Mô tả:
Mët trong nhúng v§n · ÷ñc nghi¶n cùu trong lþ thuy¸t sè â l sü ph¥n bè c¡c sè nguy¶n tè. Ng÷íi ta nhªn th§y r¬ng c¡c sè nguy¶n tè nhä n¬m t÷ìng èi g¦n nhau, trong khi c¡c sè nguy¶n tè c ng lîn th¼ c ng câ xu h÷îng c¡ch xa nhau hìn. Ta °t c¥u häi v· sü li¶n quan giúa mªt ë cõa c¡c sè nguy¶n tè vîi ë lîn cõa chóng. B¬ng c¡ch lªp b£ng sè nguy¶n tè v nghi¶n cùu mªt ë, Gauss th§y r¬ng “xung quanh x mªt ë cõa c¡c sè nguy¶n tè l x§p x¿ 1 log(x) ” theo [9]. Ph¡t hi»n n y l ch¼a khâa º h¼nh th nh ành lþ sè nguy¶n tè. º chùng minh ph¡t hi»n n y, Gauss ¢ nghi¶n cùu h m ¸m sè nguy¶n tè: Gåi x l sè thüc d÷ìng, π(x) biºu thà sè c¡c sè nguy¶n tè nhä hìn ho°c b¬ng x. Tùc l ta câ π(x) = P p≤x 1. V¼ ng÷íi ta ¢ dü o¡n v· mªt ë c¡c sè nguy¶n tè quanh x l 1 log(x) , n¶n hå công dü o¡n r¬ng π(x) x§p x¿ vîi mët têng logarit ho°c mët t½ch ph¥n logarit. Chóng t÷ìng ùng ÷ñc cho bði: ls(x) := X 2≤n≤x 1 log(n) , li(x) := Z x 2 dt log(t) . Ta nâi hai h m f v g l hai h m t÷ìng ÷ìng n¸u th÷ìng sè cõa chóng f(x) g(x) ti¸n tîi 1 khi x ti¸n tîi væ còng. Ta sû döng kþ hi»u f(x) ∼ g(x) khi x → ∞. Vîi méi x ≥ 2, hi»u sè giúa ls(x) v li(x) bà ch°n bði 1 log(2) theo H» qu£ 1.5.1 trong [4]. Do â, hai h m têng logarit v t½ch ph¥n logarit l t÷ìng ÷ìng. Hai h m n y công t÷ìng ÷ìng vîi x log(x) (H» qu£ 1.5.3 trong [4]). ành lþ sè nguy¶n tè ÷ñc c£ Gauss (1792) v Legendre (1798) n¶u ra