Đăng ký Đăng nhập
Trang chủ Luận văn thạc sĩ Tính thuận và tính nghịch của hệ tam phân mũ không đều trên đa ...

Tài liệu Luận văn thạc sĩ Tính thuận và tính nghịch của hệ tam phân mũ không đều trên đa tạp tâm

.PDF
44
68056
120

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA TOÁN CƠ TIN PHAN THỊ THANH VÂN TÍNH THUẬN VÀ TÍNH NGHỊCH CỦA HỆ TAM PHÂN MŨ KHÔNG ĐỀU TRÊN ĐA TẠP TÂM LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành: TOÁN GIẢI TÍCH Mã số : 60 46 01 NGƯỜI HƯỚNG DẪN KHOA HỌC TS. LÊ HUY TIỄN Hà Nội - Năm 2012 Mục lục Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Kiến thức chuẩn bị 1.1 1.2 1 2 Hệ tam phân mũ . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Hệ tam phân mũ đều . . . . . . . . . . . . . . . . 1.1.2 Hệ tam phân mũ không đều . . . . . . . . . . . . 1.1.3 Không gian con tâm, ổn định và không ổn định Đa tạp tâm . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Các khái niệm cơ bản . . . . . . . . . . . . . . . 1.2.2 Sự tồn tại của đa tạp tâm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 3 6 8 8 9 2 Tính thuận và tính nghịch của phương trình vi phân trong không gian Banach 12 2.1 Hệ đối xứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Tính nghịch của phương trình vi phân không ôtônôm . . . . . . . 14 2.3 2.4 2.5 Tính nghịch của phương trình vi phân ôtônôm . . . . . . . . . . . 16 Ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Tính thuận của phương trình vi phân trong không gian Banach . 22 3 Tính thuận và tính nghịch của hệ tam phân mũ không đều trên đa tạp tâm 3.1 Tính nghịch của hệ tam phân mũ không đều trên đa tạp tâm . . . 3.1.1 Xây dựng kết quả chính . . . . . . . . . . . . . . . . . . . . 3.1.2 Các kết quả phụ . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Chứng minh tính nghịch . . . . . . . . . . . . . . . . . . . . 3.2 Tính thuận của hệ tam phân mũ không đều trên đa tạp tâm . . . 24 24 24 27 37 39 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 i Lời nói đầu Luận văn đã trình bày được các khái niệm mới như hệ tam phân mũ đều và không đều, một số tính chất cơ bản của chúng, tập trung nghiên cứu hệ tam phân mũ không đều trên đa tạp tâm. Đối xứng thuận nghịch thời gian là một trong những đối xứng cơ bản được nghiên cứu trong khoa học tự nhiên, nó xuất hiện trong nhiều hệ vật lý, đặc biệt là cơ học cổ điển và lượng tử. Trong khuôn khổ của luận văn này tôi chỉ trình bày tính thuận và tính nghịch của phương trình vi phân có tam phân mũ không đều trên đa tạp tâm trong không gian Banach vô hạn chiều. Luận văn được chia thành 3 chương: Chương 1: Giới thiệu sơ lược các khái niệm tam phân mũ đều, tam phân mũ không đều của phương trình vi phân, khái niệm đa tạp tâm. Chương 2: Trình bày tính thuận nghịch của phương trình vi phân trong không gian Banach vô hạn chiều. Chương 3: Trình bày tính thuận và tính nghịch của phương trình vi phân có tam phân mũ không đều trên đa tạp tâm trong không gian Banach vô hạn chiều. Luận văn được hoàn thành dưới sự hướng dẫn, chỉ bảo tận tình của TS. Lê Huy Tiễn - Giảng viên khoa Toán-Cơ-Tin học, trường ĐH Khoa học tự nhiên. Tôi xin bày tỏ lòng biết ơn sâu sắc đến thầy. Tôi cũng xin chân thành cảm ơn các thầy cô trong khoa Toán-Cơ-Tin học, những người đã trực tiếp truyền thụ kiến thức, giảng dạy tôi trong suốt khóa học. Cuối cùng, tôi gửi lời cảm ơn gia đình, bạn bè và đặc biệt là chồng tôi, đã luôn ở bên tôi, động viên, giúp đỡ tôi hoàn thành luận văn này. Hà Nội, tháng 12 năm 2012 Phan Thị Thanh Vân 1 Chương 1 Kiến thức chuẩn bị 1.1 1.1.1 Hệ tam phân mũ Hệ tam phân mũ đều Cho X là không gian Banach, xét một ánh xạ liên tục t → A(t) sao cho A(t) là toán tử tuyến tính bị chặn trên X với mỗi t ∈ R và phương trình v = A(t)v (1.1) Nghiệm của (1.1) với v (s) = vs có thể được viết dưới dạng v (t) = T (t, s)v (s), với T (t, s) là toán tử tiến hóa liên kết. Ta có T (t, t) = Id và T (t, s)T (s, r) = T (t, r) với mọi t, s, r ∈ R, T (t, s) khả nghịch và T (t, s)−1 = T (s, t) với mọi t, s ∈ R. Giả sử A(t) có dạng chéo khối tương ứng với các thành phần hợp thành E , F1 , F2 (X = E ⊕ F1 ⊕ F2 ), với E , F1 , F2 tương ứng là các không gian con tâm, ổn định và không ổn định. Khi đó nghiệm của (1.1) có thể được viết dưới dạng v (t) = (U (t, s), V1 (t, s), V2 (t, s))v (s) trong đó U (t, s), V1 (t, s) và V2 (t, s) là các toán tử tiến hóa liên kết tương ứng với ba khối của A(t), T (t, s) = (U (t, s), V1 (t, s), V2 (t, s)). Định nghĩa 1.1. Ta nói phương trình (1.1) có tam phân mũ đều nếu tồn tại các hằng số b > a ≥ 0, d > c ≥ 0, và D > 0 sao cho 2 1. Với mọi s, t ∈ R, t ≥ s, −1 ||U (t, s)|| ≤ Dea(t−s) , ||V2 (t, s) || ≤ De−b(t−s) , 2. Với mọi s, t ∈ R, t ≤ s ||U (t, s)|| ≤ Dec(s−t) , ||V1 (t, s) 1.1.2 −1 || ≤ De−d(s−t) . Hệ tam phân mũ không đều Hệ tam phân mũ không đều là một trường hợp mở rộng của hệ tam phân mũ đều, chúng ta tìm hiểu sự giống và khác nhau căn bản giữa chúng. Giả sử X là không gian Banach, và A : R → B (X ) là một hàm liên tục, trong đó B (X ) là tập hợp các toán tử tuyến tính bị chặn trên X. Xét bài toán giá trị ban đầu v = A(t)v, v (s) = vs , (1.2) với s ∈ R và vs ∈ X . Giả thiết rằng tất cả các nghiệm của (1.2) là toàn cục. Ta viết nghiệm duy nhất của bài toán giá trị ban đầu trong (1.2) dưới dạng v (t) = T (t, s)v (s), ở đó T (t, s) là toán tử tiến hóa liên kết. Xét các hằng số 0 ≤ a < b, 0 ≤ c < d, a, b, c d ≥0 (1.3) (1.4) Định nghĩa 1.2. Ta nói rằng phương trình tuyến tính v = A(t)v có một tam phân mũ không đều nếu tồn tại các hàm P, Q1 , Q2 : R → B (X ) sao cho P (t), Q1 (t) và Q2 (t) là các phép chiếu với P (t) + Q1 (t) + Q2 (t) = Id, P (t)T (t, s) = T (t, s)P (s), Qi (t)T (t, s) = T (t, s)Qi (s), i = 1, 2 với mọi t, s ∈ R, và tồn tại các hằng số như trong (1.3)-(1.4) và Di > 0, 1 ≤ i ≤ 4 sao cho 1. Với mọi t, s ∈ R, t ≥ s, ||T (t, s)P (s)|| ≤ D1 ea(t−s)+a |s| , ||T (t, s)−1 Q2 (t)|| ≤ D3 e−b(t−s)+b |t| ; (1.5) 3 2. Với mọi t, s ∈ R, t ≤ s, ||T (t, s)P (s)|| ≤ D2 ec(s−t)+c |s| , ||T (t, s)−1 Q1 (t)|| ≤ D4 e−d(s−t)+d |t| . (1.6) Các hằng số trong a, b, c, d được coi như các số mũ Lyapunov, trong khi tính không đều của dáng điệu mũ được quyết định bởi các hằng số trong a , b , c , d . Khi ba thành phần của nghiệm tương ứng với các thành phần tâm, ổn định và không ổn định của A(t) ta có thể lấy a = c = 0 (do đó b > 0 và d > 0). Nhận xét 1.1. So sánh hai định nghĩa về tam phân mũ đều và tam phân mũ không đều ta thấy hệ tam phân mũ không đều có thêm một lượng mũ a |s|, b |t|, c |s|, d |t|. Khi a = b = c = d = 0 thì khái niệm tam phân mũ không đều trùng với khái niệm tam phân mũ đều. Ví dụ 1.1. Cho ω > ε > 0 là những hệ số thực và hệ phương trình trong R3 x = 0, y = (−ω − εt sin t)y, z = (ω + εt sin t)z. (1.7) Hệ phương trình vi phân (1.7) có tam phân mũ không đều. Chứng minh. Ta thấy nghiệm của hệ (1.7) được viết dưới dạng x(t) = U (t, s)x(s), y (t) = V1 (t, s)y (s), z (t) = V2 (t, s)z (s), trong đó U (t, s) = 1, V1 (t, s) = e−ωt+ωs+εt cos t−εs cos s−ε sin t+ε sin s , V2 (t, s) = eωt−ωs−εt cos t+εs cos s+ε sin t−ε sin s . Toán tử tiến hóa T (t, s) của hệ (1.7) được cho bởi T (t, s)(x, y, z ) = (U (t, s)x, V1 (t, s)y, V2 (t, s)z ). Giả sử P (t), Q1 (t), Q2 (t) : R3 → R3 là các phép chiếu được xác định bởi P (t)(x, y, z ) = x, Q1 (t)(x, y, z ) = y, Q2 (t)(x, y, z ) = z Rõ ràng các phép chiếu này thỏa mãn các điều kiện về phép chiếu trong định nghĩa của hệ tam phân mũ không đều. Chọn b = d = ω − ε, b = d = 2ε 4 và các hằng số a, a , c, c > 0, a < ω − ε, c < ω − ε. Ta chỉ ra rằng tồn tại D1 = D2 = D3 = D4 = D > 1 sao cho ||U (t, s)|| ≤ Dea(t−s)+a |s| , ||V2 (t, s)−1 || ≤ De−(ω−ε)(t−s)+2ε|t| với t ≥ s ||U (t, s)|| ≤ Dec(s−t)+c |s| , ||V1 (t, s)−1 || ≤ De−(ω−ε)(s−t)+2ε|t| với t ≤ s Vì ||U (t, s)|| = 1 nên ta có ||U (t, s)|| ≤ Dea(t−s)+a |s| với t ≥ s ||U (t, s)|| ≤ Dec(s−t)+c |s| với t ≤ s với mọi a, a , c, c > 0, a < ω − ε, c < ω − ε; D > 1. Ta chứng minh ||V1 (t, s)−1 || ≤ De−(ω−ε)(s−t)+2ε|t| với t ≤ s (1.8) ||V2 (t, s)−1 || ≤ De−(ω−ε)(t−s)+2ε|t| với t ≥ s (1.9) và Ta viết lại V1 (t, s) như sau: V1 (t, s) = e(−ω+ε)(t−s)+εt(cos t−1)−εs(cos s−1)+ε(sin s−sin t) , suy ra V1 (s, t) = e(−ω+ε)(s−t)−εt(cos t−1)+εs(cos s−1)−ε(sin s−sin t) . (1.10) Với 0 ≤ t ≤ s, từ (1.10) ta có V1 (s, t) ≤ e2ε e−(ω−ε)(s−t)+2εt , với t ≤ 0 ≤ s ta có V1 (s, t) ≤ e2ε e−(ω−ε)(s−t) , với t ≤ s ≤ 0 ta có V1 (s, t) ≤ e2ε e−(ω−ε)(s−t)+2ε|s| ≤ e2ε e−(ω−ε)(t−s)+2ε|t| mà V1 (s, t) = V1 (t, s)−1 suy ra V1 (t, s)−1 ≤ e2ε e−(ω−ε)(t−s)+2ε|t| . Điều này cho ta (1.8). Để thu được (1.9) ta chứng minh tương tự. Từ V2 (s, t) = e(−ω+ε)(t−s)−εs(cos s−1)+εt(cos t−1)+ε(sin s−sin t) ta có V2 (t, s)−1 ≤ e−(ω−ε)(t−s)+2ε|t| Từ việc thỏa mãn (1.9) và (1.8) ta có hệ (1.7) có một tam phân mũ không đều. 5 1.1.3 Không gian con tâm, ổn định và không ổn định Giả sử rằng phương trình v = A(t)v có một tam phân mũ không đều. Ta xét ba không gian con tuyến tính E (t) = P (t)X, Fi (t) = Qi (t)X, i = 1, 2 với mỗi t ∈ R. Ta gọi E (t), F1 (t) và F2 (t) tương ứng là không gian con tâm, ổn định và không ổn định tại thời điểm t. Ta có: X = E (t) ⊕ F1 (t) ⊕ F2 (t) với mọi t ∈ R và dim E (t), dim F1 (t), dim F2 (t) không phụ thuộc vào thời điểm t. Nghiệm của (1.2) có thể được viết dưới dạng v (t) = (U (t, s)ξ, V1 (t, s)η1 , V2 (t, s)η2 ) với t ∈ R (1.11) với vs = (ξ, η1 , η2 ) ∈ E (s) × F1 (s) × F2 (s), trong đó U (t, s) := T (t, s)P (s) = T (t, s)P (s)2 = P (t)T (t, s)P (s) Vi (t, s) := T (t, s)Qi (s) = T (t, s)Qi (s)2 = Qi (t)T (t, s)Qi (s), i = 1, 2. Trong trường hợp đặc biệt, nếu không gian con tâm, ổn định và không ổn định không phụ thuộc vào t, tức là E (t) = E , Fi (t) = Fi , i = 1, 2 với mọi t, thì toán tử T (t, s) phải có dạng tương ứng với tổng trực tiếp E ⊕ F1 ⊕ F2 , hay T (t, s) có thể được biểu diễn dưới dạng   U (t, s) 0 0     T (t, s) =  0 V1 (t, s) 0    0 0 V2 (t, s) Ngoài ra, các toán tử U (t, s) : E (s) → E (t) và Vi (t, s) = Fi (s) → Fi (t), i = 1, 2 là khả nghịch. Kí hiệu toán tử nghịch đảo tương ứng là U (t, s)−1 và Vi (t, s)−1 , i = 1, 2 ta có: U (t, s)−1 = U (s, t) và Vi (t, s)−1 = Vi (s, t) với mọi t, s ∈ R. Chú ý rằng các bất đẳng thức ở (1.5)-(1.6) có thể viết lại thành: ||U (t, s)|| ≤ Dea(t−s)+a |s| , ||V2 (t, s)−1 || ≤ De−b(t−s)+b |t| 6 ||U (t, s)|| ≤ Dec(s−t)+c |s| , ||V1 (t, s)−1 || ≤ De−d(s−t)+d |t| . Tiếp theo ta định nghĩa góc giữa hai không gian con F1 và F2 , E và F1 , E và F2 tương ứng như sau α(t) = inf {||y − z|| : y ∈ F1 (t); z ∈ F2 (t); ||y|| = ||z|| = 1} (1.12) β1 (t) = inf {||x − y|| : x ∈ E (t); y ∈ F1 (t); ||x|| = ||y|| = 1} β2 (t) = inf {||x − z|| : x ∈ E (t); z ∈ F2 (t); ||x|| = ||z|| = 1} Mệnh đề 1.1. Với mọi t ∈ R ta có: 2 1 ≤ α(t) ≤ , ||Q1 (t)|| ||Q1 (t)|| 1 2 ≤ α(t) ≤ , ||Q2 (t)|| ||Q2 (t)|| 1 2 ≤ β1 (t) ≤ , ||P (t)|| ||P (t)|| 1 2 ≤ β2 (t) ≤ , ||P (t)|| ||P (t)|| 2 1 ≤ β1 (t) ≤ , ||Q1 (t)|| ||Q1 (t)|| 1 2 ≤ β2 (t) ≤ . ||Q2 (t)|| ||Q2 (t)|| Chứng minh. Ta chứng minh cho trường hợp của góc giữa không gian con ổn định và không ổn định α(t). Các bất đẳng thức khác được chứng minh tương tự. Chú ý rằng Q1 (t)(y − z ) = y với y, z được cho bởi (1.12). Do đó, 1 = ||Q1 (t)(y − z )|| ≤ ||Q1 (t)||.||y − z||, suy ra 1 ≤ α(t). ||Q1 (t)|| 2 Tiếp theo ta chứng minh α(t) ≤ . ||Q1 (t)|| Thật vậy, với mỗi v, ω ∈ X mà v = Q1 (t)v = 0 và ω = Q2 (t)ω = 0 thì ¯ ¯ ω ¯ v ¯ − ||v|| ||ω|| = |(¯ − ω )||ω|| + ω (||ω || − ||v ||) | v ¯ ¯ ¯ ¯ 2||v − ω || ¯ ¯ ≤ . ||v ||||ω || ¯ ¯ ||v || ¯ Chú ý rằng Q1 (t)(¯ − ω ) = v . Cho trước ε ≥ 0 ta có thể chọn v và ω sao cho với v ¯ ¯ z = v − ω ta có: ¯ ¯ ||z|| 1 ≤ + ε. ||Q1 (t)z|| ||Q1 (t)|| Suy ra v ¯ ω ¯ 2||z|| 2 − ≤ ≤ + 2ε. ||v|| ||ω|| ||Q1 (t)z|| ||Q1 (t)|| Vì ε lấy tùy ý nên ta suy ra được chặn trên của α(t). 7 Như vậy ta đã tìm hiểu được định nghĩa của hệ tam phân mũ không đều, phân biệt nó với hệ tam phân mũ đều. Ngoài ra, ta còn nghiên cứu không gian con tâm, ổn định và không ổn định của hệ tam phân mũ không đều, Mệnh đề 1.1 cho ta biết rằng, tính bị chặn đều của các phép chiếu tương đương với điều kiện các góc giữa các không gian con tâm, ổn định và không ổn định tách khỏi 0. 1.2 Đa tạp tâm 1.2.1 Các khái niệm cơ bản Sự tồn tại của hệ tam phân mũ không đều là giả thiết yếu nhất để thiết lập sự tồn tại của đa tạp tâm, chính xác hơn là các đa tạp "trung gian". Ta đưa ra một vài giả thiết trên trường vectơ. Đặt β = max{(k + 1)a + b , (k + 1)c + d } (1.13) Ký hiệu ∂ là đạo hàm riêng ứng với biến thứ hai, giả thiết rằng tồn tại một số nguyên k ≥ 1 sao cho G1. A : R → B (X ) thuộc lớp C k và thỏa mãn điều kiện nghiệm của (1.2) xác định với mọi t ∈ R. G2. f : R × X → X thuộc lớp C k và thỏa mãn 1. f (t, 0) = 0 và ∂f (t, 0) = 0 với mọi t ∈ R; 2. tồn tại δ > 0 và cj > 0 với j = 1, ..., k + 1 sao cho với mọi t ∈ R và u, v ∈ X ta có ||∂ j f (t, u)|| ≤ cj δe−β|t| với j = 1, ..., k, ||∂ k f (t, u) − ∂ k f (t, v )|| ≤ ck+1 δe−β|t| ||u − v||. (1.14) (1.15) Chú ý rằng với mọi j = 0, ..., k − 1, t ∈ R, và u, v ∈ X ta có ||∂ j f (t, u) − ∂ j f (t, v )|| ≤ cj+1 δe−β|t| ||u − v||. (1.16) Xét các không gian con E (t) = P (t)X, F1 (t) = Q1 (t)X, 8 F2 (t) = Q2 (t)X. (1.17) Nghiệm duy nhất của v = A(t)v có thể được viết dưới dạng v (t) = (U (t, s)ξ, V1 (t, s)η1 , V2 (t, s)η2 ) với t ∈ R, (1.18) với vs = (ξ, η1 , η2 ) ∈ E (s) × F1 (s) × F2 (s) và U (t, s) := P (t)T (t, s)P (s), Vi (t, s) = Qi (t)T (t, s)Qi (s), i = 1, 2. Cho trước s ∈ R và điều kiện ban đầu vs = (ξ, η1 , η2 ) ∈ E (s) × F1 (s) × F2 (s), ta kí hiệu (x(., s, vs ), y1 (., s, vs ), y2 (., s, vs )) là nghiệm duy nhất của bài toán v = A(t)v + f (t, v ), v (s) = vs (1.19) với s ≥ 0 và vs ∈ X , hoặc nó là nghiệm của bài toán t x(t) = U (t, s)ξ + U (t, r)f (r, x(r), y1 (r), y2 (r)) dr, s (1.20) t yi (t) = Vi (t, s)ηi + Vi (t, r)f (r, x(r), y1 (r), y2 (r)) dr, i = 1, 2 s với t ∈ R. Với mỗi τ ∈ R, ta viết Ψτ (s, vs ) = (s + τ, x(s + τ, s, vs ), y1 (s + τ, s, vs ), y2 (s + τ, s, vs )) Đây là dòng được sinh bởi phương trình v = A(t)v + f (t, v ), v (s) = vs với s ≥ 0 và vs ∈ X . 1.2.2 Sự tồn tại của đa tạp tâm Trong mục này ta giới thiệu sơ lược về định lý đa tạp tâm cho điểm gốc của phương trình v = A(t)v + f (t, v ). Đa tạp tâm thu được có dạng như một đồ thị. Kí hiệu ∂ là đạo hàm riêng tương ứng với biến thứ hai. Giả sử X là không gian các hàm liên tục ϕ = (ϕ1 , ϕ2 ) : {(s, ξ ) ∈ R × X : ξ ∈ E (s)} −→ X thuộc lớp C k sao cho với mọi s ∈ R và x, y ∈ E (s) ta có 1. ϕ(s, E (s)) ⊂ F1 (s) ⊕ F2 (s); 2. ϕ(x, 0) = 0 và ∂ϕ(s, 0) = 0; 9 3. ||∂ j ϕ(s, x)|| ≤ 1 với j = 1, ..., k và ||∂ k ϕ(s, x) − ∂ k ϕ(s, y )|| ≤ ||x − y||. (1.21) Chú ý rằng theo định lý giá trị trung bình, với j = 0, ..., k − 1 ta có ||∂ j ϕ(s, x) − ∂ j ϕ(s, y )|| ≤ ||x − y|| (1.22) với mọi s ∈ R và x, y ∈ E (s). Cho trước một hàm ϕ ∈ X, xét đồ thị của ϕ V = graph(ϕ) = {(s, ξ, ϕ(s, ξ )) : (s, ξ ) ∈ R × E (s)} ⊂ R × X. (1.23) Đặt αi = 4c1 Di δ với i = 1, 2, (1.24) và xét các điều kiện T1 := (k + 1)a − b + max{(k + 1)a , b } < 0, (1.25) T2 := (k + 1)c − d + max{(k + 1)c , d } < 0. Các điều kiện này gọi là các điều kiện lỗ hổng phổ. Bây giờ ta phát biểu định lý đa tạp tâm cho điểm gốc của phương trình v = A(t)v + f (t, v ), sử dụng kí hiệu ps,ξ = (s, ξ, ϕ(s, ξ )). Định lý 1.1. Giả thiết rằng G1-G2 đúng. Nếu phương trình v = A(t)v trong không gian Banach X có tam phân mũ không đều, và các điều kiện trong (1.25) đúng, thì với δ trong (1.14)-(1.15) đủ nhỏ, tồn tại một hàm ϕ ∈ X duy nhất sao cho tập X trong (1.23) là bất biến đối với nửa dòng Ψτ , tức là, nếu (s, ξ ) ∈ R × E (s) thì Ψτ (ps,ξ ) ∈ V với mọi τ ∈ R. (1.26) Hơn nữa, 1. V là một đa tạp trơn thuộc lớp C k chứa đường thẳng R × {0} và thỏa mãn T(s,0) V = R × E (s) với mọi s ∈ R; 2. với mọi (s, ξ ) ∈ R × E (s) ta có s V1 (τ, s)−1 f (Ψτ −s (ps,ξ )) dτ, ϕ1 (s, ξ ) = −∞ +∞ V2 (τ, s)−1 f (Ψτ −s (ps,ξ )) dτ, ϕ2 (s, ξ ) = − s 10 ¯ 3. tồn tại D > 0 sao cho với mỗi s ∈ R, ξ, ξ ∈ E (s), τ ∈ R, và j = 0, ..., k , nếu τ ≥ 0 thì j j ¯ ||∂ξ (Ψτ (ps,ξ )) − ∂ξ (Ψτ (ps,ξ ))|| ≤ De(j+1)[(a+α1 )τ +a |s|] ||ξ − ξ||, ¯ (1.27) và nếu τ ≤ 0 thì j j ¯ ||∂ξ (Ψτ (ps,ξ )) − ∂ξ (Ψτ (ps,ξ ))|| ≤ De(j+1)[(c+α2 )τ +c |s|] ||ξ − ξ||. ¯ (1.28) Ta gọi đa tạp V trong (1.23) là đa tạp tâm cho điểm gốc của phương trình (1.19). Ta thấy rằng V là đa tạp tâm duy nhất. Chú ý rằng các hằng số α1 và α2 trong (1.27)-(1.28) có thể được làm nhỏ tùy ý bằng cách lấy δ đủ nhỏ. Chứng minh: Xem [1][Mục 8.3, trang 176]. 11 Chương 2 Tính thuận và tính nghịch của phương trình vi phân trong không gian Banach 2.1 Hệ đối xứng Đối xứng đảo ngược thời gian là một trong những đối xứng cơ bản được nghiên cứu trong khoa học tự nhiên. Do đó nó xuất hiện trong nhiều hệ vật lý, đặc biệt là cơ học cổ điển và lượng tử. Ở đây ta xét các phương trình vi phân thường. Trong mục này ta trình bày định nghĩa toán học chính xác hơn của hệ đối xứng đảo ngược thời gian trong hệ động lực. Xét hai loại hệ động lực, với biến thời gian liên tục t ∈ R và biến thời gian rời rạc t ∈ Z trong không gian Rn . Trong trường hợp biến thời gian t liên tục xét phương trình vi phân thường ôtônôm có dạng: dx = F (x), dt x ∈ Rn (2.1) Trong đó F : Rn −→ Rn là một trường vectơ (trơn, liên tục), hệ (2.1) được cho 12 bởi một họ các toán tử tiến hóa ϕt : Rn −→ Rn (2.2) x(τ ) −→ ϕt (x(τ )) = x(τ + t) sao cho ϕt1 ◦ ϕt2 = ϕt1 +t2 , mọi t1 , t2 ∈ R Ta nói rằng ánh xạ (trơn, liên tục) R : Rn → Rn là một đối xứng đảo ngược của (2.1) khi dR(x) = −F (R(x)) (2.3) dt hoặc khi dR|x ◦ F (x) = −F (R(x)) (2.4) Trong đó: dR|x là vi phân (Fréchet) của R đối với x. Điều kiện (2.3)-(2.4) có thể được viết như sau: R ◦ ϕt = ϕ−t ◦ R = ϕ−1 ◦ R t với mọi t ∈ R. (2.5) Trong cơ học cổ điển phương trình vi phân nhận được từ hệ Hamilton H (q, p) có đối xứng đảo ngược được cho bởi R(q, p) = (q, −p) (2.6) Chú ý rằng trong trường hợp đặc biệt thì R là chập (tức là R2 = Id). Các khái niệm về đối xứng đảo ngược trong trường hợp không ôtônôm là mở rộng tự nhiên của các khái niệm về đối xứng đảo ngược trong trường hợp ôtônôm dx = F (x, t) (2.7) dt Cụ thể, ta gọi Ra : (x, t) → (R(x), −t + a) là một đối xứng đảo ngược của (2.7) dR(x) = −F (R(x), −t + a) (2.8) dt a Bằng cách đưa ra một biến mới τ = t − , phương trình vi phân mở rộng 2 d(x, τ ) = (F (x, τ ), 1) dt ( với F (x, τ ) := F x, τ + a 2 ) là ôtônôm và có đối xứng đảo ngược R0 : (x, τ ) → (R(x), −τ ) 13 Đặc biệt, ta chú ý rằng ánh xạ f có đối xứng đảo ngược R có thể được viết như sau f = R ◦ T, trong đó R2 = T 2 = Id (2.9) Khi R không phải là chập ta có thể biểu diễn được (2.9) dưới dạng tổng quát f = R ◦ T, với R2 ◦ T 2 = Id (2.10) Đối với dòng của trường vectơ không ôtônôm (2.7) khi F (x, t) tuần hoàn theo thời gian, F (x, t) = F (x, t +1) (thời gian thu lại về 1) thì ánh xạ trở lại là ôtônôm. Hơn nữa, dễ dàng kiểm tra rằng khi hệ không ôtônôm có tính bất biến theo Ra thì ánh xạ "thời gian 1" đối với t = a 2 là đối xứng đảo ngược. Định nghĩa 2.1. Một hệ được gọi là đối xứng đảo ngược khi có một ánh xạ R thỏa mãn (2.3), hoặc (2.8) cho dòng ôtônôm, hoặc dòng không ôtônôm tương ứng. Đôi khi có đôi chút nhầm lẫn về việc sử dụng các thuật ngữ, một hệ được gọi là đối xứng đảo ngược khi nghịch đảo của nó tồn tại. Khái niệm về tính nghịch đảo được khác với khái niệm về đảo ngược đối xứng ở trên. Trong đó chú ý rằng tất cả các hệ đối xứng đảo ngược đều có tính nghịch đảo được, nhưng không phải tất cả các hệ có tính nghịch đảo được đều là đảo ngược đối xứng. 2.2 Tính nghịch của phương trình vi phân không ôtônôm Cho X là không gian Banach. Xét một hàm liên tục L : R × X → X sao cho v = L (t, v ) là duy nhất và ánh xạ khả vi S : R × X → X. Định nghĩa 2.2. Ta nói rằng phương trình v = L (t, v ) có tính nghịch đối với ánh xạ S nếu: L (−t, S (t, v )) + ∂S ∂S (t, v ) L (t, v ) = − (t, v ) ∂v ∂t (2.11) với mọi t ∈ R và v ∈ X . Ta cũng nói phương trình v = L (t, v ) có tính nghịch nếu nó có tính nghịch đối với một ánh xạ S nào đó. 14 Mệnh đề dưới đây trình bày một đặc trưng của nghiệm của phương trình vi phân v = L (t, v ) có tính nghịch. Với mỗi s ∈ R và vs ∈ X ta ký hiệu Φ (t, s) (vs ) là nghiệm của phương trình v = L (t, v ) với v (s) = vs . Giả thiết Φ (t, s) xác định với mọi t, s ∈ R. Mệnh đề 2.1. Phương trình v = L (t, v ) có tính nghịch đối với ánh xạ S khi và chỉ khi Φ (τ, −t) (S (t, v )) = S (−τ, Φ (−τ, v ) (v )) (2.12) với mọi t, τ ∈ R và v ∈ X . Chứng minh. Giả sử (2.12) đúng. Ta có ∂ (Φ (τ, ±t) (v )) = L (τ, Φ (τ, ±t) (v )) ∂τ (2.13) với mọi v ∈ X . Đạo hàm (2.12) theo τ , kết hợp với (2.13) ∂S (−τ, Φ (−τ, t) (v )) ∂τ ∂S − (−τ, Φ (−τ, t) (v )) L (−τ, Φ (−τ, t) (v )) ∂v L (τ, Φ (τ, −t)) (S (t, v )) = − Sử dụng (2.12) và đặt ω = Φ (−τ, t) (v ) ta có L (τ, S (−τ, ω )) = − ∂S ∂S (−τ, ω ) − (−τ, ω ) L (−τ, ω ) , ∂τ ∂v Từ đó ta có (2.11). Bây giờ ta giả sử (2.11) đúng. Cho t ∈ R và v ∈ X . Đặt z (t) = S (−t, Φ (−t, s) (v )). Đạo hàm theo t và sử dụng (2.13) ta có z (t) = − ∂S ∂S (−t, Φ (−t, s) (v )) − (−t, Φ (−t, s) (v )) L (−t, Φ (−t, s) (v )) . ∂t ∂v Kết hợp với (2.11) z (t) = L (t, S (−t, Φ (−t, s) (v ))) + − ∂S (−t, Φ (−t, s) (v )) L (−t, Φ (−t, s) (v )) ∂v ∂S (−t, Φ (−t, s) (v )) L (−t, Φ (−t, s) (v )) ∂v = L (t, S (−t, Φ (−t, s) (v ))) = L (t, z (t)) . Như vậy z (t) thỏa mãn giá trị ban đầu của phương trình z = L (t, z ) , z (−s) = S (s, v ). Mà Φ (t, −s) (S (s, v )) cũng là nghiệm của phương trình này, theo định lý về tính duy nhất ta có z (t) = Φ (t, −s) (S (s, v )) với mọi v ∈ X và t, s ∈ R, suy ra (2.12) đúng. 15 Mệnh đề 2.2. Giả sử L là hàm vi phân Fréchet theo v , nếu phương trình v = L(t, v ) có tính nghịch đối với ánh xạ S và S (t) là tuyến tính với mỗi t ∈ R, thì ta có các tính chất sau: 1. Phương trình tuyến tính v = A (t) v có tính nghịch với ánh xạ S ; 2 2. Nếu So = Id thì S−t ◦ St = Id với mọi t ∈ R. Chứng minh. Đạo hàm (2.11) theo v và sử dụng tính chất tuyến tính của St ta có ∂L ∂S ∂L (−t, St , v ) St + St (t, v ) = − (t, .) ∂v ∂v ∂t Cho v = 0 ta có A (−t) St + St A (t) = − ∂S (t, .) ∂t (2.14) Suy ra phương trình tuyến tính v = A (t) v có tính nghịch với ánh xạ S (tính chất 1.) 2 Giả sử S0 = Id, gọi v (t) là nghiệm của phương trình v = L (t, v ), khi đó v (t) = L (t, v (t)). Sử dụng (2.11) ta có d (S−t ◦ St ) v (t) ∂S ∂S = (−t, St (v (t))) + S−t (t, v (t)) + (S−t ◦ St ) v (t) dt ∂t ∂t = L (t, S−t (St v (t))) + S−t L (−t, St v (t)) − S−t [L (−t, St v (t)) + St L (t, v (t))] + (S−t ◦ St ) L (t, v (t)) = L (t, (S−t ◦ St ) v (t)) , 2 và (S−t ◦ St ) v (t) cũng là nghiệm của phương trình v = L (t, v ). Từ S0 = Id, ta có (S−t ◦ St ) v (t) |t=0 = v (0) . Áp dụng định lý về tính duy nhất của nghiệm ta có (S−t ◦ St ) v (t) = v (t) với mọi t ∈ R. Suy ra S−t ◦ St = Id với mọi t ∈ R. 2.3 Tính nghịch của phương trình vi phân ôtônôm Ở đây ta chỉ ra rằng khái niệm về tính nghịch trong Mục 2.2 là một mở rộng tự nhiên của khái niệm về tính nghịch trong trường hợp hệ ôtônôm. Cho L : X → X là hàm liên tục trong không gian Banach X , như vậy phương trình 16 v = L (v ) sinh ra một dòng (ϕt )t∈R trong X. Ta nói rằng v = L (v ) có tính nghịch đối với ánh xạ T : X → X nếu L◦ T = −T ◦ L. (2.15) Chú ý rằng nếu hàm L (t, v ) ở Định nghĩa 2.2 không phụ thuộc t khi đó ta có St = T với mọi t ∈ R, (2.11) và (2.15) đồng nhất. Tương tự như phương trình tổng quát trong trường hợp không ôtônôm, có một sự mô tả tính nghịch của phương trình ôtônôm trong điều kiện của nghiệm của v = L (t, v ). Trình bày dưới đây là một hệ quả trực tiếp của Mệnh đề 2.1, và thực tế là trong trường hợp ôtônôm Φ (t, τ ) = ϕt−τ với mọi τ ∈ R. Mệnh đề 2.3. Phương trình v = L (v ) có tính nghịch đối với ánh xạ T khi và chỉ khi ϕt ◦ T = T ◦ ϕ−t với mọi t ∈ R. Kết quả sau đây chỉ ra rằng khái niệm của tính nghịch trong Mục 2.2 là một mở rộng tự nhiên của khái niệm tính nghịch của phương trình vi phân ôtônôm. Mệnh đề 2.4. Phương trình v = L (t, v ) có tính nghịch đối với ánh xạ S : R × X → X khi và chỉ khi phương trình ôtônôm t = 1 , v = L (v ) (2.16) có tính nghịch đối với ánh xạ T : R × X → R × X xác định bởi T (t, v ) = (−t, St (v )) . (2.17) Chứng minh. Vì phương trình v = L (v ) có nghiệm duy nhất và toàn cục, phương trình ôtônôm trong (2.16) xác định một dòng ϕτ trên R × X cho bởi ϕτ (t, v ) = (t + τ, Φ (t + τ, t) (v )) , với Φ ở Mệnh đề 2.1. Theo Mệnh đề 2.3, phương trình (2.16) có tính nghịch đối với ánh xạ T khi và chỉ khi ϕr ◦ T = T ◦ ϕ−r ; r ∈ R. Với mọi (t, v ) ∈ R × X , ta có (ϕr ◦ T ) (t, v ) = ϕr −t, St(v) = (r − t, Φ (r − t, −t) (St (v ))) , 17 (2.18) và (T◦ ϕ−r ) (t, v ) = T (t − r, Φ (t − r, t) (v )) = (r − t, St−r (Φ (t − r, t) (v ))) . So sánh hai đồng nhất thức ta suy ra (2.18) đúng khi và chỉ khi (2.12) đúng (đặt r − t = τ ), suy ra phương trình v = L (t, v ) có tính nghịch đối với ánh xạ S . Cũng như hệ quả của Mệnh đề 2.4, tính nghịch của một phương trình không ôtônôm có thể đưa về một phương trình ôtônôm. Chú ý rằng T 2 (t, v ) = (t, (S−t ◦ St ) (v )). Theo Mệnh đề 2.2, nếu L là hàm vi phân Fréchet theo v , St 2 tuyến tính với mỗi t ∈ R, và S◦ = Id thì T 2 = Id hay T là chập. 2.4 Ví dụ Ví dụ 2.1. Hệ Hamilton Ở dạng đơn giản nhất hệ Hamilton H (q, p) là hàm được cho bởi:   dq ∂H  =  dt ∂p  dp  = − ∂H  dt ∂q Tính chất của hệ Hamilton: H (q, p) = H (q, −p) Trong trường hợp của cơ học cổ điển, phương trình vi phân thường nhận được từ hệ Hamilton có tính nghịch đối với ánh xạ T được xác định bởi T : R2 → R2 , T (q, p) = (q, −p) Ta có T 2 (q, p) = T (T (q, p)) = T (q, −p) = (q, p) và  T = 1 0 suy ra T 2 = Id,   0 −1 Tính H ◦ T và T ◦ H H ◦ T (q, p) = H (q, −p) = H (q, p) ,   ∂H   ∂H  1 0  ∂p   ∂p   T ◦ H (q, p) =  ∂H  =  ∂H  = −H (q, p) − 0 −1  ∂q suy ra H ◦ T = −T ◦ H . 18 ∂q
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất