Đăng ký Đăng nhập

Tài liệu Facility piping systems handbook

.PDF
1228
223
88

Mô tả:

Facility piping systems handbook
FACILITY PIPING SYSTEMS HANDBOOK Michael Frankel, CIPE, CPD President, Utility Systems Consultants Second Edition McGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Cataloging-in-Publication Data is on file with the Library of Congress Copyright ᭧ 2002, 1996 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. 1 2 3 4 5 6 7 8 9 0 DOC / DOC 0 7 6 5 4 3 2 1 ISBN 0-07-135877-3 The sponsoring editor for this book was Larry S. Hager and the production supervisor was Pamela A. Pelton. It was set in Times Roman by Pro-Image Corporation. Printed and bound by R. R. Donnelley & Sons Company. McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGrawHill Professional, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore. This book is printed on acid-free paper. Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (‘‘McGraw-Hill’’) from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought. For all the architects, engineers, and designers who make concepts into solutions ABOUT THE AUTHOR Michael Frankel, CIPE, CPD, is president of Utility Systems Consultants, a mechanical and electrical consulting engineering firm. A graduate of the City University of New York (CUNY) with more than 44 years of experience, he is an oftenquoted and recognized authority in the field of plumbing and piping engineering. A frequent lecturer and author, his articles have appeared primarily in Plumbing Engineer, the journal of the American Society of Plumbing Engineers (ASPE), and he serves as a member of the editorial advisory board. He has contributed to several handbooks, including McGraw-Hill’s Piping Handbook, now in its Sixth Edition. Mr. Frankel is a faculty member of CUNY, teaching extension division courses in plumbing design and specification writing. He is a member of ASPE and former president of the New Jersey chapter. He is Certified in Plumbing Engineering (CIPE) and Certified in Plumbing Design (CPD) by ASPE. In addition, he is ASPE code liaison to the National Fire Protection Association (NFPA), and is a member of the Technical Committee on Piping Systems for NFPA-99 (Health Care Facilities). CONTENTS Preface to the Second Edition Chapter 1 xxi Codes and Standards 1.1 General / 1.1 American Gas Association (AGA) / 1.2 American National Standards Institute (ANSI) / 1.2 American Petroleum Institute (API) / 1.2 American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) / 1.2 American Society of Plumbing Engineers (ASPE) / 1.3 American Society of Testing and Materials (ASTM) / 1.3 American Society of Mechanical Engineers (ASME) / 1.3 American Society of Sanitary Engineers (ASSE) / 1.3 American Water Works Association (AWWA) / 1.4 American Welding Society (AWS) / 1.4 Compressed Gas Association (CGA) / 1.4 Current Good Manufacturing Practice (cGMP) / 1.4 Code of Federal Regulations (CFR) / 1.5 Environmental Protection Agency (EPA) / 1.5 Food and Drug Administration (FDA) / 1.5 ISO 9000 / 1.5 Occupational Safety and Health Administration (OSHA) / 1.6 Model Regional Building Codes / 1.6 Manufacturers Standardization of the Valve and Fittings Industry (MSS) / 1.7 National Electrical Manufacturers Association (NEMA) / 1.7 National Fire Protection Association (NFPA) / 1.7 National Institutes of Health (NIH) / 1.7 National Oceanic and Atmospheric Administration (NOAA) / 1.8 Nuclear Regulatory Commission (NRC) / 1.8 National Sanitation Foundation, International (NSF) / 1.8 Underwriters Laboratories (UL) / 1.8 3-A Standards / 1.9 Chapter 2 Piping 2.1 Code Acceptance / 2.2 Pressure and Temperature Ratings / 2.2 Cost / 2.3 Corrosion Resistance / 2.3 Physical Strength / 2.5 Fire Resistance / 2.5 Availability / 2.5 Aluminum (Al) / 2.6 vii viii CONTENTS Brass (BR) / 2.6 Cast Iron Soil Pipe (CI) / 2.7 Acid-Resistant Cast Iron (AR) / 2.7 Carbon Steel (ST) / 2.7 Copper / 2.8 Ductile Iron Pipe (DI) / 2.9 Lead (LD) / 2.9 Stainless Steel (SS) / 2.10 Corrugated Steel Pipe / 2.12 Other Metallic Piping Materials / 2.13 Key Properties of Plastic Pipe / 2.15 Description and Classification / 2.16 Plastic Pipe Standards and Nomenclature / 2.17 Elements for Selection / 2.19 Plastic Pipe Materials / 2.24 Asbestos Cement Pipe (ACP) / 2.28 Glass (GL) / 2.28 Vitrified Clay (VC) / 2.28 Concrete Pipe / 2.29 Code Considerations / 2.30 Fitting Types / 2.30 Fitting Materials / 2.30 Metallic Pipe Joints / 2.34 Welding / 2.40 Flanged / 2.43 Hinged Clamp / 2.44 Adapters / 2.47 Joints for Plastic Piping / 2.47 Joints for FRP Piping / 2.49 General / 2.54 Codes and Standards / 2.54 Valve Components / 2.54 Valve Body Materials / 2.55 Valve Actuators / 2.56 Operating and Torque Considerations / 2.60 Firesafe Valves / 2.61 Valve Ratings / 2.62 Pressure Loss through Valves / 2.62 Valve Selection Considerations / 2.63 Gate Valves / 2.64 Globe Valves / 2.67 Plug Valves / 2.69 Ball Valves / 2.72 Butterfly Valves / 2.73 Diaphragm Valves / 2.73 Pinch Valves / 2.74 Check Valves / 2.74 Miscellaneous Valve Types / 2.75 General / 2.81 Codes and Standards / 2.81 System Components / 2.81 References / 2.93 Chapter 3 Solid-Liquid Separation and Interceptors General / 3.2 Filter Categories and Definitions / 3.3 3.1 CONTENTS ix Filter Ratings / 3.3 Membrane Filter Testing / 3.5 General / 3.7 Types of Strainers / 3.8 Materials of Construction / 3.8 Design Considerations and Selection Criteria / 3.11 Filter Classifications / 3.14 Types of Filters / 3.14 Deep Bed Granular (Sand) Filtration / 3.14 Activated Carbon Filters / 3.18 Cartridge Depth Filters / 3.19 General / 3.23 Code Considerations / 3.23 Design Considerations / 3.23 Structural Considerations / 3.23 Location / 3.24 Specific Substances / 3.24 References / 3.34 Chapter 4 Water Treatment and Purification Codes and Standards / 4.1 Suspended Matter (Particulates) / 4.5 Dissolved Minerals and Organic Substances / 4.6 Dissolved Gases / 4.7 General / 4.9 Deposits / 4.14 Corrosion / 4.15 General / 4.16 pH / 4.16 Langelier Saturation Index (LSI) / 4.16 Ryznar Stability Index (RI) / 4.18 Aggressiveness Index (AI) / 4.18 Aeration / 4.20 Clarification / 4.21 Deaeration / 4.22 Decarbonation / 4.22 Dealkalizing / 4.22 Distillation / 4.23 Filtration / 4.27 Ion Exchange and Removal / 4.27 Membrane Filtration and Separation / 4.36 Microbial Control / 4.40 Utility Water Treatment / 4.44 Boiler Feedwater Conditioning / 4.45 Cooling Water Conditioning / 4.46 Potable Water Treatment / 4.47 Codes and Standards / 4.51 Laboratory Systems / 4.51 Pharmaceutical Water / 4.53 Purified Water Types / 4.53 Pharmaceutical Water Treatment Process / 4.55 Feedwater / 4.57 Purification System Design / 4.57 Central Purification Equipment / 4.59 References / 4.62 4.1 x Chapter 5 CONTENTS Heat Transfer, Insulation, and Freeze Protection 5.1 Codes and Standards / 5.1 Basics / 5.2 Types of Insulation / 5.7 Jackets / 5.9 Coatings, Adhesives, and Sealants / 5.13 Insulation Material and Thickness Selection / 5.14 Calculation of Insulation Thickness / 5.19 Freezing of Water / 5.24 The Mechanics of the Freezing Process / 5.24 Pipe Damage Due to Freezing / 5.25 The Freezing of Water in Atmospheric Vessels / 5.27 Sewer and Water Supply Piping Design / 5.30 Frost Closure of Vents / 5.35 Derivation of the Basic Formula for Frost Depth / 5.36 Electric Heat Tracing / 5.50 Steam Tracing / 5.56 Acknowledgments / 5.69 References / 5.69 Chapter 6 Site Utility Systems Hydrologic Cycle / 6.2 Aquifers / 6.4 Inflow into Excavations / 6.5 Preliminary Investigations / 6.10 Storm Water Inlet Selection / 6.11 System Design Criteria / 6.21 System Design Procedure / 6.29 System Design Considerations / 6.33 Roof Retention / 6.35 Site Retention Methods / 6.35 General / 6.53 Codes and Standards / 6.53 Pipe and Installation Classifications / 6.53 Loads Acting on a Pipe / 6.54 Superimposed Loads / 6.57 Bedding / 6.67 Strength of Pipe Materials / 6.69 Total Load on Buried Pipe / 6.74 Cleaning Methods / 6.78 Repair of Cracks and Joint Separations in Piping / 6.79 Repair of Manholes / 6.80 Preventive Maintenance / 6.80 Sewer Components / 6.81 Manholes / 6.81 Sizing the Sanitary Sewer / 6.84 Sanitary Sewer Design Considerations / 6.96 Codes and Standards / 6.100 System Components / 6.100 Component Design and Selection / 6.102 System Design Considerations / 6.104 Storm Water Disposal / 6.106 Water Supplied from a Public Utility / 6.112 6.1 CONTENTS xi Water Supplied from Wells / 6.131 Water Supplied from Surface Water Sources / 6.142 Domestic Water Service / 6.143 Fire Protection Water Service / 6.150 Codes and Standards / 6.153 Drilling Methods / 6.153 Casing / 6.153 Grout / 6.153 Intakes / 6.154 Well Development / 6.154 Finishing the Monitor Well / 6.155 References / 6.155 Chapter 7 Turf Irrigation Systems 7.1 General / 7.1 System Components / 7.1 Codes and Standards / 7.2 General Design Considerations / 7.2 The Soil / 7.2 System Design / 7.5 Acknowledgments / 7.12 Chapter 8 Cryogenic Storage Systems 8.1 System Components / 8.1 Codes and Standards / 8.1 Bulk Storage / 8.2 Sizing the Large Bulk Tank / 8.4 Sizing the Vaporizer / 8.8 Pressure from Liquid Gases / 8.9 Pressure Relief Valves / 8.10 Pipe Materials and Insulation / 8.11 Pipe Sizing Methods / 8.12 System Design Considerations / 8.13 References / 8.13 Chapter 9 Plumbing Systems General / 9.1 Codes and Standards / 9.2 Fixture Units / 9.3 Plumbing Fixtures / 9.3 Equivalent Length of Piping / 9.3 Velocity of Water / 9.6 System Description / 9.7 Major System Components / 9.7 Sanitary System Design / 9.11 Suds Pressure Areas / 9.14 Sump Pumps and Sewage Ejectors / 9.15 House Sewer Design / 9.20 Introduction / 9.21 9.1 xii CONTENTS Codes and Standards / 9.21 Septic System / 9.21 Collection and Treatment Alternatives / 9.33 Solvent Plumbing System / 9.34 System Description / 9.35 Nomenclature / 9.35 System Design / 9.35 Circuit and Loop Vents / 9.38 Wet Vents / 9.39 Suds Relief Vents / 9.39 Sump and Ejector Vents / 9.39 Vent Headers / 9.40 System Description / 9.42 General System Criteria / 9.42 Roof Drainage Systems / 9.42 System Description / 9.55 Water Treatment / 9.55 Water Meters / 9.55 Contamination Prevention / 9.56 Water Velocity / 9.59 Water Distribution Systems / 9.60 Estimating Water Demand / 9.60 Design of the Water Supply Distribution System / 9.62 Adjusting Water Pressure / 9.64 Pipe Size Selection / 9.75 System Description / 9.76 Codes and Standards / 9.76 Water Heating Methods and Equipment / 9.76 Acceptable Hot Water Temperatures / 9.78 Water Heater Sizing / 9.79 Safety and Protective Devices / 9.88 System Design Considerations / 9.89 Hot Water Temperature Maintenance / 9.90 Circulating Water System / 9.94 Electric Heating Cable / 9.102 Chapter 10 Special Waste Drainage Systems Codes and Standards / 10.1 System Approval Requirements / 10.2 Pipe Material and Joint Selection Considerations / 10.3 Pipe Sizing Considerations / 10.3 pH Definition / 10.4 General System Design Considerations / 10.4 General / 10.7 Selection of Laboratory Waste Piping and Joint Material / 10.10 System Design Considerations / 10.10 Acid Waste Treatment / 10.10 General / 10.12 The Nature of Radiation / 10.12 Radiation Measurement / 10.13 Units of Radiation Dose / 10.14 Allowable Radiation Levels / 10.14 Shielding / 10.15 Radioactive Materials / 10.16 System Design Criteria / 10.16 10.1 CONTENTS xiii General Design Criteria / 10.17 Pipe Material Selection / 10.17 General Design Considerations / 10.18 Decontamination / 10.19 Codes and Standards / 10.21 Biological Safety Levels / 10.22 Liquid Waste Decontamination System / 10.23 System Design Considerations / 10.24 General / 10.25 Codes and Standards / 10.25 Pipe Material and Joint Selection / 10.25 System Design Considerations / 10.25 System Description / 10.27 References / 10.27 Oil in Water / 10.28 Methods of Separation and Treatment / 10.28 Gravity Separators / 10.29 Flotation Devices / 10.29 Centrifugal Separators / 10.29 Filtration / 10.29 Smaller Systems / 10.30 Additional References / 10.30 Chapter 11 Facility Steam and Condensate Systems 11.1 Systems Description / 11.1 Codes and Standards / 11.1 Steam / 11.2 Boiler Feedwater / 11.2 Steam Temperature / 11.2 Steam Quality / 11.2 Heat / 11.3 Specific Volume / 11.7 System Classifications / 11.7 Steam System Venting / 11.8 Steam Supply Systems / 11.9 Condensate Return Systems / 11.11 General / 11.13 Component Description / 11.13 Steam System Component Sizing / 11.28 Boiler Feed Pumps / 11.31 Condensate Recovery System Description / 11.33 Component Description / 11.34 Component Selection and Sizing Criteria / 11.36 Steam Trap Selection and Sizing / 11.39 Project Design Examples / 11.44 System Design Considerations / 11.49 Acknowledgments / 11.53 References / 11.53 Chapter 12 Liquid Fuel Storage and Dispensing Systems Definitions and Liquid Fuel Classifications / 12.1 Codes and Standards / 12.2 System Description / 12.5 12.1 xiv CONTENTS System Components / 12.6 Storage Tanks / 12.7 Leak Detection and System Monitoring / 12.17 Vapor Recovery Systems / 12.23 Product Dispensing Systems / 12.25 Storage Tanks / 12.29 Atmospheric Tank Venting / 12.32 Leak Detection and System Monitoring / 12.32 System Monitoring / 12.33 Vapor Recovery / 12.33 Product Dispensing Systems / 12.33 Tank Protection / 12.34 Fire Pump Fuel Storage / 12.37 Emergency Generator Fuel Storage / 12.38 Piping Materials / 12.41 Pipe Sizing / 12.42 Submersible Pump Sizing / 12.44 General Design Considerations / 12.46 Tests / 12.46 Evaluation of AST or UST Installation / 12.47 AST / 12.48 UST / 12.48 System Design Considerations / 12.49 References / 12.51 Chapter 13 Fuel Gas Systems Fuel Gas Description / 13.1 Codes and Standards / 13.1 System Operating Pressures / 13.3 General / 13.5 Major Natural Gas System Components / 13.6 Site Distribution / 13.9 Site Service Sizing Procedure / 13.11 NG Site Service Pipe Sizing Methods / 13.14 Pipe and System Materials for Site Installation / 13.14 Interior Pipe Sizing Procedure / 13.18 Storage Tanks / 13.28 Maximum Content of Liquid in Tanks / 13.31 Location of Equipment on the Site / 13.31 Tank Foundations and Support / 13.31 Regulators / 13.33 Pressure Relief Devices / 13.33 Excess Flow Valve / 13.35 Service Line Valves / 13.35 Filler Valves / 13.36 Vapor Equalizing Valves / 13.36 Liquid Level Gauges / 13.36 Miscellaneous Equipment / 13.36 Vaporizer / 13.37 Propane Mixers / 13.37 LPG System Design / 13.39 Piping Materials / 13.47 System Description / 13.48 Codes and Standards / 13.48 System Components / 13.48 13.1 CONTENTS xv System Design Considerations / 13.50 References / 13.51 Chapter 14 Compressed Gas Systems 14.1 General / 14.2 Definitions and Pressure Measurements / 14.2 Physical Properties of Air / 14.4 Water Vapor in Air / 14.5 Impurities and Contamination / 14.8 System Components / 14.12 System Design / 14.33 Project Design Example / 14.56 General / 14.62 Codes and Standards / 14.62 Air Quality Standards / 14.62 Air Pressure Requirements / 14.63 Generation of Instrument Air / 14.63 Pipe and Fittings / 14.63 General / 14.64 Codes and Standards / 14.64 Classification of Specialty Gases / 14.65 Grades of Specialty Gases / 14.65 Storage and Generation of Gases / 14.68 Distribution System Components / 14.71 Distribution Network / 14.80 General / 14.98 Codes and Standards / 14.98 Description and General Uses for the Common Gases / 14.99 Storage and Generation of Gases / 14.100 The Surgical-Medical Air Compressor Assembly / 14.106 Dental Air Compressor Assembly / 14.109 The Distribution Network / 14.110 Pipe Materials, Joints, and Installation / 14.110 Valves / 14.111 System and Equipment Sizing / 14.116 General / 14.133 Codes and Standards / 14.133 System Components / 14.133 Required Pressure and Flow Rate / 14.133 System Design Considerations / 14.134 General / 14.135 Acknowledgments / 14.137 References / 14.137 Chapter 15 Vacuum Air Systems Definitions and Pressure Measurement / 15.2 System Components / 15.11 General / 15.19 Codes and Standards / 15.19 Medical-Surgical Vacuum Air Systems Description / 15.20 System Components / 15.20 Vacuum Source / 15.20 Distribution Network Sizing and Arrangement / 15.24 15.1 xvi CONTENTS System Sizing / 15.26 Purge and Tests / 15.31 General / 15.32 Methods of Anesthesia Gas Removal / 15.33 System Sizing / 15.34 System Operating Characteristics / 15.35 General / 15.36 Codes and Standards / 15.36 System Components / 15.36 Design Criteria / 15.37 Vacuum Generation / 15.38 Vacuum Source Design Considerations / 15.42 Distribution Network / 15.42 General Design Considerations / 15.43 Codes and Standards / 15.44 Vacuum Source / 15.44 Redundancy / 15.45 Distribution Network / 15.45 Sizing Criteria / 15.47 Types of Systems and Equipment / 15.49 Codes and Standards / 15.49 System Components / 15.49 Detailed System Design / 15.54 Acknowledgments / 15.63 References / 15.63 Chapter 16 Animal Facility Piping Systems 16.1 General / 16.1 Codes and Standards / 16.1 Animal Drinking Water System / 16.2 Drinking Water Treatment / 16.3 Drinking Water System Components and Selection / 16.5 Animal Rack Manifold Configurations / 16.6 System Sizing Methods / 16.8 Cleaning and Drainage Practices / 16.12 Equipment Washing / 16.18 Equipment Sanitizing / 16.18 Monitoring Systems / 16.18 General Systems Design Considerations / 16.19 Swine Cooling Systems / 16.19 Acknowledgment / 16.21 References / 16.21 Chapter 17 Life Safety Systems General / 17.1 General / 17.2 System Components / 17.2 System Classifications / 17.2 Codes and Standards / 17.2 Types of Drench Equipment / 17.3 Installation Requirements for Drench Equipment / 17.8 Drench Equipment Components / 17.12 17.1 CONTENTS xvii Flushing Water Disposal / 17.16 Visibility of Devices / 17.17 System Design / 17.17 General / 17.20 Codes and Standards / 17.20 System Components / 17.20 Types of Systems / 17.20 Types of Personal Respirators / 17.21 Breathing Air Purity / 17.24 System Components / 17.26 Component Selection and Sizing / 17.30 References / 17.34 Chapter 18 Water Display Fountains and Pools 18.1 General / 18.1 Types of Installations / 18.1 System Components / 18.2 Equipment / 18.2 System Configurations / 18.7 Chapter 19 Nonpotable Water Systems 19.1 Definitions / 19.2 General / 19.2 Common Uses / 19.2 Codes and Standards / 19.3 System Description / 19.3 System Components / 19.3 Design Flow / 19.4 Treatment Systems / 19.4 Precautions / 19.4 Public Acceptance / 19.6 Typical Installations and Details / 19.7 General / 19.12 Codes and Standards / 19.12 Methods of Preventing Attachment of Organisms / 19.12 Pipeline Cleaning / 19.13 Filters / 19.13 Seawater Intake / 19.14 Piping Materials / 19.15 Equipment Selection and Mechanical Room Design Considerations / 19.16 References / 19.16 Chapter 20 Drinking Water Systems Codes and Standards / 20.1 System Components / 20.2 Drinking Fountain Installation / 20.3 System Design / 20.4 Pipe and Insulation Sizing and Selection / 20.5 System and Component Sizing / 20.5 20.1 xviii CONTENTS References / 20.10 Acknowledgments / 20.10 Chapter 21 Heat Exchangers 21.1 Introduction / 21.1 Codes and Standards / 21.1 ASTM B-31.9, Code for Pressure Piping, ASHRAE B-90.1, Conservation of Energy Definitions / 21.2 General Heat Exchanger Types / 21.3 Choosing Off-the-Shelf Shell and Tube Exchangers / 21.9 Plate Type Heat Exchangers / 21.10 Plate and Frame Heat Exchangers / 21.10 Immersion Heat Exchangers / 21.14 Air-Cooled Exchangers / 21.14 Heat Exchanger Selection / 21.15 Shell and Tube Heat Exchangers / 21.17 Sizing Pressure and Temperature Relief Valve / 21.19 References / 21.20 Chapter 22 Measurement Instrumentation and Methods Introduction / 22.1 General / 22.1 Codes and Standards / 22.2 Definitions / 22.2 Newtonian Fluids / 22.3 Sensors / 22.3 Hydraulic Radius / 22.3 Flowmeter Classification / 22.4 Principles of Flowmeter Operation / 22.5 Electronic (Electromagnetic) Flowmeters / 22.18 Flowmeter Selection / 22.21 General / 22.23 Level Technologies / 22.23 Level Measurement Selection / 22.33 Liquid Expansion Thermometers / 22.35 Bimetallic Devices / 22.25 Change of State Sensors / 22.35 Silicon Diode / 22.36 Infrared Sensors / 22.36 Thermocouples / 22.36 Resistive Temperature Devices / 22.37 Manometer / 22.38 Bourdon Gauge / 22.38 Diaphragm Gauges / 22.39 Capacitance Meters / 22.39 Strain Gauges / 22.39 Introduction / 22.43 Metering Pump Description / 22.43 Metering Pump Considerations / 22.47 Calculating the Hydraulic Radius of an Open Channel / 22.50 Calculating the Flow of an Open Channel / 22.50 Meters for Measuring Flowrate in Open Channels / 22.51 Miscellaneous Devices and Measurement Methods / 22.58 References / 22.60 22.1 CONTENTS xix Appendix A Pipe Distribution Systems A.1 Appendix B Trade Associations B.1 Appendix C Glossary and Abbreviations C.1 Appendix D Metric Unit Conventions and Conversions D.1 Index I.1 PREFACE TO THE SECOND EDITION The acceptance of the first edition of the Facility Piping Systems Handbook by engineers throughout the world has been very gratifying. This second edition expands on the previous work by providing additional information to the chapters on individual private sanitary sewage disposal systems, installation of natural gas piping on a site, and fixture and equipment mounting heights. More specific information regarding acids and acid drainage is also provided. Codes have been updated for these topics. Additional chapters have been written on drinking water, heat exchangers, and measurement equipment and methods. Where applicable, metric units have been included along with the Inch Pound numbers to make their conversion easier. A fourth appendix has been added to facilitate the conversion of Inch Pound (IP) to Metric (SI) units. I would like to thank the National Fire Protection Association for allowing me to use the diagrams that appear throughout this book. I also thank the NFPA for the material reproduced with their permission. It is important to note that this material does not represent the official and complete position of the NFPA on the particular subject to which the material refers. The reader should consult the specific code or standard concerning the subject to which the material refers to fully understand the NFPA’s position on that subject. Michael Frankel xxi CHAPTER 1 CODES AND STANDARDS This chapter describes the codes and standards used and referenced most often that affect the materials, design, and installation of the service and utility systems described in this handbook. GENERAL Codes relating to piping provide specific design criteria such as allowable materials, working stresses, seismic loads, thermal expansion, and other imposed internal or external loads as well as fabrication, installation, and testing for many aspects of a total piping system. Code compliance is mandated by various federal, state, and local agencies that have jurisdiction and enforcement authority. Each code has precisely defined limitations on its jurisdiction. Familiarity with these limitations can be obtained only after a thorough reading of the code. These codes often refer to standards prepared by nationally recognized organizations. The term nationally recognized is defined as a group or organization composed of a nationwide membership representative of its members’ views. To achieve nationally recognized status, an association must have been in existence for a reasonable period of time, be active in research and other issues relating to its area of interest, and be generally regarded by its peers to be scientifically accurate. Standards provide specific design criteria and rules for specific components or classes of components such as valves, joints, and fittings. Dimensional standards provide control for components to assure that components supplied by different manufacturers are physically interchangeable. Pressure integrity standards provide performance criteria so that components supplied by different manufacturers will function and be service rated (pressure and temperature) in a similar manner. Standards compliance is usually required by construction or building codes or purchaser specifications. In any piping system design, if different code requirements are discovered, the most stringent requirements must be followed. The applicability of various codes and standards must be ascertained before the start of a project, because submission of plans is often required for approval prior to construction and installation of the piping systems. This requires a code search and consultation with the various authorities having jurisdiction. Fire insurance carriers are another consideration in the area of standards. They very often have more restrictive requirements than the building and construction codes that are normally applicable to every project, particularly in the area of water supply storage and distribution for fire protection purposes, which may be combined with the domestic water system. 1.1 1.2 CHAPTER ONE AMERICAN GAS ASSOCIATION (AGA) The AGA advances the safe, economical, and dependable transport of gas to the public. In conjunction with the NFPA, it publishes NFPA-54, the Fuel Gas Code. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI serves as the national coordinating institution for voluntary standardization and related activities in the United States. Through ANSI, organizations concerned with such activities may cooperate in establishing, improving, and approving standards and certification that such activities remain dynamically responsive to national needs and prevent duplication of work. ANSI’s goals are to further the voluntary standards movement as a means of advancing national economy and benefiting public health, safety, and welfare; to facilitate domestic and international trade; to assure that the interests of the public, including consumers, labor, industry, and government, have appropriate protection, participation, and representation in standardization and certification; to provide the means for determining the need for new standards and certification programs; to assure activities by existing organizations competent to resolve the need; to establish, promulgate, and administer procedures and criteria for recognition and approval of standards as American National Standards and to encourage existing organizations and committees to prepare and submit such standards for approval by the institute; to cooperate with departments and agencies of the federal, state, and local governments in achieving optimum use of ANSI in regulation and procurement; and to serve as a clearinghouse for information on standards and standardization, certification, and related activities in the United States and abroad. AMERICAN PETROLEUM INSTITUTE (API) This organization affords a means to cooperate with the government in all matters of national concern relating to American petroleum products; to foster foreign and domestic trade in American petroleum products; to promote in general the interests of all branches of the petroleum industry; to promote the mutual improvement of its members and the study of the arts and sciences connected with the petroleum industry. AMERICAN SOCIETY OF HEATING, REFRIGERATING, AND AIR CONDITIONING ENGINEERS (ASHRAE) The purpose of ASHRAE is to advance the art and science of heating, ventilation, and air conditioning and allied arts and sciences, as well as related human factors for the benefit of the general public. To fulfill its role, the society recognizes the effect of its technology on environmental and natural resources.
- Xem thêm -

Tài liệu liên quan