng lên mạnh mẽ. Đặng Văn Thái 18 [email protected]
- Xem thêm -

Tài liệu liên quan