Đăng ký Đăng nhập
Trang chủ Hiệu chỉnh hệ số ẩm trong scs để mô phỏng lũ bằng mô hình sóng động học một chiề...

Tài liệu Hiệu chỉnh hệ số ẩm trong scs để mô phỏng lũ bằng mô hình sóng động học một chiều phương pháp phần tử hữu hạn trên lƣu vực sông trà khúc - trạm sơn giang

.PDF
59
815
73

Mô tả:

LỜI NÓI ĐẦU Trong một vài thập niên gần đây khí hậu toàn cầu có những diễn biến phức tạp. Hiện tƣợng hạn hán và lũ lụt xảy ra không tuân theo những quy luật chung, gây thiệt hại rất lớn cho con ngƣời. Để giảm thiểu những tác hại đó thì công tác dự báo rất quan trọng. Ở Việt Nam, do nguồn tƣ liệu thông tin khí tƣợng còn hạn chế nên mô phỏng tốt quá trình mƣa - dòng chảy có ý nghĩa lớn trong việc tính toán và dự báo lũ - một hiện tƣợng thủy văn đã mang đến nhiều tai họa, tổn thất về ngƣời và của ở đất nƣớc ta. Điều này càng bức thiết đối với các lƣu vực sông Miền Trung, vì sông ngòi ở đây ngắn và dốc nên các trận lũ xảy ra rất ác liệt. Hiên nay, do trình độ khoa học kĩ thuật phát triển, ngoài các phƣơng pháp truyền thống thì còn ứng dụng thêm các mô hình toán thủy văn vào việc mô phỏng lũ. Mô hình sóng động học - phƣơng pháp phần tử hữu hạn là một trong số đó. Mô hình này đã đƣợc áp dụng ở nhiều nƣớc trên thế giới để mô phỏng quá trình tập trung nƣớc. Ở Việt Nam, khi dùng mô hình để trên giải quyết bài toán mô phỏng lũ đã cho kết quả tốt. Để mô phỏng tốt quá trình lũ thì phải mô phỏng tốt cho quá trình thấm và quá trình tập trung nƣớc. Vì thế nếu kết hợp mô hình sóng động học và phƣơng pháp SCS – phƣơng pháp tính tổn thất từ mƣa rào, đã có nhiều thành tựu khi ứng dụng vào nghiên cứu tại Mỹ, hứa hẹn sẽ cho những kết quả khả quan đối với việc mô phỏng lũ trên những lƣu vực tại Việt Nam. Tuy nhiên do các công thức trong SCS thu đƣợc từ thực nghiệm trên những lƣu vực vừa và nhỏ ở Mỹ nên khi ứng dụng phƣơng pháp này cho những lƣu vực khác trên thế giới, trong đó có Việt Nam, cần có những thay đổi và hiệu chỉnh. Vì thế khóa luận này đặt vấn đề “ Hiệu chỉnh hệ số ẩm trong SCS để mô phỏng lũ bằng mô hình sóng động học một chiều phƣơng pháp phần tử hữu hạn trên lƣu vực sông Trà Khúc - trạm Sơn Giang”. Đây sẽ là một thử nghiệm mới ở Việt Nam, hi vọng kết quả thu đƣợc sẽ thành công và đƣợc ứng dụng vào thực tế dự báo cho lƣu vực sông Trà Khúc. Cuối cùng, sinh viên thực hiện khóa luận xin gửi lời cảm ơn chân thành đến thầy hƣớng dẫn và các cộng sự đã giúp đỡ và chỉ bảo tận tình để khóa luận đƣợc hoàn thành. Đồng thời cũng mong đƣợc sự phản hồi từ các thầy cô và các bạn để khóa luận thêm đầy đủ. 3 CHƢƠNG 1 ĐẶC ĐIỂM ĐỊA LÝ TỰ NHIÊN LƢU VỰC SÔNG TRÀ KHÚC- TRẠM SƠN GIANG 1.1.VỊ TRÍ ĐỊA LÝ Lƣu vực sông Trà Khúc hầu hết nằm trong địa phận tỉnh Quảng Ngãi với tổng diện tích là 2440 km2 (tính đến trạm Sơn Giang). Sông có hƣớng chung là Tây Nam - Đông Bắc, nằm từ 108008’45” đến 108039’7” kinh độ Đông và 14033’ đến 15017’34" vĩ độ Bắc (Hình 1.1) [1]. Lƣu vực sông Trà Khúc tiếp giáp với các khu vực sau: phía Bắc giáp lƣu vực sông Trà Bồng thuộc địa phận tỉnh Quảng Nam, phía Tây giáp địa phận tỉnh Kon Tum có dãy núi Ngọc Cơ Rinh cao 2050 m, phía Nam giáp lƣu vực sông Côn thuộc địa phận tỉnh Bình Định và phía Đông giáp biển [18]. Với vị trí địa lý nhƣ trên lƣu vực sông Trà Khúc nằm trọn trong khu vực nhiệt đới gió mùa và gần những nguồn ẩm lớn tạo điều kiện thuận lợi cho việc hình thành mƣa lũ. 1.2. ĐỊA HÌNH Lƣu vực sông Trà Khúc nghiêng từ Tây, Tây Nam sang Đông và Đông Bắc, chủ yếu là loại địa hình miền núi thuộc sƣờn Đông của dãy Trƣờng Sơn Nam và một diện tích nhỏ địa hình đồng bằng do sông Trà Khúc tạo nên. Địa hình miền núi chiếm gần 3/4 diện tích lƣu vực nên các dòng sông có độ dốc lớn với khả năng chia cắt, xâm thực mạnh [1]. Đƣờng phân nƣớc của lƣu vực có độ cao từ 150 m - 1760 m, chạy dọc theo các núi: núi thƣợng Quảng Ngãi và thƣợng Kon Tum với hai đỉnh là Núi Chúa cao 1362 m ở phía Bắc và Ngọc Cơ Rinh cao 2025 m ở phía Tây - Tây Nam. Gần đƣờng phân nƣớc lƣu vực có đỉnh núi Đá Vách cao 1098 m. Ở phía Nam lƣu vực là các núi có sƣờn thoải, đỉnh núi thấp hơn 1500 m. Vùng có địa hình miền núi độ cao từ 1100 m - 1800 m (vùng Sơn Hà); 800 m - 1100 m (vùng Minh Long). Vùng chuyển tiếp giữa miền núi và đồng bằng có nhiều đồi, các đỉnh núi cao 200 m - 300 m. Vùng thung lũng và đồng bằng có độ cao dƣới 10 m, các cồn cát ven biển cao trên 10 m. Các đặc điểm địa hình cho thấy lƣu vực có điểm nổi bật là: sông dốc, cùng với lƣợng mƣa và tốc độ dòng chảy lớn tạo nên những con lũ có tính chất rất ác liệt. 1.3. ĐỊA CHẤT, THỔ NHƢỠNG Đất đá trên lƣu vực bao gồm các loại sau: đá gơnai, đá phiến amphibol, biolit, amphibolit, migmatit, ở phần thấp của lƣu vực gồm: cuội, sỏi, cát, sét có nguồn gốc sông, sông- biển và cát có nguồn gốc gió biển, ở vùng đồng bằng gồm 4 các loại đất nhƣ: cát, đất phù sa, đất xám và đất đỏ vàng. Đất xám và đất xám bạc màu nằm ở vùng cao, đất đỏ vàng phân bố rộng rãi ở miền núi, thành phần cơ giới nhẹ, thích 5 Hình 1.1. Bản đồ địa hình lƣu vực sông Trà Khúc - Sơn Giang hợp để trồng các loại cây công nghiệp. Phần trung du và thƣợng nguồn chủ yếu là đất đỏ vàng trên đá biến chất, đá sét tầng dày khoảng 30 cm. Các thung lũng và đồng bằng đƣợc cấu tạo bởi phù sa cổ, phù sa mới ngoài ra còn có loại đất xám và các chất bồi tích của sông, tầng dày 0,7 - 1,2 m [16]. Các loại đất đá làm quá trình thấm trên lƣu vực kém, tạo thuận lợi cho quá trình lũ hình thành nhanh và mạnh. 1.4. THẢM THỰC VẬT Lớp phủ thực vật trên lƣu vực sông Trà Khúc vẫn đóng vai trò quan trọng trong điều tiết nƣớc với độ che phủ trung bình của rừng ở khu vực này là 35,8%. Bảng 1.1. Các đặc trƣng lớp phủ thực vật trên lƣu vực sông Trà Khúc Diện Phần trăm Mức tích diện tích độ tán 2 (km ) (%) che Loại rừng STT Rừng rậm thƣờng xanh cây lá rộng nhiệt đới gió mùa ít bị tác động Rừng rậm thƣờng xanh cây lá rộng nhiệt đới gió 2 mùa đã bị tác động Rừng rụng lá cây lá rộng nhiệt đới gió mùa hoặc 3 rừng lá kim Rừng thƣa rụng lá hoặc trảng cây bụi có cây gỗ rải 4 rác 1 5 Cây trồng nông nghiệp ngắn ngày xen dân cƣ 86,9 2,74 > 90 1045 32,25 70  90 51,2 1,58 40  50 1548,6 47,8 30  40 506,3 15,63 <5 Bảng 1.2. Hiện trạng rừng năm 2000 lƣu vực sông Trà Khúc [2] Loại rừng STT Diện tích (km2) Phần trăm diện tích (%) 1 Nƣơng rẫy xen dân cƣ 122,8 5 2 Rừng tự nhiên dày 10,92 0,4 3 Đất trồng có cây gỗ rải rác 252,5 10,3 4 Rừng tự nhiên lá rộng thƣờng xanh, thƣa 825 33,8 5 Đất trống có cây bụi tre nứa rải rác, trồng cỏ 956 39,2 6 6 Cây nông nghiệp ngắn vụ xen dân cƣ 136,5 5,6 7 Rừng tự nhiên lá rộng thƣờng xanh, trung bình 119,1 4,9 8 Rừng tự nhiên lá rộng thƣờng xanh, kín 17,25 0,7 7 Hình 1.2. Bản đồ hiện trạng sử dụng đất năm 2000 lƣu vực sông Trà Khúc 8 Hình 1.3. Bản đồ rừng năm 2000 lƣu vực sông Trà Khúc 9 Dựa vào hình 1.2 [3] và hình 1.3 [2] cùng với bảng đánh giá tình hình che phủ của rừng và thực vật dƣới đây có thể rút ra một vài điểm sau:  Thực vật trên lƣu vực sông Trà Khúc rất phong phú, trong đó chủ yếu là rừng mới đƣợc trồng các loại cây tre nứa, cây lá kim, cây đặc sản.  So với năm 1993, đến năm 2000 (theo thống kê của Ngô Chí Tuấn [18]) diện tích rừng có tăng lên. Tuy nhiên diện tích đất trống và cây bụi vẫn còn chiếm một tỷ lệ diện tích khá lớn trên lƣu vực. 1.5. KHÍ HẬU Lƣu vực sông Trà Khúc nằm trong vùng Trung Trung Bộ nên có đặc điểm của khí hậu vùng nhiệt đới gió mùa: có nền nhiệt độ cao và ít biến động. Tuy nhiên do đặc điểm riêng của địa hình nên lƣu vực sông Trà Khúc có những nét riêng của khí hậu nhiệt đới gió mùa miền duyên hải sƣờn Đông dãy núi Trƣờng Sơn Nam [16]. Đặc trƣng khí hậu ở lƣu vực sông Trà Khúc: chế độ chiếu sáng, mƣa và độ ẩm phong phú. Tổng lƣợng bức xạ trong năm từ 140 -150 kcal/năm. Số giờ nắng khoảng 2000 giờ/năm. Lƣợng mƣa năm tập trung chủ yếu vào mùa mƣa chính (IXXII), lƣợng mƣa ở vùng núi chiếm 65 -70% tổng lƣợng mƣa năm, vùng đồng bằng ven biển chiếm 75 - 80% tổng lƣợng mƣa năm. Trong đó hai tháng X và XI, lƣợng mƣa rất lớn chiếm khoảng 45-61% lƣợng mƣa năm. Do ảnh hƣởng của dãy núi Trƣờng Sơn đã tạo ra hiệu ứng fơn đối với gió mùa Tây Nam (mang khối khí nóng và ẩm): ở phía Tây Trƣờng Sơn (sƣờn đón gió) có mƣa lớn; ở phía đông Trƣờng Sơn (sƣờn chắn gió), không khí khô nóng gây ra thời tiết nắng nóng kéo dài trong suốt các tháng từ tháng I đến tháng VIII (tháng mùa khô) tại các tỉnh ven biển Miền Trung trong đó có lƣu vực sông Trà Khúc. Dãy núi Trƣờng Sơn có vai trò chính trong việc làm "lệch pha" mùa mƣa ở tỉnh Quảng Ngãi và vùng duyên hải Trung Bộ so với mùa mƣa chung của cả nƣớc. Vào cuối mùa hạ đầu mùa đông, gió mùa Đông Bắc đối lập với hƣớng núi, cùng với các nhiễu động nhiệt đới nhƣ bão, xoáy thấp, hội tụ nhiệt đới và đới gió Đông tạo nên mùa mƣa và mùa lũ ở Quảng Ngãi và các tỉnh duyên hải Trung Bộ. + Cuối mùa hạ (từ tháng IX đến tháng XII), do hoạt động của nhiễu động nhiệt đới ở Nam biển Đông. Khi gió mùa Đông Bắc chuyển xuống phía Nam trong thời kỳ này sẽ gây ra mƣa to đến rất to kéo dài trong nhiều ngày, làm xuất hiện các trận lũ lớn. + Giữa và cuối mùa đông (từ tháng I đến tháng III), các nhiễu động nhiệt đới lùi xa về xích đạo hoặc chƣa di chuyển lên phía Bắc, nên gió mùa Đông Bắc trong thời kỳ này chỉ gây ra mƣa và mƣa rào nhẹ không gây ra lũ lụt. Đây chính là mùa khô ở Quảng Ngãi. 10 + Vào tháng IV, gió mùa Đông Bắc suy yếu dần, gió mùa Tây Nam và gió mùa Đông Nam bắt đầu hoạt động trở lại. Bị ảnh hƣởng của dãy núi Trƣờng Sơn tạo ra hiệu ứng fơn làn cho Quảng Ngãi chịu thời kỳ khô nóng và hạn hán. Nếu gió mùa Đông Nam và các nhiễu động nhiệt đới hoạt động sớm, sẽ tạo ra một lƣợng mƣa đáng kể trong các tháng IV đến tháng VIII. Nhƣ vậy mùa mƣa trên lƣu vực sông Trà Khúc bắt đầu từ tháng IX kéo dài đến tháng XII kết hợp với địa hình dốc gây ra lũ lụt nghiêm trọng, mùa khô từ tháng I đến tháng VIII hàng năm gây hạn hán. 1.6. ĐẶC ĐIỂM THỦY VĂN VÀ MẠNG LƢỚI SÔNG SUỐI Sông Trà Khúc bắt nguồn từ vùng núi phía Đông cao nguyên KonPlong có độ cao 1000 m. Từ nguồn tới ngã ba nơi sông nhánh Đắc Rinh nhập lƣu có tên là sông Re có độ dốc lòng sông đoạn thƣợng lƣu rất lớn khoảng 50.6 0/00, mật độ lƣới sông trên đoạn này khoảng 0.39 km/km2 thuộc loại trung bình. Từ nguồn đến vĩ độ 14040’ sông chảy theo hƣớng Tây Nam - Đông Bắc, tới ngã ba sông Re và Đắc Sê Lô, sông chuyển hƣớng Nam - Bắc, tiếp tục chảy tới Thạch Nham dòng sông bị uốn khúc theo hƣớng chung là Tây Nam - Đông Bắc, từ Thạch Nham ra biển Sa Kỳ sông chảy theo hƣớng Tây - Đông (hình 1.4) [4]. Sông Trà Khúc có diện tích lƣu vực là 3240 km2, chiều dài sông 135 km, khoảng 2/3 chiều dài sông chảy qua vùng núi và đồi cao. Độ dốc bình quân lƣu vực tƣơng đối lớn, khoảng 23.9%. Mật độ lƣới sông thuộc loại trung bình, khoảng 0.39 km/km2. Trong đó sông Giang có mật độ lƣới sông tƣơng đối dày khoảng 0.86 km/km2. Sông Trà Khúc có 9 phụ lƣu cấp I (Đắc Leng (Đắc Re), Nƣớc Lạc, Đắc Sê Lo, Tam Dinh, Xã Diêu, Tam Rao, Giang, Phƣớc Giang và phụ lƣu số 9), 5 phụ lƣu cấp II (Đắc Tem, Đắc Si Ro, Đắc Sơ Rông, Đắc Rinh và phụ lƣu 4), 6 phụ lƣu cấp III (phụ lƣu 1-Đắc Rinh, Đắc Ro Man, Đắc Ba, Nƣớc Bá Mao, Nƣớc Ong) và hai phụ lƣu cấp IV (Nƣớc Ong và Nƣớc Nia). Các phụ lƣu lớn nhƣ Đắc Sê Lô (phụ lƣu cấp I), Đắc Rinh (phụ lƣu cấp II), Nƣớc Ong (phụ lƣu cấp III). Từ Sơn Hà lên thƣợng lƣu, sông Trà Khúc có dạng hình quạt. Mùa lũ trên sông Trà Khúc xuất hiện từ tháng IX - XII chiếm 66,5% lƣợng dòng chảy năm. Tháng XI là tháng có dòng chảy sông ngòi lớn nhất chiếm 27,8% lƣợng dòng chảy năm và đây là tháng có tần suất xuất hiện bão và áp thấp nhiệt đới cao nhất. Lũ trên lƣu vực sông Trà Khúc thƣờng rất ác liệt, mang đậm tính chất lũ ở vùng núi với các đặc tính: cƣờng suất lũ lớn, đỉnh lũ cao và thời gian lũ ngắn (cả lũ lên và lũ xuống). Mực nƣớc trên các triền sông tăng nhanh trong thời gian xuất hiện lũ, cƣờng suất lũ ở thƣợng nguồn đạt 50  70 cm/h còn ở hạ du đạt 30 cm/h, thậm chí có một 11 Hình 1.4. Mạng lưới sông suối lưu vực Trà Khúc - Sơn Giang 12 số trận lũ lớn đạt tới 100 cm/h. Lƣu lƣợng đỉnh lũ trung bình trên lƣu vực sông Trà Khúc đạt 2410 l/s và lƣu lƣợng đỉnh lũ lớn nhất đạt 7500 l/s (3/XII/1986) thuộc vào các lƣu vực có lƣu lƣợng đỉnh lũ lớn nhất Việt Nam. Do tác động của các nhiễu động thời tiết đi kèm với sự dịch chuyển của dải hội tụ nhiệt đới kết hợp với hoạt động của hoàn lƣu Đông Bắc mạnh nên thƣờng có mƣa lớn trên diện rộng kéo dài nhiều ngày. Cùng với khả năng điều tiết trên lƣu vực không lớn và khả năng thoát nƣớc của hạ du kém, vì vậy trên lƣu vực sông Trà Khúc thƣờng xuất hiện lũ kép với nhiều đỉnh, thời gian mực nƣớc ở mức cao kéo dài gây ngập lụt nghiêm trọng cho thung lũng sông và vùng đồng bằng Quảng Ngãi. Trung bình trong một năm trên lƣu vực thƣờng xuất hiện 5  7 trận lũ, tập trung nhất vào tháng X và XI. Với mức độ tƣơng đối ổn định của nguồn ẩm gây mƣa nên lƣu lƣợng đỉnh lũ lớn nhất tại trạm Sơn Giang biến đổi không lớn, biến đổi qua các năm với hệ số Cv = 0,42. Đỉnh lũ rất lớn ứng với tần suất xuất hiện P = 0,7% (3/XII/1986). Mạng lƣới quan trắc thu thập số liệu khí tƣợng thuỷ văn trên lƣu vực sông Trà Khúc đã đƣợc tiến hành từ rất sớm. Từ những năm 1907, 1930 đã quan trắc lƣợng mƣa tại thị xã Quảng Ngãi. Các hạng mục khí tƣợng khác dần dần đƣợc quan trắc sau đó. Sau năm 1975, việc tổ chức mạng lƣới trạm và quan trắc các yếu tố khí tƣợng thuỷ văn mới thực sự đƣợc tiến hành đầy đủ hơn. Dƣới đây là bảng thống kê danh sách của các trạm khí tƣợng, thủy văn, đo mƣa trên lƣu vực sông Trà Khúc. Bảng 1.3. Danh sách trạm khí tƣợng thuỷ văn đo mƣa trên lƣu sông Trà Khúc Tên trạm Quảng Ngãi Sơn Giang Sơn Hà Trà Khúc Giá Vực Cổ Luỹ Loại trạm Vị trí Hạng mục đo Diện Năm Sông tích bắt Các yếu 2 Q (km ) Kinh độ Vĩ độ đầu Mƣa H tố khác Khí Trà tƣợng Khúc Thuỷ Trà văn Khúc Đo Trà mƣa Khúc Thuỷ Trà văn Khúc Đo Trà mƣa Khúc Đo Trà mƣa Khúc 108047' 15008' 1907 x 2440 108034' 15002' 1976 x 108034' 15005' 1976 x 108047' 15008' 1976 x 108030' 14042' 1978 x 108053' 15010' 1978 x 13 khí tƣợng x x x phù sa Lƣới trạm khí tƣợng: Hiện nay trên lƣu vực sông có một trạm khí tƣợng cơ bản là trạm khí tƣợng Quảng Ngãi. Lƣới trạm thuỷ văn: Trên lƣu vực đã có 1 trạm thuỷ văn cơ bản đo lƣu lƣợng nƣớc là Sơn Giang, 2 trạm thuỷ văn đo mực nƣớc là Sơn Giang và Trà Khúc. Lƣới trạm quan trắc mƣa: Trên lƣu vực có 5 trạm đo mƣa là: Giá Vực, Sơn Giang, Trà Khúc, Sơn Hà và Cổ Lũy. Nhìn chung về lƣới trạm khí tƣợng thuỷ văn còn thiếu nhất là trạm thuỷ văn, trạm đo mƣa vùng của các sông nhánh trên đầu nguồn và núi cao. 14 CHƢƠNG 2 TỔNG QUAN CÁC MÔ HÌNH MƢA - DÕNG CHẢY VÀ CÁC PHƢƠNG PHÁP TÍNH THẤM 2.1. CÁC MÔ HÌNH MƢA - DÕNG CHẢY THÔNG SỐ TẬP TRUNG Mô hình thông số tập trung là mô hình mà các thông số đƣợc trung bình hóa trong không gian, hệ thống nhƣ một điểm đơn độc. Vì thế ƣu điểm lớn nhất của mô hình loại này là tƣơng đối đơn giản, có ý nghĩa vật lý trực quan, thích hợp với những lƣu vực vừa và nhỏ. Nhƣng hạn chế của mô hình là không đƣa đƣợc những thay đổi theo không gian của những yếu tố cảnh quan vào. Mô hình mƣa - dòng chảy thông số tập trung đã đƣợc đƣa ra từ những năm 50 của thế kỉ XX. Dƣới đây là một số mô hình mƣa - dòng chảy thông số tập trung đã đƣợc ứng dụng và nghiên cứu ở Việt Nam. 2.1.1. Mô hình SSARR Mô hình SSARR [13] do Rockwood xây dựng từ năm 1957, gồm 3 thành phần cơ bản: - Mô hình lƣu vực - Mô hình điều hòa hồ chứa - Mô hình hệ thống sông Trong mô hình lƣu vực, phƣơng trình cơ bản của SSARR sử dụng để diễn toán dòng chảy trên lƣu vực là luật liên tục trong phƣơng pháp trữ nƣớc áp dụng cho hồ thiên nhiên trên cơ sở phƣơng trình cân bằng nƣớc:  I1  I 2   O1  O2   2  t   2  t  S 2  S1     (2.1) Phƣơng trình lƣợng trữ của hồ chứa là : dS dQ  Ts dt dt (2.2) Ƣu điểm của mô hình SSARR là cho phép diễn toán trên toàn bộ lƣu vực. Nhƣng mô hình này không thể sử dụng một cách trực tiếp để kiểm tra những tác động của việc thay đổi đặc điểm lƣu vực sông đến các quá trình thủy văn ví dụ nhƣ các kiểu thảm thực vật, việc khai thác và sử dụng đất và các hoạt động quản lý đất tƣơng tự khác trên một bộ phận nào đó của lãnh thổ. Mô hình SSARR đã đƣợc áp dụng thành công ở đồng bằng sông Cửu Long. 2.1.2. Mô hình TANK Mô hình TANK [13] đƣợc phát triển năm 1956 tại Trung tâm Nghiên cứu Quốc gia về phòng chống thiên tai tại Tokyo - Nhật Bản bởi M. Sugawar. 15 Theo mô hình này, lƣu vực đƣợc mô phỏng bằng chuỗi các bể chứa theo phƣơng thẳng đứng (theo tầng) và phƣơng ngang phù hợp với phẫu diện đất. Đây cũng chính là cơ sở để phân chia mô hình TANK làm hai loại: mô hình TANK đơn và mô hình TANK kép. Hệ thức cơ bản của mô hình là: Mƣa bình quân lƣu vực (P) n P Wi . X i i 1 n (2.3) Wi i 1 trong đó: n là số điểm đo mƣa; Xi là lƣợng mƣa tại điểm thứ i và Wi là trọng số của điểm mƣa thứ i (Theo M.Sugawara Wi sẽ đƣợc chọn là một trong bốn số sau: 0,25; 0,5; 0,75; 1,0) Bốc hơi lƣu vực (E) Khi XA  PS  E  0 Khi XA  PS  E  0 va XA  PS  H f  0 XA  PS 0,8EVT  0,75(0,8EVT  h f )  h f E   0,6 EVT (2.4) Cơ chế truyền ẩm Bể chứa trên cũng đƣợc chia làm hai phần: trên và dƣới, giữa chúng xảy ra sự trao đổi ẩm. Tốc độ truyền ẩm từ dƣới lên T1 và trên xuống T2 đƣợc tính theo công thức: T1  TB0  (1  XA )TB PS (2.5) T2  TC0  (1  XS )TC SS (2.6) trong đó: XS, SS là lƣợng ẩm thực và lƣợng ẩm bão hoà phần dƣới bể A; TB o, TB, TCo, TC là các thông số truyền ẩm. Theo M. Sugawar chúng nhận những giá trị: TB = TB0 = 3 mm/ngàyđêm; TC = 1 mm/ngàyđêm; TC0 = 0,5 mm/ngàyđêm. Dòng chảy từ bể A Lƣợng nƣớc đi vào bể A là mƣa (P). Dòng chảy qua các cửa bên (YA1, YA2) và của đáy (YA0) đƣợc xác định theo các công thức sau: Hf = XA + P-PS (2.7) YA0 = HfA0 (2.8) 16 ( H f  HA1 ); khi H f  HA1 YA1    0 khi H f  HA1 (2.9) Trong mô hình, tác dụng điều tiết của sƣờn dốc đã tự động đƣợc xét thông qua các bể chứa xếp theo chiều thẳng đứng. Nhƣng hiệu quả của tác động này không đủ mạnh và có thể coi tổng dòng chảy qua các cửa bên của bể chỉ là lớp cấp nƣớc tại một điểm. Đây là một yếu điểm của mô hình TANK. Nhƣng mô hình TANK lại tƣơng đối đơn giản, có ý nghĩa vật lý trực quan, thích hợp với các lƣu vực vừa và nhỏ nhƣng khó thể hiện sự “trễ” của dòng chảy so với mƣa, do mô hình đƣợc cấu tạo từ các bể tuyến tính, các thông số cửa ra trong một số trƣờng hợp kém nhạy. Mô hình TANK đã áp dụng rất hiệu quả cho khu vực miền trung. 2.1.3. Mô hình của Trung tâm khí tƣợng thủy văn Liên Xô (HMC) Mô hình này mô phỏng quá trình tổn thất dòng chảy của lƣu vực và sau đó ứng dụng cách tiệm cận hệ thống để diễn toán dòng chảy tới mặt cắt cửa ra của nó. Lƣợng mƣa hiệu quả sinh dòng chảy mặt P đƣợc tính từ phƣơng trình: P=h-E-I (2.10) trong đó: h là lƣợng mƣa trong thời đoạn tính toán (6h, 24h, ...); E là lƣợng bốc hơi, thoát hơi nƣớc và I là lƣợng thấm trung bình. Hạn chế khi sử dụng mô hình này có liên quan đến lƣợng bốc hơi và cƣờng độ thấm trung bình. Số liệu lƣợng bốc hơi trên các lƣu vực còn thiếu rất nhiều và có những lƣu vực không có điều kiện để đo đạc. Cƣờng độ thấm trung bình thì đƣợc lấy trung bình cho toàn lƣu vực với thời gian không xác định. Hai yếu tố đó làm cho việc tính toán gặp khó khăn. Mô hình HMC [6] đã đƣợc áp dụng ở một số lƣu vực miền núi Tây Bắc và Đông Bắc. 2.1.4. Mô hình NAM Mô hình NAM [6] đƣợc xây dựng tại khoa Thuỷ văn Viện kỹ thuật thuỷ động lực và thuỷ lực thuộc Đại học kỹ thuật Đan Mạch năm 1982. Mô hình dựa trên nguyên tắc các bể chứa theo chiều thẳng đứng và các hồ chứa tuyến tính. Trong mô hình NAM, mỗi lƣu vực đƣợc xem là một đơn vị xử lý. Do đó, các thông số và các biến là đại diện cho các giá trị đƣợc trung bình hoá trên toàn lƣu vực. Mô hình tính quá trình mƣa - dòng chảy theo cách tính liên tục hàm lƣợng ẩm trong năm bể chứa riêng biệt có tƣơng tác lẫn nhau: + Bể chứa tuyết đƣợc kiểm soát bằng các điều kiện nhiệt độ không khí. + Bể chứa mặt bao gồm lƣợng ẩm bị chặn do lớp phủ thực vật, lƣợng điền trũng và lƣợng ẩm trong tầng sát mặt. Umƣa là giới hạn trên của lƣợng nƣớc trong bể này. 17 + Bể chứa tầng dƣới là vùng dễ cây mà từ đó cây cối có thể rút nƣớc cho bốc thoát hơi. Lmƣa là giới hạn trên của lƣợng nƣớc trong bể này. + Bể chứa nƣớc tầng ngầm trên và bể chứa nƣớc tầng ngầm dƣới là hai bể chứa sâu nhất. Cuối cùng thu đƣợc dòng chảy tổng cộng tại cửa ra. Phƣơng trình cơ bản của mô hình: Dòng chảy sát mặt QIF: L   CLIF  Lmax CQIF U  1  CLIF QIF     0  L voi Khi Lmax L Lmax  CLIF (2.11)  CLIF trong đó: CQIF là hệ số dòng chảy sát mặt; CLIF là các ngƣỡng dòng chảy; U và Lmƣax là thông số khả năng chứa. Dòng chảy tràn QOF: L   CLOF  L max CQOF PN  1  CLOF QOF     0   Víi Khi L  CLOF L max (2.12) L  CLOF L max trong đó: CQOF - hệ số dòng chảy tràn; CLOF - các ngƣỡng dòng chảy Trong tính toán giả thiết rằng dòng chảy ra khỏi hồ tuân theo quy luật đƣờng nƣớc rút:   t   t 0  CK Qout  Qout e  Qin 1  e Ck     (2.13)  trong đó: Q 0out là dòng chảy ra tính ở thời điểm trƣớc; Qin là dòng chảy vào tại thời điểm đang tính; CK là hằng số thời gian của hồ chứa. Mô hình NAM đã tính đƣợc dòng chảy sát mặt và dòng chảy tràn, song bên cạnh đó các thông số và các biến đƣợc tính trung bình hoá cho toàn lƣu vực. Nên việc cụ thể hoá và tính toán cho những đơn vị nhỏ hơn trên lƣu vực bị hạn chế. Mô hình NAM đã đƣợc áp dụng ở một số vùng đồng bằng Việt Nam. 2.1.5. Mô hình USDAHL 18 Mô hình này đƣợc công bố vào năm 70 của thế kỉ XX, là mô hình thông số dải theo các tiểu vùng thuỷ văn. Mô hình chia bề mặt lƣu vực thành các tiểu vùng thuỷ văn với các đặc trƣng nhƣ loại đất, sử dụng đất... Ở mỗi vùng, các quá trình nhƣ mƣa, bốc thoát hơi, thấm, điền trũng, dòng chảy đƣợc tính toán xử lý trong mối liên kết giữa vùng này với vùng khác. Quá trình hình thành dòng chảy đƣợc mô phỏng nhƣ sau: dòng chảy mặt bao gồm quá trình thấm, quá trình trữ và chảy tràn. Quá trình thấm đƣợc mô phỏng bằng phƣơng trình Hortan: f t  A . GI . S1.4 at  f c (2.14) trong đó: ft - cƣờng độ thấm; A - hệ số phụ thuộc vào độ rỗng của đất, mật độ rễ cây; GI - chỉ số phát triển thực vật, phụ thuộc vào nhiệt độ không khí, loại cây; fccƣờng độ thấm ổn định và Sat - độ thiếu hụt ẩm của đất là hàm số theo thời gian: S at  Sat -1 - f t-1  f c  (2.15) Quá trình trữ, chảy tràn đƣợc thực hiện dựa trên cơ sở phƣơng trình cân bằng nƣớc. Quá trình dòng chảy dƣới mặt đất đƣợc xem xét dựa trên cơ sở phƣơng trình cân bằng độ ẩm đất. Dòng chảy trong lòng dẫn đƣợc diễn toán theo mô hình tuyến tính. Mô hình này có khả năng đánh giá tác động của các yếu tố lƣu vực quy mô trung bình đến sự hình thành dòng chảy. Mô hình USDAHL [7] đã xét đến tất cả các thành phần trong phƣơng trình cân bằng nƣớc, và mỗi thành phần này đã đƣợc xử lý xem xét dựa trên những phƣơng trình. Song việc xử lý lƣợng thấm, bốc thoát hơi, điền trũng gặp rất nhiều khó khăn, ngoài ra với những lƣu vực lớn thì khả năng đánh giá tác động của các yếu tố lƣu vực đến sự hình thành dòng chảy là kém. Mô hình này chỉ áp dụng tốt cho những khu vực có nhiều rừng. 2.2. CÁC MÔ HÌNH MƢA - DÕNG CHẢY THÔNG SỐ PHÂN PHỐI Khi giá trị của tài nguyên nƣớc ngày càng đƣợc đề cao thì yêu cầu về việc quản lí tài nguyên nƣớc và đánh giá chất lƣợng nƣớc sẽ ngày càng tăng. Nghiên cứu tài nguyên nƣớc tập trung vào những vấn đề nhƣ mối quan hệ và ảnh hƣởng của thay đổi sử dụng đất đến nông nghiệp, rừng, thực tế ô nhiễm đến sử dụng nƣớc. Các mô hình mƣa - dòng chảy thông số tập trung đã không theo kịp với những vấn đề mới phát triển này. Vì thế mô hình mƣa - dòng chảy thông số phân phối có tiềm năng phát triển. Mô hình mƣa- dòng chảy thông số phân phối là mô hình xem xét sự biễn biến của mọi quá trình thủy văn tại các điểm khác nhau trong không gian và định nghĩa các biến trong mô hình nhƣ là hàm tọa độ. Điểm lôi cuốn nhất ở những mô hình này là khả năng cung cấp thông tin của chúng tại những điểm trên lƣu vực và 19 sử dụng chúng cho một hƣớng nghiên cứu mới là đánh giá tài nguyên nƣớc và chất lƣợng nƣớc. Nhƣng khi sử dụng nó lại cần phải thay đổi về các phƣơng pháp xác định thông số cũng nhƣ các phƣơng pháp đo đạc các đặc trƣng của hệ thống. Sự cần thiết của hệ thống mô hình mƣa - dòng chảy thông số phân phối đã đƣợc nhận ra từ giữa những năm 1970 và ngày nay chúng đang đƣợc sử dụng rất phổ biến. Dƣới đây là một số mô hình mƣa - dòng chảy thông số phân phối đã đƣợc áp dụng trên thế giới. 2.2.1. Mô hình THALES Mô hình THALES [20] do Grayson đƣa ra đã đƣợc khai thác nhƣ là một công cụ dùng để mô tả những quá trình trên lƣu vực và nghiên cứu những vấn đề liên quan đến kiểm tra và ứng dụng mô hình vật lý. Vì khả năng mô phỏng các quá trình thủy văn tất định và đƣa ra phƣơng pháp chính xác rất khiêm tốn. Điểm khó khăn khi dùng mô hình thì liên quan tới cả khả năng am hiểu về mô hình và những giả định cơ bản cũng nhƣ thuật toán sử dụng trong mô hình. Nhƣng sau này thì THALES ngày càng phổ biến bởi những ứng dụng cho việc phân tích số liệu, kiểm tra những giả thiết liên quan đến những nghiên cứu trên lƣu vực, nâng cao sự hiểu biết về những quá trình thủy văn và những ảnh hƣởng lẫn nhau giữa các quá trình này. Tính ƣu việt của mô hình này thể hiện ở khả năng cung cấp những thông tin về đặc điểm của dòng chảy. Vì thế mô hình này ƣu tiên sử dụng cho dự báo. Cơ sở của mô hình là coi hệ thống tƣơng ứng với quá trình vận chuyển của bùn cát và năng lƣợng. Mô hình THALES xây dựng biểu đồ dòng chảy mặt thông qua việc ƣớc tính chuỗi số liệu dòng chảy trong lƣu vực sông từ sự tổng hợp bởi mô hình, cuối cùng sẽ ƣớc tính đƣợc dòng chảy tại của ra. Bốn nguyên tắc của mô hình: parsimony - là số thông số tối thiểu và giá trị của chúng thu đƣợc nhờ bộ số liệu; modesty - phạm vi và ứng dụng của mô hình phải xem xét cẩn thận không nên quá đề cao; accuracy - giá trị đo đạc phải chính xác hơn giá trị dự báo và testability - mô hình phải đƣợc áp dụng vào thực tế và tính chính xác phải đƣợc xác nhận. Trong định hƣớng phát triển “ Mô hình phải dùng đến sự cần thiết của lý thuyết tổng hợp quá trình ô lƣới, làm cho sự tƣơng ứng giữa mô hình dự báo và các quá trình thực tế sát nhau hơn, và cho những khẳng định nghiêm túc về những điều còn chƣa chắc chắn trong mô hình dự báo”, thêm vào đó nội dung mô hình cũng cần phát triển, phải tìm thêm những ứng dụng của chúng trong tƣơng lai, và phải lựa chọn để mô hình thích hợp cho những ứng dụng đó. 2.2.2. Mô hình SHE Mô hình SHE [24] ra đời từ những năm 1976. SHE ra đời từ sự liên kết của viện thuỷ lực Đan Mạch, viện thuỷ văn Anh và viện SOGREAH Pháp và với sự hỗ 20 trợ tài chính của cộng đồng Châu Âu. SHE ra đời phục vụ cho việc đánh giá hoạt động sử dụng đất và đánh giá chất lƣợng nƣớc. Mô hình SHE không đòi hỏi nhiều số liệu, bao gồm dữ liệu về địa lý, thực vật và tính chất đất, độ dài của chuỗi số liệu khí tƣợng thuỷ văn và phân bố tự nhiên khác nhau trong lƣu vực. Ứng dụng mô hình SHE, yêu cầu lƣợng thông số lớn, bản chất giá trị thông số không cần xác định vì chúng dựa vào phép đo vật lý. SHE là mô hình triển vọng, đảm nhiệm việc phát triển hệ thống mô hình phân phối sử dụng cho mục đích thƣơng mại. Tuy nhiên, sử dụng SHE phải chú ý đến kết quả của việc xây dựng modula trong hệ thống. Phƣơng trình cơ bản dùng trong SHE: Chảy tràn: Dùng phƣơng pháp hai chiều dựa trên việc sử dụng phƣơng trình lan truyền sóng xấp xỉ của St.Venant bỏ qua điều kiện ma sát, mô hình đƣợc viết dƣới dạng h (uh) (vh)   q t x y Với: h = S0x – Sfx xác định trực tiếp đƣợc x x h = S0y – Sfy xác định trực tiếp đƣợc y y (2.16) (2.17) (2.18) trong đó: h(x,y): chiều cao cột nƣớc địa phƣơng; t: thời gian; u(x,y), v(x,y) vận tốc dòng chảy theo trục x và y; S0x, Sfy độ dốc mặt đất theo trục x, y; Sfx, Sfy ma sát theo trục x,y. Dòng chảy trong kênh: dòng chảy dọc theo kênh A ( Au )   qL t x h  S 0 x  S fx x (2.19) (2.20) trong đó: A(x): diện tích mặt cắt, S0x: độ dốc đáy kênh, qL(x): quan hệ nguồn với dòng chảy ảnh hƣởng bởi lƣợng bốc hơi, mƣa rơi , cuối cùng sự trao đổi giữa lƣợng nƣớc đến và lƣợng nƣớc đi của dòng chảy mặt với nƣớc ngầm. Một sự liên kết phức tạp cho phép các thành phần mô phỏng đƣợc sử dụng khi một hoặc nhiều quá trình thuỷ văn không phù hợp để áp dụng. Ví dụ nhƣ những trƣờng hợp sau: 1. Nghiên cứu phần ngập nƣớc của lƣu vực có bề mặt là đá gốc và lƣợng nƣớc thấm qua quá ít đó là trƣờng hợp không bão hào và thành phần bão hoà có thể bỏ qua. 21 2. Toàn bộ hoặc hầu hết vùng tới của lƣợng giáng thuỷ thấm xuống hoặc bốc hơi từ tầng trên và tại mặt đất, vì vậy, thành phần chảy tràn trên bề mặt và kênh không cần thiết. 3. Những lƣu vực hoang mạc hoặc bán hoang mạc có rát ít hoặc không có sự xuất hiện của thực vật và tổng thành phần bốc hơi chiếm đáng kể, thự tế chỉ có giáng thuỷ và bốc hơi tiềm năng. 2.2.3. Mô hình MDOR Mô hình mƣa - dòng chảy thông số tập trung đòi hỏi lƣợng tính toán lớn, điều đó có thể cản trở việc sử dụng phƣơng pháp tối ƣu hóa tự động. Năm 1977, ở INRSEAU, mô hình phân phối MDOR đã đƣợc khởi động. Mô hình MDOR với tốc độ nhanh hơn đã cho kết quả đầu tiên vào năm 1978. Sự phát triển hơn nữa để tạo ra hàm của mô hình, đƣợc mang lại nhờ Daudelin vào năm 1984. [24] MDOR là một mô hình phân phối mà cấu trúc đã đƣợc đơn giản hoá cho phép thực hiện nhanh hơn những mô phỏng hàng ngày. Thiết lập mô hình phân phối đƣợc sử dụng để tính lặp cho tất cả các thành phần trong mỗi bƣớc thời gian. Dĩ nhiên ở đây giảm dần sự mô phỏng bởi mô hình bổ sung sắp xếp nhiệm vụ xác định thông số tự động. Phƣơng trình dƣới đây tính tổng cấu trúc nhƣ sau: T Qj   d 1 N s s 1 t 1   (Ps(j-d+1),t*Ms,d,t) (2.21) trong đó: Qj: lƣu lƣợng ngày j; T: thời gian chảy truyền; d: bƣớc thời gian lặp: S: giá trị đồng nhất của trạm khí tƣợng; t giá trị loại thành phần đồng nhất; P a, b, c : đƣợc tạo thành khi một thành phần hoàn thiện có dạng c, trong lƣu vực b, và chịu ảnh hƣởng của vị trí a; Mƣab,c : giá trị của thành c trong lƣu vực b và ảnh hƣởng của vị trí a. Mô hình MDOR đƣợc cấu tạo từ hai thành phần chính: (1) chƣơng trình BASSIN, trong đó chia nhóm các thành phần thành “ thành phần hoàn thiện ” - thực hiện các phép tính của thời gian diễn biến để xác định lƣu vực nhỏ và phép tính đa giác Thái Sơn cho dạng những thành phần đồng nhất; (2) chƣơng trình DEBIT cho phép mô phỏng lƣu lƣợng từ lƣu vực đã đƣợc chia từ phần trên. Trong DEBIT, những mô phỏng cũng chia ra từ đầu vào đến đầu ra. Điều này cho phép sàng lọc mà không phải lặp lại thủ tục đầu vào - ra vì nó sẽ làm tăng đáng kể thời gian tính. Chƣơng trình DEBIT, tìm cách làm đơn giản hoá sự mô phỏng, DEBIL thực hiện các mô phỏng đơn giản và cung cấp bản kết quả hoàn thành cân bằng nƣớc và chƣơng trình DEBNUIT thực hiện xác định thông số bằng phƣơng pháp phi tuyến MDOR. Ngoài ba mô hình mƣa - dòng chảy thông số phân phối trên thì mô hình sóng động học một chiều nếu giải bằng phƣơng pháp phần tử hữu hạn cũng là một mô 22
- Xem thêm -

Tài liệu liên quan